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Abstract: This study introduces an approach for modeling an arm of a Stewart platform to analyze
the location of sections with a high deflection among the arms. Given the dynamic nature of the
Stewart platform, its arms experience static and dynamic loads. The static loads originate from the
platform’s own weight components, while the dynamic loads arise from the movement or holding
of equipment in a specific position using the end-effector. These loads are distributed among the
platform arms. The arm encompasses various design categories, including spring-mass, spring-mass-
damper, mass-actuator, and spring-mass-actuator. In accordance with these designs, joint points
should be strategically placed away from critical sections where maximum buckling or deformation
is prominent. The current study presents a novel model employing Euler’s formula, a fundamental
concept in buckling analysis, to propose this approach. The results align with experimental and
numerical reports in the literature that prove the internal force of the platform arm is affecting
the arm stiffness. The equal stiffness of an arm is related to its internal force and its deflection.
The study demonstrates how higher levels of dynamic loading influence the dynamic platform,
causing variations in the maximum arm’s buckling deflection, its precise location, and the associated
deflection slope. Notably, in platform arms capable of adjusting their tilt angles relative to the vertical
axis, the angle of inclination directly correlates with deflection and its gradient. The assumption of
linearity in Euler’s formula seems to reveal distinctive behavior in deflection gradients concerning
dynamic mechanisms.

Keywords: buckling; dynamic load; deflection; Stewart platform arm

1. Introduction
1.1. Evaluation and Context

Stewart platform is a parallel manipulator with applications across various fields [1].
The foundational concept of the Stewart platform can be traced back to Gough, who pio-
neered a parallel system that resembled a tire testing apparatus [2]. However, it was Stewart
who first conceived the Stewart platform in 1965, with the specific goal of developing a
flight simulator [3]. A wealth of literature discusses prototype designs and recommenda-
tions for designing and applying the Stewart platform. Merlet, for instance, details a large
manipulator designed for mining operations [4]. One of Merlet’s prototypes is utilized in
ophthalmic surgery and at the European Synchrotron Radiation Facility (ESRF) [5]. As a
stabilizer, the Stewart platform can mitigate rotational and damp linear motions [5]. It has
various applications, such as stabilizing cameras [6], subterranean excavators [7], satellite
positioning systems [8], and enhancing robotic platforms [4]. The Stewart platform design
has been employed and developed by diverse industries, including aerospace, automotive,
transportation, machine tool technology, and medical applications [5,9].
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Merlet describes the main reason for interest in this platform as their impressive
nominal load-to-weight ratio [4,10]. He designed a prototype platform weighing 35 kg that
can effectively carry a load of 600 kg. Merlet’s experimental study shows that the weight of
the load is approximately equally distributed on all the arms [11]. Additionally, a notable
advantage is that the stress experienced in each arm is in traction-compression, making it
highly compatible with linear actuators and enhancing platform rigidity [11].

Merlet’s definition characterizes a parallel manipulator as a “closed-loop mecha-
nism in which the end-effector is connected to the base by at least two independent
kinematic chains”. Furthermore, he describes a fully-parallel manipulator as “a closed
loop-manipulator with an n degrees-of-freedom (DOF) end-effector connected to the base
by n independent chains, which have at most two links and are actuated by a unique
prismatic or rotary actuator” [4,11]. The other definition in the literature realm is that
parallel manipulators are generally classified into two primary categories: planar and
spatial manipulators, depending upon their joints design [12]. Planar manipulators exhibit
one to three degrees of freedom (DOF), while spatial manipulators are described as having
three to six DOFs. Stewart platforms are categorized as parallel manipulators equipped
with prismatic actuators and fall within the domain of spatial manipulators [12].

Among the previous works, there are different designs of connection configurations
of the Stewart platform. However, there are three categories that have been tested experi-
mentally and studied much more than others: the 6-6, 3-6, and 3-3 configurations [9]. The
Stewart platform is composed of an upper plate (end-effector), and a lower plate (base) that
are connected via the number of extendable arms connected through spherical or universal
joints, and the configuration I − J specifies how many joints are on the base plate and the
end effector, respectively.

