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Abstract: Analyzing stochastic algorithms for comprehensive performance and comparison across
diverse contexts is essential. By evaluating and adjusting algorithm effectiveness across a wide
spectrum of test functions, including both classical benchmarks and CEC-C06 2019 conference
functions, distinct patterns of performance emerge. In specific situations, underscoring the importance
of choosing algorithms contextually. Additionally, researchers have encountered a critical issue by
employing a statistical model randomly to determine significance values without conducting other
studies to select a specific model for evaluating performance outcomes. To address this concern, this
study employs rigorous statistical testing to underscore substantial performance variations between
pairs of algorithms, thereby emphasizing the pivotal role of statistical significance in comparative
analysis. It also yields valuable insights into the suitability of algorithms for various optimization
challenges, providing professionals with information to make informed decisions. This is achieved
by pinpointing algorithm pairs with favorable statistical distributions, facilitating practical algorithm
selection. The study encompasses multiple nonparametric statistical hypothesis models, such as
the Wilcoxon rank-sum test, single-factor analysis, and two-factor ANOVA tests. This thorough
evaluation enhances our grasp of algorithm performance across various evaluation criteria. Notably,
the research addresses discrepancies in previous statistical test findings in algorithm comparisons,
enhancing result reliability in the later research. The results proved that there are differences in
significance results, as seen in examples like Leo versus the FDO, the DA versus the WOA, and so on.
It highlights the need to tailor test models to specific scenarios, as p-value outcomes differ among
various tests within the same algorithm pair.

Keywords: stochastic algorithms; performance analysis; contextual comparison; optimization;
statistical significance; significance value; model selection

1. Introduction

In the realms of mathematics and computer science, optimization problems involve
the quest for the finest solution among all possible valid options. The ultimate goal is to
secure the most exceptional outcome, known as the global optimal solution. Nevertheless,
when confronted with a problem featuring multiple optimal points, the existing techniques
have primarily focused on unearthing the best solution that prevails across numerous local
optima. These local optima represent solutions superior to their immediate neighbors, yet
fall short of achieving the overall paramount solution.
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In situations where the values of these local solutions closely resemble each other, a
circumstance can arise where two algorithms exhibit seemingly indistinguishable perfor-
mances. However, a nuanced disparity emerges: one algorithm disperses its solutions
widely throughout the search space, while the other algorithm bunches them together in
proximity [1]. There exist instances when it becomes pivotal to accentuate these distinctions
by employing a comparative analysis between the two algorithms, employing statistical
methodologies to ascertain the concurrences between them. This evaluation involves scru-
tinizing the disparities through diverse statistical models, encompassing nonparametric
approaches, to comprehensively gauge the variations [2].

In the ever-expanding landscape of optimization algorithms, benchmarks play a
crucial role with a two-fold purpose. They not only validate the performance of novel
algorithms but also enable head-to-head evaluations among various algorithms. These
benchmarks have effectively demonstrated the prowess of optimization algorithms, em-
ploying fundamental statistical indicators like mean, standard deviation, and median for
comparison [3]. Moreover, supplementary methods, like benchmarks and performance
profiles, have been harnessed to achieve this goal [4,5]. Notably, contemporary research
papers focusing on benchmark comparisons increasingly incorporate frequentist statistical
approaches, such as null-hypothesis testing, marking a prominent trend in the field.

Numerous meta-heuristic stochastic optimization algorithms have emerged, highlight-
ing the necessity to thoroughly assess the efficacy of any novel algorithm. This evaluation
and adjustment are indispensable for facilitating a meaningful comparison against the
performance of cutting-edge algorithms [6]. Simultaneously, under multiple studies, the
process of benchmarking assumes pivotal importance, as it lays the foundation for iden-
tifying the optimal algorithm. However, securing a high-quality benchmark remains a
formidable challenge. The preliminary phase of the benchmarking theory involves delineat-
ing the problem domain, an intricate task due to the requisite “uniform” distribution of test
functions across the entire expanse of potential functions within the problem domain [7].

Presently, within the evolutionary algorithms’ domain [8], a considerable number of
published papers have substantiated benchmarks through statistical experimental evalua-
tions, performed for each test function encompassed by the benchmark in several single-
objective or multiobjective optimization algorithms [9–11]. Following the selection of the
suite of benchmark functions, the benchmarking outcomes rely on performance metrics
and statistical ranking methodologies, as highlighted. The role of meticulous statistical
analyses is paramount, as they furnish the foundational data upon which conclusions are
drawn. Conventionally, one widely adopted approach involves utilizing statistical tests for
comparative purposes, hinging on the values of acquired solutions (such as fitness function
values or test function outcomes, as elucidated in subsequent points). This approach is in
harmony with the idea of hypothesis testing, although it occasionally neglects the distribu-
tion of obtained solutions throughout the exploration space, and it can also be influenced
by compiler optimization settings over time [12].

