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Abstract: The computational capabilities of computer tools expand the student’s search capabilities.
Conducting computational experiments in the classroom is no longer an organizational problem.
This raises the “black box” problem, when the student perceives the computational module as a
magician’s box and loses conceptual control over the computational process. This article analyses
the use of various computer tools, both existing and specially created for “key” computational
experiments, that aim at revealing the essential aspects of the introduced concepts using specific
examples. This article deals with a number of topics of algebra and calculus that are transitional from
school to university, and it shows how computational experiments in the form of a “transparent” box
can be used.

Keywords: computations; mathematics; conceptual understanding; horizontal connections in learning

1. Introduction

In the methodology of teaching mathematics in the Soviet Union in the 1950s, 1960s,
1970s, and partly in the 1980s, the formation of mathematical concepts relied heavily on
the operational activities of students. This corresponded to the activity approach well
developed by Soviet psychologists. The psychological theory of activity was created in
Russian psychology due to the works of L. S. Vygotsky, S. L. Rubinshtein, A. N. Leontiev,
A. R. Luria, A. V. Zaporozhets, P. Ya. Galperin, and many others. The most complete theory
of activity is presented in the works of A. N. Leontiev, in particular in his last book Activity.
Consciousness. Personality [1]. At the level of mathematics teaching methodology, this was
manifested by studying algebra as a separate subject, in which much attention was paid to
algebraic calculations.

The psychological basis of this approach to teaching mathematics was studied in detail
by I.S. Shapiro and described in the work From Algorithms to Judgments [2]. In this work,
I.S. Shapiro discusses the operator-logical form of knowledge, which is well consistent with
the methodology of teaching school algebra as a subject that studies the transformation of
algebraic expressions from one form to another.

The main idea of the book is the “convolution of algorithms”, which he considers as a
form of generalization and as a mechanism for “running ahead” in solving complex problems.

Let us give an example from this work [2] (p. 231):
“Let us describe in general terms one of the experiments. It took less than three

minutes for a math-savvy student A to solve the problem.
Simplify:

2cos3α− cosα

2tg
(

π
4 − α

)
·sin2(π

4 + α
)
· cosα

We asked the student to tell the way of thinking. Student A wrote on the fly: 2cos3α−
cosα = cosα · cos2α

Experimenter:—Do you know such a formula?
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A: It’s easy.
Experimenter: Do you remember this formula?
A:—I will derive this formula. (Makes, without hesitation, the necessary transforma-

tions.)
Experimenter:—Did you solve it in your head?
A:—So in detail—no, I immediately saw what was happening.
Experimenter:—But did you somehow deduce when you solved?
A: It seems not. If you do everything, then one thing will “overwhelm” the other ...

You have to think about what is not obvious ...
Experimenter:—For what reasons did you replace tg

(
π
4 − α

)
= ctg

(
π
4 + α

)
?

A:—I noticed that it turns out:

2ctg
(π

4
+ α

)
·sin2

(π

4
+ α

)
= 2cos

(π

4
+ α

)
sin

(π

4
+ α

)
= sin

(π

2
+ 2α

)
= cos2α

Experimenter:—You reasoned in such detail?
A:—No, I immediately saw that it turns out cos2α, etc.”
Approximately the same way of “thinking aloud” was observed when the problem

was solved by other students gifted in mathematics. The presence of a folded system of
inferences ensured the simultaneous and quick consideration of several actions and the
choice of a way to solve a task. Of the eight ninth-graders gifted in mathematics who
participated in the experiment, six solved the problem orally, and two with a minimum
number of records of intermediate equalities.

“Running ahead” suggests that the actions to transform trigonometric expressions not
only pass into the internal plane and turn into thought processes, but also act as objects that
the student operates on, building a plan for solving the task. These processes are integrally
considered in the APOS theory, the main ideas of which will be outlined below.

The emergence of powerful mathematical tools for performing symbolic calculations, such
as Maxima, Mathematica, Maple, Sage, and MathPartner, has significantly reduced the value of
manual calculations, on which the technique of moving from algorithms to judgments through
algorithm convolution was based. Computer programs perform calculations faster and without
errors. Moreover, programs such as UML (Universal Mathematical Solver) are specifically
oriented towards solving school problems in algebra and present not only the answer, but also
the chain of transformations that the teacher requires.

Under these conditions, the following questions arise.

• To what extent should the performance of calculations by hand be preserved in the
teaching of mathematics at school?

• How to preserve and develop the mathematical culture of students without relying on
traditional operational activities?

If it is difficult to answer the first question, then we will try to answer the second
question constructively, analyzing various examples of computational schemes related to
the formation of mathematical concepts.