The Stewart platform achieves precise positioning and orientation adjustments by modi-
fying the lengths of its arms [13]. An open research focus in the realm of the Stewart platform
concerns its movement and structural framework [10,14]. The arm of the platform can be
constructed using two or more elements within the platform’s structure. As the arm of the
Stewart platform operates through a linear actuator, insights from literature and existing
prototypes reveal that the arm can be designed using configurations such as mass-spring,
mass-spring-damper, mass-actuator (hydraulic or electric), or mass-spring-actuator [15,16].
These various configurations demonstrate the potential for constructing the platform arm
using multiple interconnected parts. In this context, the platform arm’s design is crucial,
considering its fundamental nature as traction-compression and ensuring that joints are
strategically not positioned to arm sections where critical stress and deflection occur.

Numerous initiatives have put forward mechanical analyses and models to define the
stiffness of the elements constituting the arm of the Stewart platform, considering various
configurations [17]. Moreover, utilizing the stiffness model can enhance and streamline the
design of the platform [18]. Reports suggest that the arm elements’ stiffness is influenced
by fluctuations in internal arm forces [19].

1.2. Objective of This Research

The current study utilizes the column deflection concept in the mechanical analysis to
propose a deflection model of the Stewart platform arm. In this context, the model provides
insight into examining the critical sections of the arm with various Stewart platform
boundary conditions. A Stewart platform with a 6-6 configuration that has six DOF, has
been modeled. A loaded Stewart platform transits statics and dynamics forces to each arm.
The statics force is related to the carried object by the end-effector, and the dynamics force
is caused by the various positions of the end-effector and its movement.

This study has two main subjects: (i) investigating the assumption of disregarding dy
dx

in the buckling deformation formula [20] and illustrates that this assumption does not hold
in the Stewart platform’s arms as a dynamic mechanism, (ii) specifying the critical Stewart
platform arm locations (with maximum deformation) to be considered in the arm design
with multi-components and avoid the placement of the joint at a critical location.
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The novelty of this study lies in identifying critical sections within dynamic arms
(analogous to columns) that do not possess fixed, predefined locations. These results
match the previous experimental works [17–19] that reported that the internal force of
the platform arm is various, causing unfixed arm stiffness. It reveals that the critical
deflection sections are not at fixed locations and is a function of dynamics parameters. This
uncovers that the dynamic arm can exhibit critical deflection and stress at a range of the arm
sections. The platform arm is assumed to be a column applying Euler’s formula for buckling
deflections [21–23] as a foundational tool and also aligned with Castigliano’s theorem to
find a deflection of the elastic structure [24]. This approach provides a transparent stream
for designing the Stewart platform multi-element arm concerning the joints’ location
among the arm and not being at critical deflection sections. Moreover, the proposed model
is capable of being useful to calculate arm stiffness. Consequently, the organizational
framework of this work unfolds as follows: Section 2 expounds upon the methodology
employed; Section 3 defines a numerical case study; Section 4 presents the obtained results;
and finally, Section 5 encapsulates the derived conclusions.

2. Methodology
2.1. Theory

In the domain of six-degree-of-freedom Stewart platforms, there are three well-established
joint configurations: the 6-6, 3-6, and 3-3. However, this study exclusively concentrates on the
6-6 configuration. In this particular setup, each arm is linked to the end-effector via a spherical
joint and connected to the base through a universal joint. The theoretical framework used in
this research is based on the following fundamental assumptions:

• The upper part exerts two different loads on the arms: a constant force due to its
weight and a dynamic load that changes over time;

• Each arm has a segment with a uniform shape, without any joints or actuators;
• The deflection solution assumes that the tilt angle of the arms remains constant. (This

assumption is valid because the solution is focused on a particular moment and is not
dependent on time, making it reasonable to consider a fixed tilt angle.).