Lately, a majority of optimization algorithms aimed at achieving superior quality
and performance rely on test functions for assessing and distinguishing their effective-
ness. In the present day, there are two primary categories of test functions extensively
utilized. Firstly, the classical benchmark test functions encompass a collection of nineteen
functions, which are classified into three distinct categories: unimodal, multimodal, and
composite [13]. The second category involves ten functions, referred to as the CEC-C06
2019 conference functions [14], specifically employed to evaluate and adjust the efficacy of
newly proposed algorithms. These functions continue to be extensively adjusted within
modern benchmark collections. To validate their efficacy, it becomes imperative to establish
a comparative framework among various result groups. This involves employing both
parametric and nonparametric statistical tests to discern any hypothetical agreements
between them. Notably, the nonparametric variant of the two-sample t-test, which fulfils
specific assumptions, forms a key part of this comprehensive study’s discussions.
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Adhering to the concept of hypothesis testing, there has been a lack of attention
directed towards the distribution of acquired solutions within the exploration space [15].
Insights regarding the distribution of solutions in the search space can be harnessed in
various manners. Users might seek an optimization algorithm capable of yielding either
widely dispersed or closely clustered solutions based on their preferences. Moreover, this
distribution information can illuminate the relative merits and drawbacks of the algorithms
being compared. In theory, this study can offer valuable contributions by enabling a
comprehensive evaluation of solutions based on their values and their spatial arrangement
within search algorithms that were previously employed. This study has centered its
perspectives on the following significant facets that constitute its proposed contributions:

• The p-value tests reveal significant performance disparities between algorithm pairs,
highlighting statistical significance in the comparisons. The algorithms being com-
pared also display statistical significance in terms of the values of their achieved
solutions and their distribution. Thus, this study compares algorithms that exhibit
similar abilities in both exploration and exploitation;

• Analyzing algorithm performance across a range of test functions, including classical
benchmarks and CEC-C06 2019 conference functions, reveals varying effectiveness,
with certain algorithms demonstrating superiority in specific contexts;

• The study assesses algorithms across various test functions to understand their suit-
ability for different optimization challenges and seeks to identify algorithm pairs with
favorable statistical distributions;

• The study investigates multiple nonparametric statistical hypothesis models, such as
the Wilcoxon rank-sum test, single-factor, and two-factor analyses, to gain insights
into algorithm performance across diverse evaluation criteria, improving our overall
understanding of their capabilities;

• Identifying inaccuracies in previous statistical test results during algorithm comparisons,
thoroughly investigating these discrepancies, and integrating the rectification process;

• The results offer valuable guidance in choosing appropriate algorithms, highlighting
their proven performance in various scenarios. This supports professionals in making
informed decisions when statistically evaluating algorithm pairs.

The primary objective of this paper is to demonstrate the impact of test functions on
the performance of optimization algorithms through the application of various statistical
hypothesis tests. Additionally, the paper aims to assess the degree of success in yielding
high-quality results within the proposed functions. These statistical tests are employed
both for single-objective and multiobjective algorithms. Significantly, the core emphasis of
this intricate investigation is centered on the diversities within the statistical model, rather
than delving into the particulars of the utilized algorithm types and the approach with
which they are implemented. On the flip side, the endeavor intends to provide valuable
guidance to developers of artificial intelligence, aiding them in the selection of the most
suitable hypothesis model. This contribution is especially pertinent when considering
the common perplexity experienced by numerous researchers who find themselves in the
position of wanting to undertake a statistical comparison between their freshly proposed
algorithm and established conventional algorithms. Also, this study advocates for paramet-
ric or nonparametric statistical tests due to their flexibility with insignificant sample sizes.
The rejection of the null hypothesis in these tests does not pinpoint specific differences
among compared algorithms but signals general distinctions among result samples. A
special session on real-parameter optimization illustrates test application on renowned
evolutionary and swarm intelligence algorithms. Concluding evaluations offer consid-
erations and recommendations for practitioners, demonstrated in a comprehensive case
study with seven algorithms over benchmark functions. The study extends to important
issues regarding test behavior and applicability, emphasizing selecting the most suitable
test based on circumstances and comparison type [16,17].

The subsequent sections of this paper are organized as follows: Section 2 initiates by
delving into related background work studies, elucidating previous engagements with
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metaheuristic algorithms, and highlighting the techniques employed for statistical result
assessment. Section 3 focuses on the process of choosing a reference algorithm based on
performance evaluation. In Section 4, a comprehensive exploration of the statistical models
used for comparing algorithm pairs is presented. Section 5 encompasses the outcomes
and the experimental evaluation through a series of tables. The discussion and method
evaluation or adjustment take center stage in Section 6. Ultimately, Section 7 concludes and
summarizes the work, while also proposing avenues for future research endeavors.

2. Related Works

Exploring and dissecting optimization algorithms using performance measures con-
stitutes a pivotal realm of inquiry within the domain of evolutionary computation. This
facet takes on even greater significance when considering the intricate area of single- or
multi (many)-objective optimization [18]. These experimental evaluations ought to encom-
pass observed calculations and make common errors, blending statistical analyses and
hypothesis conjectures, all synchronized with evaluation functions adhering to established
standards and iterative processes [19]. The participants in this experimental work would
ideally be consistent and represented by the same cohort of search agents or entities.