2. Activity—Interiorization—Encapsulation

Shapiro’s idea of the convolution of algorithms fits well with the idea of internaliza-
tion of external actions. The convolution of algorithms can be considered as one of the
manifestations of the psychological mechanism of internalization, that is, the transfer of
actions with objects of the external environment to the internal—mental—plan. Another
important psychological phenomenon associated with interiorization is “encapsulation”,
which plays an important role in the APOS (Actions, Processes, Objects and organizing
them in Schemas) theory [3] “. . . to describe how actions become interiorized into processes
and then encapsulated as mental objects, which take their place in more sophisticated
cognitive schemas. . .” [4].

This statement can be explained as follows: the performing of an action with objects
of the external environment (actions) transfers them through the process of internalization
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into mental processes (processes), which in turn are folded (encapsulated) into objects
(objects), on which mental activity (schemas) is built.

At the same time, if Shapiro associates the performance of calculations exclusively by
hand, Dubinsky considers the possibility of replacing calculations by hand with digital
symbolic calculations.

Of interest is the existence of the concept of “encapsulation” in a different sense, as
one of the main components of object-oriented programming.

John D. Cook believes that the use of the same term in programming and psychology
is not accidental; he calls encapsulation in programming “logical”, and the phenomenon of
encapsulation as a mechanism of thinking “psychological encapsulation” [5]:

“A piece of software is said to be encapsulated if someone can use it without knowing
its inner workings. The software is a sort of black box. It has a well-defined interface to the
outside world. “You give me input like this and I’ll produce output like that. Never mind
how I do it. You don’t need to know”.

I think software development focuses too much on logical encapsulation. Code is
logically encapsulated if, in theory, there is no logical necessity to look inside the black box.

. . .
Maybe there’s nothing wrong with the code, but you don’t trust it. In that case, the

code is logically encapsulated but not psychologically encapsulated. That lack of trust
negates the psychological benefits of encapsulation... A failure of logical encapsulation is
objective and may easily be fixed. A loss of confidence may be much harder to repair”.

Thus, if the object is psychologically encapsulated, then the student is fluent in it,
using it to produce complex judgments. At the same time, a logically encapsulated object
can exist in a program as a “black box” that one can work with, but it is not an element of
human mental activity. The challenge for methodists is to make logical and psychological
encapsulation become part of a single whole. One of the ways is to de-encapsulate the
object represented by logical encapsulation so that by working with it in an “expanded”
form through internalization, one could achieve psychological internalization. It should be
noted that formally assimilated definitions of mathematical concepts can also be classified
as logically encapsulated objects. With the formal assimilation of mathematical knowledge,
as written by mathematician A.Ya. Khinchin [6], the student cannot use knowledge, provide
examples, solve problems, although he/she can correctly pronounce the formulations of
definitions and theorems:

“Those who have taken out of school only external, formal expressions of mathematical
methods, without having mastered their substantial essence, when they meet a real problem,
will, of course, be deprived of the opportunity to see which of these methods can be
applied to its solution. He will not be able, as we say, to formulate a practical problem
mathematically; to a large extent, he will be helpless in solving this problem, since he
has not developed the habit of really comprehending the formal operations performed,
as a result of which neither the interests of the practical task facing him, nor even the
mathematical content of the emerging problems will be able to guide him when choosing
these operations” [6] (pp. 21–27) (translated by the authors of the article).

Next, we will consider examples of the introduction of mathematical concepts that
demonstrate how computational processes can be used to de-encapsulate concepts given by
verbal definitions, and introduce new concepts based on the analysis of the computational
scheme.

3. Positional Numeral Systems and Information Compression Algorithms

In grade school, school students begin to add numbers in the unary numeral system,
when the value of a number is determined as the cardinality of a set of sticks or matches.
The addition algorithm in this system is extremely simple—the students need to connect
together two piles corresponding to the terms. Later, at university, they will return to
the unary numeral system when they study the theory of algorithms and build Turing
machines. Then, the task of constructing an algorithm can be described, for example, as
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III + II→ IIIII. Further, in grade school, students are introduced to the decimal numeral
system (and in computer science classes in high school also to the binary numeral system)
and students study addition algorithms in these numeral systems. Between the introduction
of the concept of a number through the unary number system and the further study of
algorithms for numbers in the decimal system, a logical gap arises—why was it necessary
to introduce a positional numeral system, if it is much more difficult to add numbers in
it than in the unary one? To answer the question, the following calculations can be made.
Let us calculate how much ink we need to spend on writing numbers in different numeral
systems. We will assume that one drop is needed to write a one, and three drops to write
a zero. Then, the number “ten” in the unary system will be written as IIIIIIIIII and will
require ten drops, and in decimal it will be written as 10 and will require 1 + 3 = 4 drops.
If we need to write the number “one hundred” in different systems, then in the unary system,
ninety more sticks will need to be added to the number ten, which will require ninety drops of
ink, whereas only three additional drops will be required to go from “ten” to “one hundred”
in decimal. To go from “one hundred” to “one thousand” in a unary numeral system, nine
hundred drops are required, whereas in decimal only another three drops.