Based on the previously mentioned assumptions, Figure 1 illustrates the force compo-
nents acting on the platform arm. To determine the deformation of the arm, this investiga-
tion utilizes Euler’s Formula for Pin-end straight structures, tailored to match the boundary
conditions specific to the platform arms. It must be noted that the load from the end-effector
of the platform remains vertically oriented. The angular position of the platform arms,
represented by the angle β, depends on both the applied load and displacement. This
orientation can be clearly seen in Figure 1. It is important to emphasize that all arms
maintain the same angle relative to the vertical orientation when the platform is stationary.

Figure 1. Illustrative depiction showcasing the schematic view of a 6-6 type Stewart platform.
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To explore the consequences of the normal force and its impact on buckling, we apply
the combined force onto an axis aligned with each arm’s axial direction. This direction will
be called the X axis, as shown in Figure 1. Perpendicular to the X axis is the Y direction,
which is responsible for measuring buckling displacement. The total force component along
the Y direction is transmitted through the spherical joint and does not affect buckling. Here,
mg represents the weight of the upper platform, while the weight of the arm is denoted
as ml g, which is included in the overall force assessment. Based on the Merlet experiment
report [11], this assessment assumes an equal distribution of force among the six arms,
making P the driving (external/dynamic) load, which is then divided as Pi = P/6 for each
platform arm. Demonstration of load distribution principles in Stewart platforms reveals
that elevating the primary load (statics/dynamics) on the end-effector results in a larger
internal load on each arm of the platform. This increased load directly influences both the
buckling behaviors and the stiffness of the arms. However, the stiffness effects are not the
subject of the present study. Based on the above-mentioned principles, the force acting on
an individual arm, Pi is defined by Equation (1):

F = (Pi + mg/6 + ml g)cosβ, (1)

In this equation, F represents the total axial force acting on the arm, and β represents
the tilt angle between the arm and the vertical direction. Additionally, the weight of the arm
produces a force component in the Y direction at the midpoint of the arm, which causes
deflection. Following the boundary conditions of the arm, this deflection aligns with the
principles outlined in reference [20]:

yd =
ml gsinβ

48EI
(4x3 − 3l2x), (2)

Herein, yd represents the deflection, g denotes the acceleration due to gravity, E stands
for Young’s modulus, and I denotes the moment of inertia. The parameter l defines the
arm length, and x indicates the distance in the X orientation along the arm. According to
Equation (2) the maximum deflection occurs at the midpoint of the arm (x = l

2 ), and it

can be expressed as yd = ml gl3 sin β
48EI . This equation captures the relationship between the

deflection (yd), the arm weight (ml g), arm length (l), tilt angle (β), Young’s modulus (E),
and moment of inertia (I).

Because of the interaction between the tilt angle and the applied forces on the plat-
form arm, both weight-induced deflection and buckling of axial force occur. The overall
deformation is the result of the combination of these deflection effects. The main equation
acts as the governing rule for calculating the buckling response [20]:

d2y
dx2

(1 + ( dy
dx )

2)
3
2
=

−Fy
EI

, (3)

Equation (3) is a nonlinear differential equation where Euler’s formula method could
be used for the solution. This method is applied with the condition that dy

dx � 1, which

has been allowed to disregard dy
dx . It is important to highlight that the present study will

thoroughly investigate this assumption in Section 2.2, including illustrative examples for a
more in-depth understanding. The validity of neglecting dy/dx in the linear assumption of
buckling deformation will be assessed in a subsequent section. As will be demonstrated,
this assumption does not appear to hold for the arms of the Stewart platform, which is a
dynamic multi-degree of freedom mechanism. Following this approximation, the deflection
caused by buckling could be calculated by solving Equation (4).