Yet, the lack of fitting benchmark challenges remains noticeable across various sectors
of evolutionary computation research. The act of delving into statistical evaluation brings
to light a noticeable scarcity, encompassing more than just numerical variety. It extends
to encompass issues of accessibility, user-friendliness, and the ability to distinctly outline
the traits of benchmark functions. The prevailing benchmarks underpinning extant algo-
rithms each lay claim to their distinctive standards, orchestrating a harmonious pursuit of
optimization outcomes [20]. These statistical benchmark-birthed revelations spotlight the
efficacy of algorithms, like the genetic algorithm (GA) [21], dragonfly algorithm (DA) [10],
particle swarm optimization (PSO) [22], and differential evolution (DE) [23], etching a
testimony to their operational prowess.

The landscape is rife with bewilderment when it comes to employing a statistical
underpinning for hypotheses within metaheuristic algorithms to unearth p-values. To
illustrate, consider the likes of the Mirjalili and Lewis algorithm (2016) as applied to the
whale optimization algorithm (WOA) [24]. These algorithms, when scrutinized, did not en-
gage in the statistical evaluation of hypothesis values in comparison with other algorithms.
Rather, they contented themselves with the customary statistical evaluation methods, such
as averages and standard deviations. Conversely, the slime mould algorithm (SMA) unfurls
a distinct approach [25]. It shed light on the true skill statistic (TSS) residing within the
domain of combined pairwise comparisons [26]. This methodology surfaced as a means to
pit literature-based algorithms against each other. To ascertain this, reliance was placed
on the outcomes derived from the iterative version and the function evaluation version of
the Friedman test. Expanding on this approach, the scope widened to include the multi-
objective fitness-dependent optimizer (MOFDO) [27]. Within this context, the Friedman
test once again played a central and indispensable role in extracting meaningful statistical
values. It is worth highlighting that the Wilcoxon sum-rank test model provided substantial
reinforcement to this intricate analytical expedition. Furthermore, a significant creative
influence can be observed in the utilization of two distinct sets of function benchmarks
and the incorporation of three distinct types of statistical significance models to assess the
performance of the newly proposed optimization algorithms. Table 1 showcases specific
studies that shed light on the findings gleaned from prior research, and also classifies the
type of problem of algorithms into “single” as a single-objective algorithm and “both” as
single- and multiobjective algorithm. Nevertheless, it is important to note that numerous
algorithms have been developed and statistically assessed.
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Table 1. Literature and the categorization of several existing dependent-work algorithms.

Algorithm Litreature
Year

Problem
Types Statistical Model Referncing

Differential Evolution 2005 Single Statistical standards [23]

Whale Optimization 2016 Both Wilcoxon sum-rank [24]

Slime Mould 2020 Single Wilcoxon sum-rank [25]

Fitness-Dependent Optimizer 2019 Both ANOVA single-factor
and Friedman test [9,27]

Golden Eagle Optimization 2021 Single
Wilcoxon sum-rank

and statistical
standards

[28,29]

Moth–flame Optimization 2015 Both Wilcoxon sum rank [30,31]

Learner-Performance-based
Behavior 2021 Single ANOVA single-factor [32]

Leo 2023 Single Wilcoxon sum-rank [11]

FOX 2023 Single ANOVA single-factor [33]

Salp Swarm Algorithm 2017 Both Wilcoxon sum-rank [34]

To find the best knowledge in the discourse adjacent to evolutionary algorithms, there
appears to be a dearth of dedicated publications that exclusively center on the statistical
association of stochastic optimization algorithms. This comparison pertains to the stochastic
and hypothetical attributes of the outcomes derived within the search space. Previous
works have demonstrated a lack of a systematic approach in addressing the statistical
issues outlined in Table 1. Additionally, the deficiency is evident in various proposed
optimization algorithms and has prompted an examination of these limitations. Specifically,
the absence of a standardized criterion for selecting the appropriate statistical model to
assess significance and performance is a focal point of this investigation. Nonetheless, this
aspect holds significant importance, as it plays a critical role in acquiring insights into
the exploratory capabilities of the compared algorithms. This reliance is contingent on
the two group benchmarks previously mentioned, and it has the potential to offer a more
profound conception of the methodologies employed to enhance the comparative statistical
power of exploration between the algorithms. Particularly, within the domain of the single-
objective, learner-performance-based behavior (LPB) algorithm [32], a statistical evaluation
or adjustment was assumed, encompassing the LPB algorithm with the literature algorithms.
The effort involved deriving p-values grounded in the ANOVA single-factor test model [35],
even though the authors referenced to the Wilcoxon sum-rank test model [36]. It is pertinent
to mention that an error in decision-making was observed in the case of the single-objective
FDO in statistical evaluation [9]. This delusion was rectified upon meticulous review and
accurate result verification. In a similar vein, the FOX algorithm [33] emerges as an outlier,
as the computation of the p-value was executed through a statistical approach. However, it
is worth noting that no particular test model was explicitly referenced in this context.