Thus, the purpose of the transition to the decimal number system is to compress
information. To give students an even better idea of what compression means, we can offer
to calculate the length of the string that represents the number “one thousand” in different
number systems. If one centimeter is allocated to one digit, then to write the number “one
thousand” in the unary numeral system, we will need to write a line ten meters long, and
to write the number “one million” a line a thousand times longer, that is, ten kilometers
long, while in the decimal system, “one million” will be seven centimeters long.

Thus, simple calculations show that it is reasonable to introduce a decimal notation in
order to more compactly encode information—information compression—a concept that is
important for computer science. From this point of view, the transition to a new base by
division can be considered as an information compression algorithm. The actions that are
performed in this case are carried out in elementary school: arrange the sticks (matches)
into piles of ten each, then do the same with these piles, arranging the piles into groups of
ten each, etc. Formally, this algorithm can be described as follows, where the mod and div
operations should be considered as operations with heaps (in this interpretation, they are
carried out by one operation connecting mod and div), described above, and output—as
fixing the next “digit”.

Computational algorithm
while N 6= 0
output (N mod 10);
N : = N div 10
end while

3.1. P-Adic Numbers and the Algorithm “Division with Remainder”

An amazing example of how the essence of a mathematical concept can be expressed
through calculations is p-adic numbers. Here is a standard definition from the mathematical
literature, which even mathematically gifted students cannot immediately understand.

Definition 1. An integer p-adic number for a given prime p is an infinite sequence
a = {a1, a2, ....} of residues an modulo pn satisfying the condition: an ≡ an+1(modpn)) [7].

Consider the computational process of the algorithm for converting a natural number
N into a positional system with base p ≥ 2:

Computational algorithm
k :=0;
while (N 6= 0)
ak := N mod p;
N := N div p;
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k := k + 1
end while
Let us apply this algorithm to the “forbidden”—negative—number, for example, to N

= −1. Let us take as an example the smallest prime number p = 2.
The first step of this algorithm gives 1 as the remainder (a0 = 1) and −1 as the quotient

(N = −1).
The algorithm loops and the output is an infinite sequence of ones: (. . .111) = (. . . a2 a1 a0).
Consider another computational process defined by the algorithm for adding numbers

in the positional number system:
Computational algorithm
k := 0; s := 0;
do
ck := ak + bk + s mod p;
s := ak + bk + s div p
until (ak = 0 u bk = 0)
end do
It is unusual that this algorithm, like the previous one, does not stop if one of the terms

is given by an infinite sequence.
For example, if we add −1, written as a sequence (...111) with the number 4, written

in binary, we get:
. . .1 1 1 1 1
1 0 0
. . .0 0 0 1 1
that is, the number 6 in binary notation (if we do not take into account the infinite

number of zeros that precede the first unit from the left).
After these calculations, one could “come up with” another definition, for example,

the one which is given in Wikipedia:
“In number theory, given a prime number p, the p-adic numbers form an exten-

sion of the rational numbers which is distinct from the real numbers, though with some
similar properties; p-adic numbers can be written in a form similar to (possibly infinite)
decimals, but with digits based on a prime number p rather than ten, and extending
(possibly infinitely) to the left rather than to the right. Formally, given a prime number p, a
p-adic number can be defined as a series

s = ∑∞
i=k ai pi

where k is an integer (possibly negative), and each ai is a integer such 0 ≤ ai < p. A p-adic
integer is a p-adic number such that k ≥ 0”.

It should be noted that even if the last definition is given before the operation of the
two algorithms above is shown, understanding the concept of a p-adic number will present
significant difficulties.

It is important to note that the idea of p-adic numbers is used at the “lower level”
of computer calculations: the inverse binary code of integers is nothing but a 2-adic
representation with a fixed number of digits.

It can be concluded that some mathematical concepts are comprehended through
computational algorithms.