EI
d2y
dx2 = −Fy = −(Pi + mg/6 + ml g)ycosβ, (4)
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d2y
dx2 +

F
EI

y = 0, (5)

Considering the specified boundary conditions for the arm (yb(0) = yb(L) = 0), the
resulting expression for the buckling deflection is outlined as follows:

yb = asin
π

l
x, (6)

As a result, by adding up the two deflections of the arm, which are denoted as yd
and yb:

yt = yb + yd = asin
π

l
x +

ml gsinβ

48EI
(4x3 − 3l2x), (7)

In this equation, yt represents the total deflection, while a is considered deterministic,
signifying the maximum buckling deflection. This arises from the nature of differential
Equation (3), which provides a simplified linear approximation derived from the main
governing differential equation describing the behavior of an elastic curve [20].

It is important to emphasize that Equation (3) acts as an approximation that captures
the linear aspects of the original equation governing curve deformation under elastic
conditions. This approach simplifies and analyzes the system’s response from a linear
perspective, making it easier to understand the underlying mechanics. Nonetheless, it is
essential to determine whether the slope is negligible or not, and Section 2.2 will thoroughly
explore its implications.

2.2. Slope of the End of the Arm

The exclusion of dy
dx in the Euler formula is justified by its smallness, which renders

(1 + ( dy
dx )

2)
3
2 = 1. In this study, the platform arm experiences two different types of

deflection, as have been described above, which allows the investigation of the slope at the
end of the arm, denoted as θ = dy

dx , using Equations (2) and (6):

θd =
ml gl2sinβ

16EI
, (8)

θb = a
π

l
, (9)

θt,x=l = θb + θd = a
π

l
+

ml gl2sinβ

16EI
, (10)

Equation (10) offers evidence that supports the existence of a slope dy
dx within the arm.

This slope depends on various factors, including the arm length l, arm mass ml , arm tilt
angle β, Young’s Modulus E, and moment of inertia I. It is important to note that the
parameter a remains undetermined due to the linearity assumption in Equation (3). When
solving the nonlinear equation, the response yb yields two solutions with both real and
imaginary components. The complex solution for yb could help identify the omitted dy

dx by
distinguishing the real parts of these complex solutions.

The upcoming Section 3 and its results will numerically investigate the slope dy
dx .

This investigation will involve presenting and discussing the slope within a deformed
arm. These findings will be derived from finite element analysis (FEA) conducted using
commercial software ANSYS, Inc., Canonsburg, PA, USA [25]. The numerical results of
the current study will be compared to the Stewart platform arms that were investigated
experimentally in the literature.
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2.3. Critical Stress and Self-Bucking

Euler’s pioneering work delved into the phenomenon of self-buckling, which arises
from the weight of a column itself. This exploration resulted in the formulation of three
influential papers (1778a, 1778b, 1778c) [21–23]. Over subsequent centuries, solutions to
this problem have been refined [26–29]. However, in the current study, it is important to
note that the arm’s own weight causes deflection, introducing an axial component that
enhances the buckling force. Moreover, the presence of various drivers, such as hydraulic or
electric actuators in the Stewart platform arms, adds complexity. Some investigations also
suggest incorporating mass and spring models, as mentioned in the introduction. These
different arm types introduce variable loads on the arm, potentially leading to self-buckling
depending on the mass and arm strength. It is crucial to emphasize that the load introduced
by actuators or mass-spring models should be included in the external load calculation,
which determines the arm’s critical load. This critical load is determined based on the Euler
formula solution for a pin-ended column [20]:

Pcr =
π2EI

l2 , (11)

here, Pcr represents the critical load. It is important to highlight that this solution is based
on the assumption of dy

dx = 0 and utilizes the first frequency of the Sine solution for yb.
Through Equation (11), the critical load emerges as a function that is closely related to the
material, geometry, and dimensions of the platform arm.

3. Case Study via Numerical Approach

The present study proposes a comprehensive model to study the deflection in a Stewart
platform arm caused by a combination of loads from the end-effector, its own weight, and
the applied driven load. This model was carefully constructed and thoroughly analyzed
using the Ansys Inc. environment [20]. The solution is based on the FEA [30].