Lagrange elementary optimization (Leo) [11] and salp swarm algorithm (SSA) [34]
algorithms have been instrumental in extracting noteworthy p-values via the Wilcoxon
rank-sum test, applied to assess hypothesis-comparison outcomes. The outcomes, coupled
with their respective analyses and the discoveries unveiled within specific subsections,
converge to bestow upon these algorithms the promising potential to tackle real-world
conundrums set within enigmatic search spaces. Finally, when navigating the intricate
tapestry of authentic search spaces, the whereabouts of the coveted global optimum remain
tantalizingly concealed. This conundrum underscores the paramount importance of or-
chestrating a symphony of exploration and exploitation in perfect harmony. This delicate
equilibrium is what markedly heightens the probability of stumbling upon the global opti-
mum, a testament firmly rooted in the realm of hypothetical outcomes. After identifying
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limitations in various proposed algorithms and drawing insights from comparative case
studies in the literature, we selected different algorithms based on their respective strengths
and weaknesses.

3. Evaluating Performance for the Selection of the Reference Algorithm

In discussing algorithm selection and identifying common issues, the challenge arises
from the propagation of algorithms tailored to specific, stringent criteria. Nevertheless,
some overarching criteria have emerged. To address this, benchmarks need to evaluate
both functional and nonfunctional requirements to gauge their fulfilment. Furthermore,
specific conditions, like a large problem set or an odd number of problems, should be
considered to facilitate statistical tests and mitigate potential issues in comparative analysis,
such as cycle ranking or the survival of the nonfittest paradoxes [37,38].

The experimental benchmark comprises synthetic functions designed to challenge
optimization algorithms. It should encompass a variety of functions with diverse character-
istics, including varying local optima, shifting global optima, rotated coordinate systems,
nonseparable components, noise, and multiple problem sizes, tailored to the expected
problem complexities. Additionally, when addressing novel real-world problems, authors
must thoughtfully curate or generate suitable instances for evaluation, which is common
when tackling uncharted areas in real environments [39].

Selecting reference algorithms for comparison is a critical consideration, closely tied to
the previous guideline. Firstly, when the proposed algorithm builds upon basic algorithms,
it is crucial to include them in the comparison to assess each one’s individual impact.
Secondly, after choosing the benchmark, it is essential to incorporate the best-performing
methods for that specific benchmark into the evaluation. Regrettably, many papers overlook
this step, failing to compare their proposed algorithm against competitive alternatives.
In a well-informed experiment, at a minimum, the best-performing algorithms in the
benchmark’s domain should be included. Furthermore, it is important to evaluate similar
algorithms, not just within the same algorithm family (e.g., PSO-based or GA-based), but
also related inspired-based algorithms or improvements on previous methods [38,40]. Thus,
it is our contention that solely comparing new methods to outdated classic algorithms,
which have clearly been surpassed, should be avoided. Participating new algorithms in
benchmarks is crucial to address concerns about the scientific contribution of the proposal.
However, discussing the computational method and intricate looping formulas in detail
is challenging due to the computational complexity inherent in each algorithm, including
complex mathematical problems. Based on these measurements, we briefly outline the
computational complexity considerations, considering the merits and drawbacks of the
selected algorithms for this statistical comparison study, as detailed below:

n The primary algorithm, DA, is often gradient descent, a common first-order opti-
mization approach. DA employs particle-based exploration, like PSO, by initializing
dragonfly positions and step vectors within variable-defined ranges using random
values. It combines simplicity with elements of the stochastic gradient descent, adap-
tive learning rate, and conjugate gradient methods. However, DA can be sensitive to
randomness and may not always converge [41];

n WOA utilizes a multistrategy approach, combining mathematical formulations and
loop structures, as demonstrated in a specific case study which was influenced by the
hunting behaviors of humpback whales. Its advantages include effective strategies
like prey search, prey encirclement, and spiral bubble-net movements. However,
it may be computationally expensive and lacks a guarantee of reaching the global
optimum [42];

n SSA, the other algorithm of choice, exhibits resemblances to other swarm-based opti-
mization methods, like PSO and ACO, particularly in terms of collective intelligence
and exploration–exploitation mechanisms with mathematical looping. SSA is ben-
eficial for locating optimal points, demonstrating versatility, and enhancing global
exploration capability and convergence speed. However, it is prone to issues such as
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vulnerability to schedules, occasional entrapment in local optima, and sensitivity to
mutation and crossover strategies [34];

n FDO improves individual positions by adding velocity to their current locations,
drawing from PSO principles and also influenced by bees’ swarming behavior and
collaborative decision-making. However, FDO’s drawback lies in limited exploration,
slow convergence, and sensitivity to proposal distribution [43];

n LPB enhances computational complexity for high school graduates’ university tran-
sition and study behaviors using genetic algorithm operators. It is versatile and
adaptable to different optimization tasks and problem domains, making it a versatile
choice. However, LPB has limited exploration, slow convergence, and sensitivity to
proposal distribution [44];

n Leo uses a GA and a novel Lagrangian operator to find the optimal immune system
postvaccination, excelling in robust combinatorial optimization for real-world appli-
cations. However, it may require extensive tuning and its convergence depends on
the choice of the combiner operator [11,45];

n The FOX algorithm is inspired by the hunting strategies of real foxes, employing
distance measurement techniques for efficient prey pursuit. It is ideal for optimizing
costly to evaluate functions with simplicity and efficiency. However, it can become
computationally expensive and necessitates a careful choice of priors [33].