3.2. Diophantine Equations, Continued Fractions, and Euclidean Algorithm for Finding GCD

In the course of algebra and/or in the course of discrete mathematics at technical
universities, such concepts as the greatest common divisor, Bézout’s identity, continued
fractions, convergents, linear Diophantine equations, and modular reciprocal are studied.
Usually, the introduction of these concepts is accompanied by verbal definitions, from which
the connection of these concepts with certain algorithms is not visible. At the same time,
all of the above topics are united by the Euclidean algorithm. However, when presenting
the material, this fact fades into the background, while the general computational scheme
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can be used as a tool for forming a general idea that connects these concepts. Moreover,
it can be used to derive an algorithm for constructing convergents from the GCD linear
representation algorithm (extended Euclidean algorithm).

We have created a special environment, which is based on the table representing a
computational process that combines the calculation of quotients, remainders, and linear
representations of remainders through the original pair of numbers.

The special environment implements the following algorithm:
Computational algorithm
(xa;ya) := (1;0); (xb;yb) := (0;1);
while a 6= 0 and b 6= 0
q := a div b;
r := a − q·b; (xr;yr) := (xa;ya) − q· (xb;yb);
a := b; (xa;ya) := (xb;yb);
b := r; (xb;yb) := (xr;yr)
end while
In this algorithm, a and b are the original numbers, and q and r are the quotient and

the remainder when a is divided by b. In the algorithm, after each iteration of the loop, the
variables a and b are assigned the values b and r, respectively.

The vectors (xa;ya), (xb;yb), (xr;yr) are vector representations of the numbers a, b, and r.
With them in the algorithm, the same actions are performed as with the numbers a, b, and r.

Thus, the presented algorithm combines the regular and extended Euclidean algo-
rithms.

If in this algorithm we replace subtraction with addition and change the initialization
of vectors in the first line of the algorithm, we get an algorithm for constructing a continued
fraction for a rational number a/b and convergents for this continued fraction.

Computational algorithm
(xa;ya) := (0;1); (xb;yb) := (1;0);
while a 6= 0 and b 6= 0
q := a div b;
r := a + q·b; (xr;yr) := (xa;ya) + q· (xb;yb);
a := b; (xa;ya) := (xb;yb);
b := r; (xb;yb) := (xr;yr)
end while
It is easy to prove that both algorithms will generate numbers of the same absolute

value. For coprime numbers a and b, the last pair of numbers in the extended Euclidean
algorithm will be (b;-a); that is, in absolute value, it will give the original pair of numbers
in the reverse order. This consideration makes it possible to explain the transfer of the
extended Euclidean algorithm to the algorithm for constructing convergents.

Thus, understanding the work of similar computational algorithms leads to the real-
ization of more general ideas underlying them, the connection of different representations
of these general concepts, and the transfer from the algorithm to the proof of theorems.
The latter suggests that computations can become the basis for both the psychological and
logical encapsulation of a new concept.

The other side of the analyzed example is the methodological aspect associated with
the creation of this environment based on the existing logical connection between the
various topics of the mathematics course.

As can be seen from Figures 1 and 2, the same simple computational base can combine
several tasks that are different in subject matter, but close in meaning and algorithms used.
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A feature of this module is that the algorithms underlying it are known to the students,
and they can not only solve problems, but also study solutions of similar tasks by choosing the
demonstration mode. In this mode, the program generates random numbers a and b, checking
that the calculation table is neither too large nor too small. In the testing mode, the program
will check each move (filling one cell) and highlight the result in green or red color, depending
on whether the correct number is entered in the cell or not. Finally, in exam mode, the student
completes the entire spreadsheet and it is sent to the server for review. It should be noted that
the possibility of opening two programs, one of which works in demo mode and solves the
example required for answering the exam, is blocked by the fact that entering numbers into this
program is not allowed—tasks are generated automatically.
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3.3. Exponential Functions and Euler’s Computational Scheme

When introducing an exponential function, there is one methodological problem
associated with the fact that the exponentiation is introduced in the algebraic paradigm,
while the exponential function requires an appeal to the ideas of mathematical analysis.
It is necessary to justify the selection of one of the bases—the number e—among others.
Some textbooks suggest, for example, choosing an ax function whose slope of the tangent
to the graph at zero is equal to 1. It is clear that the appearance of the tangent is associated
with the introduction of a derivative, that is, an appeal to the concepts of calculus.

Therefore, it is of interest to consider another process of introducing the concept of an
exponent based on differential calculus. But then it will be necessary to combine it with the
algebraic ideas on which the introduction of the exponential function is based.