This model initially assumes the loaded arm’s specific moment of motion, and the
weight is placed on the end-effector. Then, it analyzes how the arm deforms under this
load. This study explores various loads to understand the subtle effects of different load
scenarios. This analysis helps pinpoint the critical areas where the arms experience the most
deformation when they buckle. This information is vital for designing a reliable platform
that incorporates components such as joints, mass, springs, and actuators. Furthermore,
according to Euler’s formula, it has delved into the often-overlooked aspect of the slope
in buckling deflection. It has examined how this slope behaves in moving joints and
mechanisms. This approach has provided a comprehensive understanding of how the
existing slope influences dynamic systems of this kind.

The relevant dimensions and material properties of the FEA model have been listed
in Tables 1 and 2. The material is a Steel Structure for the whole platform with properties
captured from the 1998 ASME BPV Code, Section 8, Div 2, Table 5-110.1 [31]. The element
type is Tetrahedrons (Tet10). Mesh quality metrics have aligned to the Skewness mesh
style and have been used and maintained at a permissible range from 0 to 0.5. The span
angle center in the meshing is set up as coarse. The meshing of the platform involved
a total of 2531 elements and 6271 nodes for the final results with the specified level of
accuracy. A uniform distributed load was applied to the end-effector for the structural
simulation. To provide a comprehensive view of the distinct effects of different distributed
loads and platform position, which leads to different load over time for each arm, this
study ran the analysis three times, with uniform loads of 2 kPa, 3 kPa, and 4 kPa as
the distributed load over the entire end-effector surface, respectively. The finite element
analysis has converged, and it was examined with a few iterations and allowable change
definitions of the Ansys software, ver. 2021 R2.
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Table 1. The element sizes employed for generating the three-dimensional representation and finite
element analysis of the Stewart platform within Ansys Inc., Canonsburg, PA, USA. [25].

Element Description Value [Unit]

Arm Length 1230 mm
Arm Diameter 8 mm
Internal Height 1200 mm

End-Effector Diameter 600 mm
End-Effector Thickness 25 mm

Base Ring External Diameter 850 mm
Base Ring Internal Diameter 550 mm

Base Ring Thickness 30 mm

Table 2. The material characteristics incorporated for rendering the three-dimensional depiction and
finite element analysis of the Stewart platform in Ansys Inc.

Properties Value [Unit]

Density 7850 Kg/m3

Young’s Modulus 2 × 105 MPa
Poisson’s Ratio 0.3
Bulk Modulus 1.66 × 105 MPa
Shear Modulus 7.69 × 104 MPa

Compressive Yield Strength 2500 MPa
Tensile Ultimate Strength 4600 MPa

Tensile Yield Strength 2500 MPa

In the current study, the Ansys software’s ver. 2021 R2, adaptive convergence capabil-
ity is used to attain the desired level of precision. Adaptive convergence, in this context,
refers to the phenomenon where the system’s response, such as stress or deformations,
converges towards a consistent solution as the element size decreases in a well-defined
model. Consequently, as adaptive convergence is achieved, the results cease to fluctu-
ate with further mesh refinement, signifying that the prescribed numerical accuracy has
been reached.

In practical mechanical engineering scenarios, precise or analytical solutions are often
unattainable due to the intricate nature of materials, non-linear contacts, and non-linear
deformations. Consequently, it becomes imperative to monitor relative accuracy, which is
expressed as the percentage change in results between a coarser mesh and a finer mesh.
Achieving adaptive convergence necessitates the iterative resolution of problems with
varying levels of mesh discretization. This process typically commences with a coarser
mesh and progressively advances to a more refined mesh. The relative accuracy can be
defined in terms of Relative error, which is a comparison between the results from models
with different mesh densities:

Relative error = 100(
φi+1 − φi

φi
) < ε, (12)

where φ is the quantity of the result (such as deformation or stress), subscript i denotes the
refinement iteration, and ε is the user-specified accuracy.