4. Methodological Framework for Extended Statistical Comparisons

The significance of the method’s usefulness is central in the domain of evaluating
metaheuristic algorithms. It harnesses the strength of p-values obtained from benchmark
datasets. In this process, the method serves as a connection between processed global
or optimal data and meaningful discoveries, offering a statistical viewpoint that allows
for a thorough examination of the effectiveness of various metaheuristic algorithms. By
focusing on p-values derived from the benchmark dataset between two algorithms as a
nonparametric variable, the benefit method contributes to a robust framework for com-
paring and contrasting the efficacy of different metaheuristic algorithms. This approach
holds the potential to shed light on the relative strengths and weaknesses of algorithms,
enabling practitioners to make informed decisions about which strategies are better suited
for specific problem domains or optimization scenarios. Furthermore, employing p-values
as an evaluation metric adds objectivity and quantifiability, particularly for stochastic algo-
rithms with variables [46]. This approach offers a standardized measure that enhances the
rigor and evidence-based nature of algorithmic evaluation and adjustment. Consequently,
the benefit method becomes a valuable tool in advancing metaheuristic optimization,
promoting innovation, and propelling the development of more efficient algorithms.

Typically, statistical comparison operates effectively with one-dimensional data and is
not suitable for comparing distributions of acquired solutions in either the search space
or for high-dimensional data. To address this limitation, a hypothetical test comes to the
aid, extending the depth of statistical comparison by employing multiple hypothetical
tests. This approach calculates p-values from these tests, enabling comparisons between
stochastic tests. Each test produces distinct outcomes, which is why researchers observe
the selection of the statistical model in this process during experimental evaluation [47]. In
this study, an assessment has been conducted on all the test functions within the chosen
benchmark groups. The evaluation necessitates the selection of a sequence of time points
after the discovery of the global solution, spanning across extensive iterations.

With a specific goal, the process involves identifying the optimal global value through
a predetermined iteration count. This aims to achieve a balanced and equitable reputation
for various types of test functions within the classical benchmark test functions group and
the CEC-C06 2019 conference functions for several stochastic algorithms. These selected
stochastic algorithms will be further discussed in the subsequent sections. The outcomes of
the test functions are then juxtaposed across the algorithms using statistical-hypothesis-
testing models, such as the Wilcoxon rank-sum test, the single-factor ANOVA table [35],
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and the two-factor ANOVA table [48]. To delve deeper into the method’s mechanics, the
procedural steps can be accurately observed in Figure 1, which effectively illustrates the
evaluation process. Based on the central limit theorem (CLT) [49], the distribution of sample
means tends to resemble a normal distribution as the sample size increases, irrespective of
the underlying population distribution. Typically, sample sizes of 30 or more are deemed
adequate for the CLT to apply. Consequently, the p-values obtained through these three
statistical models in this study are influenced by this principle. The innovation unveiled in
this methodology has relied on the sequential dance of the following steps:

n Initiating the quest by delving into the article, unraveling solutions to the problem;
n Choosing from the array of contemporary and renowned stochastic optimization

algorithms;
n Subjecting each algorithm to a rigorous evaluation, involving 30 times for each test

function, to unearth the ultimate optimal solution;
n Unveiling the statistical gems within, such as the illustrious mean, the steadfast

median, and more, as they illuminate the path to standard solutions;
n To determine the sample size for each pair of samples with respect to the chosen test

function and pair of algorithms, the following should be showcased:

- When dealing with a sample that does not conform to CLT and lacks balanced
data, it is advisable to subject it to the influential Wilkson rank-sum test. If it
does not pass, a reconsideration of the evaluation will be necessary;

- For a sample that exhibits normal distributions, it should be scrutinized with
the influential ANOVA F test, involving a thorough examination of variances.

n Concluding the computation, the influence of p-values will be instrumental in apprais-
ing all test functions in alignment with the pair of algorithms. This will determine the
algorithms’ performance and suitability for the task at hand.