In order to establish a connection with the function y = ax, we recall the steps for
introducing this concept. The exponential function is first defined for the natural argument
y = an, and then it is redefined first for negative values of the argument as a−n = 1/an,

and then for rational values of the argument through radicals as a
p
q = q
√

ap. The last and
the most difficult stage, the definition of an exponential function of a real argument, is also
associated with calculus and requires the concept of continuity. This stage is omitted from
the pre-college mathematics curriculum.

Let us consider the approach to the introduction of the exponent based on the primacy
of the ideas of calculus.

The most natural definition of the function y = exp(x) = ex is given through the
solution of the differential equation y′(x) = y(x), y(0) = 1.

Consider the Euler algorithm for the approximate solution of differential equations,
which is obtained from the definition of the derivative, if we discard the limit from it:
instead of y′(x) = lim

h→0

y(x+h)−y(x)
h consider y′(x) = y(x+h)−y(x)

h , from which we express the

value of the function at the next point y(x + h) = y(x) + y′(x) · h.
Given the equality y′(x) = y(x), we get y(x + h) = y(x) + y(x) · h = y(x) · (1 + h).
The algorithm for calculating approximate values of exponential function using the

Euler method is as follows:
Computational algorithm
x := 0; y(0) := 1;
repeat
y(x + h) := y(x)·(1 + h);
x := x + h
end repeat
For h = 1, we get the definition of a geometric sequence y(x + 1) := y(x)· 2 under the

condition y(0) = 1:
1, 2, 22, 23, . . .
Thus, the computational process associates a differential equation with a y = ax function.
Using another computational process, one can show how the number e arises from

the scheme of Euler’s method.
Consider h = 0.1 and express y(1) in terms of y(0) = 1:
Computational algorithm
x := 0; y(0) := 1; h = 0.1;
repeat 10 times
y(x + h) := y(x)· 1.1;
x := x + h
end repeat
Multiplying 1 ten times by 1.1, we get that y(1) = 1.110 = (1 +1/10)10 ≈ 2.59. . .
Further, by analogy, if we take the step h = 0.01, then y(1) = 1.01100 = (1 + 1/100)100 ≈

2.70. . .
After that, it will be natural to define the natural base as the limit lim

n→∞
(1 + 1/n)n.



Computation 2023, 11, 194 9 of 15

Thus, in this example, the computational scheme for solving the differential equation
by the Euler method served as a link between the differential equation and the definition of
the exponential function as a generalization of the multiplication operation.

3.4. The Concept of the Integral and the Approximate Calculation of the Derivative

Continuing the previous case study, we will show that Euler’s computational scheme
allows us to connect different representations of the concept of an integral and provide the
formation of ideas about the connection between an integral and an antiderivative.

Let us consider the simplest algorithm for approximate calculation of the area of the
region under a curve above the interval [0; 1] (Figure 3).

Computational algorithm
S := 0; x := 0;
while x < 1
S := S + h· f(x);
x := x + h
end while
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Consider another problem—the movement of a point along a straight line. Let us
denote the coordinate of the point on the straight line at the time t as X(t); then, the average
velocity of the point V(t) for the time from t to the next moment of the timing of the
movement t + h can be approximately calculated as V(t) = X(t+h)−X(t)

h . From this equality
it is possible to build a computational scheme of successive positions of a point on a straight
line X(t + h) = X(t) + V(t)· h, for example, for a time interval from 0 to 1. This algorithm is
easy to implement dynamically and see the movement of a point on a screen.

Computational algorithm
t := 0;
while t < 1
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X := X + h·V(t);
t := t + h
end while
It can be seen that, up to the notation of variables, both computational schemes are the

same. The second algorithm does not specify the initial position of the point. If we add
X := 0 at the beginning, then the algorithms will match completely. The ability to change the
initial value of X indicates that the point can start moving from different initial positions
and move along different trajectories with the same velocity change function. In terms of
antiderivatives, X(t) is called the antiderivative of V(t), and the described result says that
the antiderivative of a function V(t) is determined up to a constant value. Knowing that the
speed V(t) is the derivative of the coordinate X(t) with respect to time t, we arrive at the
idea of connection between the concept of antiderivative and the concept of derivative.

Thus, a comparison of computational schemes for different problems makes it possible
to reveal the commonality between various mathematical concepts. The presented case
study shows the relationship between the representations “the area of region under a curve”
and “the coordinate of a point moving with a given velocity”.

3.5. Combinatorial Identities and Generating Functions

Trigonometric identities are well represented in the school curriculum, and combinato-
rial identities are much less so. The former are well developed in the school methodology,
while the latter receive much less attention. The reason, in our opinion, is the greater
content depth of the latter and the impossibility at the school level to build their study on
the basis of operational culture.