Indeed, rather than relying on the potentially error-prone manual selection of refined
meshes, Ansys facilitates the automated generation of these meshes for finite element
analysis (FEA).

Importantly, the gravitational force’s impact on the problem was considered and
included in the analysis. The base ring was positioned as a fixed reference point to ensure
model stability.
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4. Results and Discussion

The present study conducted a comparative analysis between the analytical deflection
and the actual numerical results, as explained in the theory section. Its results have been
compared to the previous experimental studies and discussed to assess the model.

4.1. Platform Arm Deflection

The applied load on the FEA model with specified properties led to deflection. Figure 2
clearly illustrates the increase in the total arm deflection as the applied distributed load
rises. This outcome aligns well with the observations from both Figures 2 and 3, effectively
highlighting the significant occurrence of maximum deflection near the arm’s midpoint.
This alignment with Equation (7) was expected. The deformation pattern originates from
the arm’s connection with the top plate, reaching its peak deflection near the arm’s midpoint.
Additionally, an interesting trend emerges: higher load magnitudes result in a shift in the
location of the total deflection, moving it from the middle section of the arm towards the
upper segment. This observation aligns with the experimental findings reported by Adli
et al. [19]. Adli et al. demonstrated that variations in deflection and stiffness occur in
response to different internal forces applied to the platform arm. This finding is consistent
with the finite element analysis (FEA) results presented by Li et al. [18], which emphasize
the importance of incorporating platform arm deformation into the stiffness model.

Figure 2. Visualization of Complete Deflection in a Platform Arm: On the left, a load of 2 kPa is
applied, while on the right, the load is increased to 4 kPa. The uniform loading is directed onto the
top plate, within the computational environment of Ansys Inc. [25].

In addition to the direct connection between higher internal loads and the increased
deflections of the arm, the results display a trend of the maximum deflection location from
the arm midpoint to the upper segment. This can be related to the neglected dy

dx in the Euler
formula assuming linearization of the nonlinear deformation equation, and it is evident in
Figure 3.

Equation (10) demonstrates that the arm’s slope is influenced by various variables,
including the deterministic factor a, and its undetermined nature highlights its potential
to affect the slope. Moreover, a crucial revelation emerges regarding Euler’s formula,
which assumed that dy

dx was negligible, leading to the adoption of a linear equation for

buckling deflection. However, it seems the significance of the slope dy
dx in the platform

arm design cannot be completely overlooked, especially when considering the dynamic
arm’s composition of components such as actuators, spring-mass systems, and the upper
and lower arm segments. Different slopes at joint interfaces within the arm’s structure can
potentially lead to critical stress points and deflection.
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Figure 3. The visualization showcases overall deformation patterns within a true scale of the platform
arm subjected to three distinct load configurations. Notably, based on Euler’s formula for buckling
deflection, it is expected to have the maximum deflection location in the middle of the arm, and it
is not a function of the load. However, the result displays that when increasing the load over time,
the maximum deflection location tends to be the upper half of the arm, and it is not a fixed location.
Moreover, a discernible distinction is observed in the slope of the deflection function on both sides of
the maximum displacement point.

Moreover, the Stewart platform often operates under dynamic loads, accompanied
by variations in the arm’s tilt angle over time. As widely recognized, the potential for
fatigue failure due to dynamic forces requires increased attention, especially in regard to
the arm’s deflection-induced slope. The numerical solution presented here demonstrated
that when the uniform distributed load was increased to 3 kPa and 4 kPa, the resulting
maximum total deformation increased by 2.6% and 5.5%, respectively, compared to the
2 kPa pressure load.