Computation 2023, 11, x    8  of  32 
 

 

reputation for various types of test functions within the classical benchmark test functions 

group and the CEC-C06 2019 conference functions for several stochastic algorithms. These 

selected stochastic algorithms will be further discussed  in the subsequent sections. The 

outcomes of the test functions are then juxtaposed across the algorithms using statistical-

hypothesis-testing models, such as the Wilcoxon rank-sum test, the single-factor ANOVA 

table [35], and the two-factor ANOVA table [48]. To delve deeper into the method’s me-

chanics,  the procedural steps can be accurately observed  in Figure 1, which effectively 

illustrates the evaluation process. Based on the central limit theorem (CLT) [49], the dis-

tribution of sample means tends to resemble a normal distribution as the sample size in-

creases, irrespective of the underlying population distribution. Typically, sample sizes of 

30 or more are deemed adequate  for  the CLT  to apply. Consequently,  the p-values ob-

tained through these three statistical models in this study are influenced by this principle. 

The  innovation unveiled  in  this methodology has relied on  the sequential dance of  the 

following steps: 

 Initiating the quest by delving into the article, unraveling solutions to the problem; 

 Choosing from the array of contemporary and renowned stochastic optimization al-

gorithms; 

 Subjecting each algorithm to a rigorous evaluation, involving 30 times for each test 

function, to unearth the ultimate optimal solution; 

 Unveiling the statistical gems within, such as the illustrious mean, the steadfast me-

dian, and more, as they illuminate the path to standard solutions; 

 To determine the sample size for each pair of samples with respect to the chosen test 

function and pair of algorithms, the following should be showcased: 

˗ When dealing with a sample that does not conform to CLT and lacks bal-

anced data, it is advisable to subject it to the influential Wilkson rank-sum 

test. If it does not pass, a reconsideration of the evaluation will be necessary; 

˗ For a  sample  that exhibits normal distributions,  it  should be  scrutinized 

with  the  influential ANOVA F  test,  involving a  thorough examination of 

variances. 

 Concluding  the computation,  the  influence of p-values will be  instrumental  in ap-

praising all test functions in alignment with the pair of algorithms. This will deter-

mine the algorithms’ performance and suitability for the task at hand. 

 

Figure 1. The proposed statistical methodology for delineating the data analysis process.

4.1. Wilkson Rank-Sum Test

The assumptions for comparing the means of two sample populations using the T-test
include independent samples, equal variance, and a normal distribution. If these conditions
are not met, an alternative is the Wilcoxon rank-sum test. This alternative only requires the
first two assumptions—sample independence and similar variance—without specifying a
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particular data distribution. The Wilcoxon rank-sum test, also known as the Mann–Whitney
U test if the data sample does not pair, compares independent samples [50]. Meanwhile,
the Wilcoxon signed-rank test compares related or matched samples. It is useful for paired
difference tests on a single sample to assess differences in population mean ranks when the
sample is no more than thirty individuals. The Wilcoxon rank-sum test is a nonparametric
approach to comparing independent samples and identifying distribution differences.

Accordingly, these nonparametric tests do not assume the normal distribution of
samples. The Wilcoxon unpaired two-sample test statistic is akin to the technique proposed
by Gustav Deuchler in 1914, although Deuchler erred in calculating the variance. In 1945,
Wilcoxon introduced a significance test with a point null hypothesis and its complementary
alternative. However, this paper only presented the null hypothesis for equal sample sizes
and contained limited tabulated points (though larger tables were provided in a subsequent
paper). A comprehensive analysis of the statistics was conducted by Henry Mann and
Donald Ransom Whitney in their 1947 paper. This is why the Wilcoxon rank-sum test is
also referred to as the Wilcoxon–Mann–Whitney test, and the Mann–Whitney U test is
equivalent to the Wilcoxon rank-sum test [51,52].

Furthermore, the Wilcoxon rank-sum test is applied in the microbiome study to
compare differences in median values of alpha-diversity measures, proportions of core
genera, and the abundance of specific genera for categorical variables and matched samples,
respectively. Particularly when the sample size (N) is no more than thirty, a common
approach is to convert data points into their respective ranked values—where rank one or
a positive rank corresponds to the smallest value, rank two or a negative rank to the next
smallest value, and so on [36].

The resulting p-value from this test aids in evaluating and adjusting the null hypoth-
esis, which posits that two samples or more originated from populations with identical
distributions [53]. Below is a step-by-step breakdown of how to calculate the p-value using
the Wilcoxon rank-sum test according to [54,55]:

1. Hypothesis formulation: The hypotheses encompass the null hypothesis (H0), indi-
cating that the two samples originate from populations with the same distribution, and
the alternative hypothesis (H1), implying that the two samples arise from populations
with distinct distributions.

2. Combining and ranking data: Begin by consolidating the two samples into a unified
dataset. Proceed to assign ranks to the combined data, arranging them in ascending
order, irrespective of their source sample. In the case of tied values, allocate the
average rank to these tied values.

3. Calculating rank sums: Compute the sum of ranks for each sample. Denote the sum
of ranks for sample one as R1 and for sample two as R2.