Consider two simple combinatorial identities:

∑n
k=0

(
n
k

)
= 2n and ∑n

k=1

(
k ·

(
n
k

))
= n · 2n−1

Each of them can be comprehended in two interpretations: combinatorial and algo-
rithmic (Table 1).

Table 1. Combinatorial (left) and algebraic (right) interpretations.

Combinatorial Interpretation Algebraic Interpretation

(
n
k

)
is the number of k-element subsets of a set of n

elements.

∑n
k=0

(
n
k

)
is the number of all subsets of a set of n elements.

2n is the number of all subsets of a set of n elements,
calculated differently, namely, equating two calculations

that lead to the same result.
by the product rule, considering that each element has two

possibilities—to be chosen or not.
n
∑

k=0

(
n
k

)
= 2n

(1 + x)n = (x + 1) · (x + 1) · ... · (x + 1)=

1n +

(
1
n

)
· 1n−1 · x + ... +

(
n
k

)
· 1n−k · xk + ... + xn

Binomial theorem. Models isomorphism: the product
ofn brackets of the form

(
x0 + x1

)
is considered, each

of which can be interpreted as
(
x0 + x1

)
. Choosing an x

from a parenthesis corresponds to choosing 0 or 1 for the
corresponding member of the binary set. The reduction of
like terms will automatically count the number of subsets

with the same number of elements.
If we substitute 1 instead of x, then the sum of the numbers
of all subsets will be on the right side. On the left side, we

will automatically get 2n .

Thus, the essence of combinatorial calculation is to compare different computational
models for counting the number of combinations. The number of combinations can be
thought of as the number of loop steps that generate countable combinations. We can
represent them with different algorithms:

Computational algorithm 1
do over k from 1 to n
Construct all subsets from k elements
end of do
Computational algorithm 2
do
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Construct the next binary set and match it with a subset of elements that correspond to the
units of the binary set

until no more binary sets of n elements
end of do
In fact, different algorithms use different data structures. While the first algorithm

constructs the subsets directly, the second encodes the subsets as sets of zeros and ones.
Thus, different interpretations can be associated with different data structures.

Indeed, when teaching courses on discrete mathematics, difficulties arise in explaining
the complexity of algorithms if they use different data structures.

Algorithmic interpretation partially collapses the calculation process: in the algebraic
version, due to the implementation of algorithms for working with polynomials, the process
of counting subsets with the same number of elements is encapsulated. Instead of solving
one problem, we get a solution to many problems—simultaneously counting the number
of all subsets with the same number of elements.

More surprising is that, being within the framework of algebraic interpretation, we can
easily obtain the second identity by differentiating the Newton binomial and substituting x = 1:

n · (1 + x)n−1 =

(
1
n

)
· 1 +

(
2
n

)
· 2 · x + ... +

(
k
n

)
· k · xk−1 + ... + n · xn−1

“Moving backward” we can compare the computational algorithms for generating
combinatorial objects for the left and right sides, but for this we need to find combinatorial
objects that allow these computational schemes. If the objects are known—subsets with
a distinguished element—then the interpretation of the calculations will not be difficult.
The question remains: how was the desired combinatorial object guessed? This is the
creative part of the computational problem.

Interestingly, in combinatorial problems, the calculation formulas themselves often
give an idea of which combinatorial problem was solved. For example, n! is associ-
ated with the calculation of permutations, and the sign of multiplication with a combina-
tion of independent features, from which expressions of the form an can be interpreted.
Division is associated with the idea of factorization, and addition with the division of the
set of combinations into subsets of objects for which the number of combinations can be
counted using known formulas.

The program Wise Tasks Combinatorics [8] is built on the idea of a connection between
algebraic and computational interpretations.

In this system, the problem is described by a program that generates all combinations
that are obtained from simple sets through their Cartesian products, unions, and other binary
operations on sets that are used in describing combinatorial problems. The program goes
through all such combinations and counts their number. The interface provides students with
the ability to enter arbitrary arithmetic expressions, supplemented by such combinatorial
functions as the factorial and the number of k-element subsets of a set of n elements.

All calculations with expressions entered by a student are performed on the set of
rational numbers, for which the number of digits of the numerator and denominator is not
limited (long numbers).

The result is compared with the result calculated by the program and reported to the
student (Figure 4).

Thus, the student’s answer is compared not with the teacher’s answer, but with
the answer that is generated automatically according to the condition of the problem.
If the compiler of the problem makes an error in the condition, this leads to the fact that
another problem is actually formed, and the system will check the solution of this particular
problem. Tasks can be posed by a student who would look for answers, and the system
will check the correctness of the answer of any task allowed by the system. For example,
Figure 4 shows three different expressions that define the same answer.
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Therefore, the data structure of the task, which allows its convenient description,
allows one to set and check tasks.