4.2. Critical Buckling Stress

The stress analysis of the Stewart platform arm is illustrated in Figures 4 and 5. The
internal force rises in the platform arm because of the increase in the distributed load
corresponds to a rise in arm stress. This analysis notably identifies the middle section
of the arm as a critical zone, displaying the highest stress concentrations. Specifically,
the maximum stress within the Stewart platform arm increases by 17% and 35% when
the uniformly distributed load applied to the end-effector is raised to 3 kPa and 4 kPa,
respectively, compared to the 2 kPa pressure load. The insights gained from the stress
analysis highlight the mid-length of the arm as a vulnerable area for potential maximum
stress, with a pronounced tendency for deformation observed in the upper half of
the arm.

In Figure 5, a noticeable trend becomes apparent: as the magnitude of the driven
uniform distributed load increases, the location of maximum stress shifts towards the
upper portion of the arm. This phenomenon aligns with the behavior of the buckling
deflection slope, as discussed earlier, which matches the internal force and stiffness of
the experimental reports [18,19]. The primary equation, Equation (3), for deflection,
addressed under the assumption of linearity, appears to be a probable factor contribut-
ing to the observed change in the location of maximum stress, as discussed for the
deflection results.
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Figure 4. Presented here is an exhibition of the equivalent stress distribution across the true scale
of the platform arm. On the left, a load of 2 kPa is applied, while on the right, the load is elevated
to 4 kPa. The uniform load is uniformly distributed onto the end-effector within the computational
framework of Ansys Inc. [25].

Figure 5. Illustrating the variation in equivalent stress along the length of a platform arm, this
presentation encompasses three different loading scenarios. Notably, with similar behavior to the
maximum deflection, the axial load of the arm depends on the tilt angle, and the dynamics load
could be changed. It can be seen the critical stress location does not have a fixed location and, with
extensive load, tends to the upper half of the arm, and it is not always in the middle of the arm as a
buckling column with pinned-pinned boundary condition.

5. Conclusions

The current study proposes a model for the arm of the Stewart platform to examine
and display its deflection caused by statics and dynamics load. An analytical investigation
of the Stewart platform arm is defined based on the Euler formula concerning the platform
boundary condition to assess the ignored dx/dy term effect of the buckling deformation
equation for the multi-degree of freedom platform arm. Furthermore, a numerical case
study of the platform has been simulated via finite element analysis and compared to exper-
iments of the previous studies. The Stewart platform has different arm joint configurations,
and this study investigated the type of 6-6. Each arm of the Stewart platform could be
composed of two or more components. In most recommendation studies and prototypes,
the platform arm has a design of mass-spring, mass-actuator, mass-damper-spring, and
mass-spring-actuator structure. Concerning the available arm construction, the sub-part of
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the arm is connected via joints. Since the platform arm is a traction-compression element,
the internal force leads to maximum stress and deformation in the arm section. Therefore,
it is essential to recognize the critical sections with maximum stress or deflection and not
place the joints in their location. Moreover, many studies have recently proposed a stiffness
model for the platform arm to understand its deflection and stress and how it behaves with
different internal forces. The results of the novel suggested model in this study aligned
with the experimental reports of the Stewart platform arm internal force analysis and how
it is related to stiffness and arm deflection. Additionally, the study represents that the
critical section of the stress and deflection is not fixed, and it is proved and aligned with an
experiment that reported the stiffness variation of the platform arm because of different
internal loads. The location of the maximum deflection and stress could be defined. This
capability makes it possible to figure out the critical sections’ location and place the joints
in the appropriate coordinate for multi-element arms with joints. Furthermore, in the Euler
formula, the assumption for the linearity of the buckling equation ignored the buckling
slope. However, it seems this gradient should be taken into attention for a column with
dynamic loads, such as Stewart platform arms. The linearity inherent in Euler’s formula
results in a sine-based buckling deflection in the differential equation solution. However,
the unaccounted slope within the differential equation adds complexity, giving rise to
distinct slopes on either side of the maximum deflection point, which can be observed in
dynamic mechanisms.
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