4. Calculating the test statistic (U): In this pivotal stage, our attention is captivated by
the intricate calculation of the test statistic (U). This calculation takes into account the
smaller rank sum and the sample sizes associated with it. However, it is important to
note that this process is subject to specific conditions and limitations. The calculation U
depends on the comparison of two rank sums, R1 and R2, which correspond to the two
groups being compared using the rank-sum (R1 or R2) method, as we have assessed
two algorithms in this study. The computation of U is illustrated by Equation (1) and
as follows:

U = UR1 or R2 = (n 1 × n2) +
n1 or n2(n1 or n2 + 1)

2
− R1 or R2 (1)

where n1 or n2 represent the number of data points in each respective sample; in our
study, each sample consists of 30 data-observation points.
Then:

If R1 is the smaller rank sum, then U is equal to UR1.
If R2 is the smaller rank sum, then U is equal to UR2.
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5. Calculating the expected value and variance of U: During this stage, you should
compute the expected value (E(U) or µu) and variance (Var(U) or σu) of the test
statistic U by employing the formula specific to the Wilcoxon rank-sum test.

6. Calculating the Z− score: Determine the Z-score utilizing Formula (2). Subsequently,
compute the expected value (µu) using Equation (3), and find the variance (σu) by
using Equation (4).

Z =
U − µu

σu
(2)

where

µu =
(n1 × n2)

2
(3)

σu =

√
n1 × n2 × (n1 + n2 + 1)

12
(4)

7. Calculating the p-value and making a decision: For a two-tailed test, which involves
comparing distributions for differences in both directions, calculate the p-value us-
ing the standard normal distribution linked to the absolute value of the calculated
Z − score (where Zabs represents the Z − score). Furthermore, in the context of a
one-tailed test, where the aim is to compare distributions for differences in a specific
direction, compute the p-value by referring to the relevant tail of the standard normal
distribution as assessed through Formula (5).

p − value = 2 × min(P(Z > Zabs), P(Z < Zabs)) (5)

For making a decision, compare the computed p-value to the predetermined signifi-
cance level (alpha). This step helps determine whether to reject the null hypothesis. If the
calculated p-value is equal to or less than the alpha value, you have grounds to reject the
null hypothesis in favor of the alternative hypothesis.

4.2. Single-Factor ANOVA Table

A single-factor is part of a one-way layout, characterized by a factor with multiple
levels and numerous observations within each level. This arrangement facilitates the
computation of observation averages within each level of the factor. The residuals provide
insights into the variability present within these levels. Furthermore, the mean can be
computed for each level and then combined to establish a comprehensive grand mean.
From this, we can delve into the disparities between the signal-level means and the grand
mean to comprehend the implications of different levels. Ultimately, by comparing the
variability within levels to that spanning across levels, the term “analysis of variance
(ANOVA)” comes to fruition.

ANOVA is employed to ascertain if the means of two or more distinct groups are
equivalent. ANOVA utilizes the null hypothesis (H0)) and an alternative hypothesis
(H1), similar to the Wilcoxon rank-sum test. In a one-factor ANOVA table, the p-value
is computed using the F-distribution. As such, the ANOVA test is employed to assess
mean disparities among various groups, aiming to establish whether noteworthy statistical
differences exist between those group means. Expressing all of this in Equation (6) form is
a straightforward process.

Yij = µ + αi + εij (6)

Yij signifies an observation within a group indexed by i and a specific observation
within that group indexed by j. The jth data point according to Equation (6) within level i
is a composite of three fundamental elements: the common value (grand mean), the level
effect (deviation from the grand mean), and the residual (remaining variance); µ denotes
the overall or grand mean of all observations; αi stands for the effect related to the ith group
(level), representing the difference between the overall mean µ and the mean of group i.
Lastly, εij indicates the residual or error term for the jth observation, capturing unexplained
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variation resulting from factors not considered in the model, including random noise and
uncontrollable influences on observations.

Primary methods for estimating the one-way layout values can be presented as sum-
marized in Table 2, depicted below, depending on [56,57]. Subsequent tests can then be
conducted to establish the significance of the factor levels. The ANOVA table dissects the
variance components in the data, differentiating between the treatment-based variance and
the error or residual variance. ANOVA tables are also commonly generated by statistical
computing software as a standard outcome for ANOVA analysis.

Table 2. Enforcing consistency in statistical analysis through ANOVA table regulation [48].

Source of Variation The Sum of Squares (SS) Degree of Freedom (DF) Mean Square
(MS) F−Statistic

Factor (F) (Treatments) SSF = ∑ nj

(
Y j − Yij

)2 K − 1 MSF = SSF
k − 1

MSF
MSE

Residual (E) (Error) SSE = ∑ ∑
(

Yij − Y j

)2 N − K MSE = SSE
N − k

Corr. Total SST = ∑ ∑
(

Yij − Yij

)2 N − 1

In the context of this scenario, the symbol Y j denotes the average value observed in
the jth treatment or group, as defined in Formula (7). Similarly, Yij represents the overall
average value across all treatments, as expressed in Formula (8). In these equations, K
corresponds to the count of treatments or distinct comparison groups, while N represents
the total number of observations or the overall size of the sample.