The only difficulty for the compiler of tasks is the need to use a special xml-language
for describing the conditions of tasks. The authors of the system [8] found the follow-
ing solution: instead of using a common editor for composing tasks, thematic editors
were created that allow one to set tasks by changing the parameters of task conditions.
For example, there exist the editor of tasks on maps, the editor of tasks on numbers, the
editor of tasks on words, the editor of tasks for coloring polygons and polyhedra, the editor
of tasks on a chessboard, etc.

4. Discussion

In the considered case studies, the role of calculations is different: from filling in
tables, which are protocols for the execution of algorithms, to a comparative analysis of
the algorithms themselves. Important for this work is the question of the transition from
calculations by hand to computer ones. When making calculations by hand, the student
performs two roles: the organizer and the executor of the calculations. Working with a
computer, the student retains only the role of the organizer, outsourcing the execution of
calculations to the computer. In such a setting, the following risks can be distinguished:

(1) The performance of elementary computational actions by a student can be consid-
ered as training of elementary mental mechanisms, the failure of which may have delayed
consequences, that can only be assessed in a longitudinal study with the participation of
psychologists;

(2) When outsourcing computations to a computer, a person must be sure of the
correctness of their implementation.

In our theoretical analysis, only the second question can be answered. This answer is
presented in methodically developed case studies related to the introduction of new con-
cepts. In some case studies, computational schemes were used, in which students partially
performed calculations “by hand”, while in others, the implementation of computational
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schemes was completely carried out on a computer. Let us analyze the role of computations
in different case studies.

In the case study “Positional numeral systems and information compression algo-
rithms”, a connection was built between explaining the ideas of the decimal number system
to younger students based on actions with sets of objects and the algorithm for moving to a
new base. It is shown how the comparison of calculations of string lengths in unary and
decimal systems can serve as a basis for introducing the concept of information compres-
sion. Thus, in this case study, calculations were used so that schoolchildren independently
obtained experimental data for comparison and felt the difference in the growth of records
of the same number in two different coding systems.

The case study of “p-adic numbers and the algorithm “division with remainder””
showed that a simple division algorithm with a remainder can become the basis of theoreti-
cal generalizations and allow one to come to an understanding of the complex concept of
a p-adic number in ways accessible to a schoolchild. The encapsulation of this algorithm
allows schoolchildren to comprehend the idea of a reverse code, which is used in com-
puter processors, without additional effort. This case study shows that in some situations
the computational algorithm reveals the concept better than its formal definition. This
case study uses a psychological phenomenon that is well known to mathematics teachers:
students who find it difficult to give a definition, but who have the right ideas about a
mathematical concept, instead of giving a formal definition, offer to show how a particular
concept works in an algorithm and provide calculations illustrating this concept.

The case study “Diophantine equations, continued fractions and Euclidean algorithm
for finding GCD” presents a computational scheme implemented in the form of a computer
module, but requiring calculations by hand to solve various problems. It is shown how one
computational scheme can serve as a basis for a general look at such different concepts as a
continued fraction, a Diophantine equation, and a reciprocal number in modular arithmetic.
The computational scheme has become here a means of “enlarging didactic units” [9],
allowing one to see what is common in different mathematical concepts and make the
computational scheme the basis for theoretical reasoning. This case study shows that com-
putational schemes can become a means of interiorization (and subsequent encapsulation)
of concepts: filling in computational protocols and comparing them with each other leads
to the generalizations that the teacher plans.

In the case study “Exponential function and Euler’s computational scheme”, by dis-
cretizing the algorithm for solving a simple differential equation, a connection was made
between the definition of an exponential function and a geometric progression, and thus
with the definition of the y = ax function, which is based on a generalization of the idea of
repeated multiplication of a number by itself. This case study shows that the consideration
of computational schemes for simple discrete models makes it possible to connect the main
ideas of calculus with the ideas of algebra and number theory.

In the case study “The concept of the integral and the approximate calculation of
the derivative”, as in the case study “Diophantine equations, continued fractions and
the Euclidean algorithm”, one computational scheme describes the solution of different
problems and thus it becomes a mechanism for generalizing and forming the concept
of integral and antiderivative. Unlike the case study mentioned above, calculations by
hand are not assumed here, but the solution is built in a dynamic mathematics system
(spreadsheets can also be used) using any software environment that allows one to visualize
the movement of a point (Scratch, Python, or JavaScript). This case study shows the
importance of connecting the ideas of computer science and mathematics in a student’s
rich computer environment. In computer-free learning, it is actually assumed that the
definition of the integral as the limit of finite sums is already encapsulated in the student’s
intellectual mechanisms. In fact, it turns out that few students can use this definition in
problem solving. In accordance with the works of Vygotsky [10], Leontiev [1], Papert [11],
and Dubinsky [3], in order for these actions to be encapsulated into concepts, they must
be brought outside, and then the student’s actions with them in the external environment
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will lead to their internalization into internal processes, which are then encapsulated into
concepts. Dubinsky calls this approach de-encapsulation of mathematical concepts [3]. In
these terms, we can say that most of the case studies discussed in this paper demonstrate
the de-encapsulation of various mathematical concepts.

In the case study “Combinatorial identities and generating functions”, it is shown
that computational algorithms for enumerating combinatorial objects can become the basis
for the formation of combinatorial thinking. On the other hand, the ability to accurately
describe a set of combinatorial objects provides the basis for creating a new type of tasks
(Wise Tasks) [9,12], which have the property of checking the correctness of the answer
according to the description of the condition, and not according to the reference answer.
Also, in this case, the features of using symbolic algebra systems such as Mathematica,
Maple, etc. for the algebraic solution of combinatorial problems were discussed. Important
here is the transition from one interpretation to another and back. In this case, concepts
encapsulated in one computational scheme can be de-encapsulated in another, which is the
basis for understanding [3].

The analysis does not present mechanisms for conceptualizing computation that go
beyond already known theories. So, for example, in work [13] it is shown that the search
for a Turing machine with a fixed number of states and a binary alphabet, outputting
the longest result to the tape and stopping, distinguishes between human and computer
solutions (brute force algorithm). A person, using his/her existing conceptual knowledge,
obtains twice as bad a result as a brute-force algorithm. At the same time, a person finds it
difficult to justify the solution proposed by the computer. This problem shows a further
direction of research: the study of the mechanisms of constructing concepts within the
framework of which it is possible to explain the solutions found by the computer.

5. Conclusions

What conclusions can be drawn from the conducted theoretical and methodological
analysis?

1. Reading the work of I.S. Shapiro, written more than 40 years ago, shows that in
modern conditions it is impossible to expect the action of psychological mechanisms
that are formed during the algebraic transformation of trigonometric expressions.
The appearance in the environment of computing tools that duplicate calculations that
the student traditionally performed by hand raises the problem of preserving, under
new conditions, the psychological effect that forms the student’s intellectual mecha-
nisms (convolution of algorithms, and encapsulation of algorithms into mathematical
concepts), which was previously achieved by “manual” calculations. It is necessary
to clarify the implementation of the ideas of the activity approach to learning, when
the performer of operations is not a student, but a computing device. Solving this
problem requires serious psychological longitudinal research.

2. The students’ knowledge of algorithms related to mathematical concepts can often be
identified with the students’ subjective feelings of understanding of these concepts.
Therefore, the implementation of algorithms according to transparent computational
schemes contributes to overcoming formalism in the study of mathematics, as it forms
the feeling in schoolchildren that they themselves can engage in mathematical activities.

3. The use of various environments that execute mathematical algorithms implies the pos-
sibility of using these algorithms in a “logically encapsulated” form. In order to achieve
“psychological encapsulation”, it is required to de-encapsulate the algorithm, that is, to
deploy it in the form of a computational circuit that is available for a student to check.

4. Some simple computational schemes, such as Euler’s scheme for solving differential
equations, can serve as the basis for generalizations that students themselves can
make, revealing the commonality of computational schemes for solving problems in
different representations of mathematical concepts.

5. The presence of “mathematical solvers” gives more weight to the ability to correctly
set problems. Connecting different computation schemes, such as a naive enumeration
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scheme with an efficient one, provides a framework to support research activities in
which the student’s intelligence interacts with “artificial intelligence” (AI) in solving
a problem (AI in this situation is represented by powerful calculators based on a
“force” solution of the problem, in which the lack of mathematical theory and effective
algorithms is compensated by a simple enumeration of options).

6. The introduction of mathematical concepts through computational processes re-
quires the attention of methodologists to the data structures used in computations.
Different interpretations of the same problem can generate different computational
schemes due to the different data structures to which the algorithms are applied. The im-
portance of studying data structures in the study of mathematics and computer science
has not yet received due attention, although the practice of introducing schoolchildren
to the concept of the complexity of algorithms is becoming increasingly common.
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