Y j =
1
K

K

∑
i=1

Yij (7)

Yij =
1

NK

K

∑
i=1

N

∑
j=1

Yij (8)

The p-value in a one-factor ANOVA table is computed based on the F-statistic, as
illustrated in Table 3. The ANOVA test serves the purpose of comparing means among
several groups, aiming to ascertain whether notable statistical distinctions exist between
the averages of these respective groups. In addition, the overarching Equation (9), used
to compute the p-value within a one-factor ANOVA table, involves the F-observed value,
which is contingent upon the observed F-statistic in the ANOVA table. The expression
(F-statistic > F-observed) denotes the likelihood of attaining an F-statistic exceeding the
observed F-observed value under the null hypothesis.

p − value = P(F − statistic > F − observed) (9)

Calculating the p-value entails the following procedural steps:

1. Determining the degrees of freedom: First, one crucial step involves determining
the degrees of freedom for both the numerator, which signifies the between-group
variability, and the denominator, which signifies the within-group variability, of the
F-statistic. This process is elaborated upon in Figure 2.

2. Employing the observed F-statistic: Next, utilize the observed F-statistic alongside
the degrees-of-freedom values. You can then either consult an F-distribution table or
employ statistical software to precisely calculate the p-value.

3. Comparison with the significance level: Finally, compare the calculated p-value with a
selected significance level (alpha), often set at α = 0.05. This comparison determines if
the obtained outcome holds statistical significance. Should the p-value be lower than
the significance level, the null hypothesis is rejected.
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Table 3. Unimodal benchmark functions statistical comparison of Leo with the FDO, LBP, and DA.

TFs p-Value Tests Leo vs. FDO Leo vs. LPB Leo vs. DA

TF1

Wilcoxon rank-sum test 0.000002 0.000031 0.000031

Single-factor 5.78 × 10−2 7.72 × 10−6 5.78 × 10−2

Two-factor 6.27 × 10−2 3.24 × 10−5 6.27 × 10−2

TF2

Wilcoxon rank-sum test 0.047162 0.000002 0.000002

Single-factor 6.48 × 10−2 1.09581 × 10−10 3.08665 × 10−6

Two-factor 1.16 × 10−1 1.16757 × 10−8 1.60543 × 10−5

TF3

Wilcoxon rank-sum test 0.002585 0.000002 0.000002

Single-factor 1.02 × 10−1 5.52049 × 10−9 1.67 × 10−1

Two-factor 1.00 × 10−1 1.65436 × 10−7 1.72 × 10−1

TF4

Wilcoxon rank-sum test 0.000002 0.000002 0.000031

Single-factor 9.49 × 10−8 8.74288 × 10−23 3.22 × 10−1

Two-factor 1.20 × 10−6 7.61671 × 10−16 3.26 × 10−1

TF5

Wilcoxon rank-sum test 0.557743 0.781264 0.000148

Single-factor 5.18 × 10−2 2.03 × 10−1 4.50 × 10−2

Two-factor 6.28 × 10−2 2.30 × 10−1 5.14 × 10−2

TF6

Wilcoxon rank-sum test 0.000002 0.000002 0.057096

Single-factor 7.00 × 10−5 1.83 × 10−4 3.16 × 10−1

Two-factor 1.84 × 10−4 4.02 × 10−4 3.21 × 10−1

TF7

Wilcoxon rank-sum test 0.000002 0.000097 0.000002

Single-factor 3.48738 × 10−14 1.06251 × 10−5 5.30 × 10−3

Two-factor 7.24577 × 10−11 5.96148 × 10−5 6.98 × 10−3

Bold values indicate no statistical significance at p < 0.05.
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It is noteworthy that various statistical software packages (such as R v.4.3.0, SPSS v.27,
and Python v.3.11.1, with libraries like scipy or statsmodels, among others) are capable of
automatically performing these calculations during ANOVA analyses. Thus, manual calcu-
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lations are generally unnecessary, unless you aim to gain a comprehensive understanding
of the underlying procedures.

4.3. Two-Factor ANOVA Table

A two-factor ANOVA, also referred to as a two-way ANOVA, extends the scope of a
one-way ANOVA by examining how two distinct independent categorical variables impact
a continuous dependent variable. The primary distinction between a one-way ANOVA and
a two-way ANOVA pertains to the number of independent variables under scrutiny and
their interactions. In the context of a two-way ANOVA, the examination encompasses the
influence of two independent variables on a dependent variable. Moreover, this analytical
approach assesses the effect of these independent variables on the anticipated outcome and
their interrelation with the outcome itself. The distinction between random and systematic
factors rests upon their statistical impact within a dataset, with systematic factors being
deemed statistically significant while random factors lack such influence.

In a two-way ANOVA, two independent categorical variables (factors) exert an influ-
ence on the dependent variable. This method examines the primary effects of each factor
and also considers potential interactions between these factors. It goes beyond merely
identifying differences in group means and delves into how these differences might be
influenced by combinations of the two factors. The ANOVA table designed for a two-way
ANOVA encompasses distinct sources of variation corresponding to each main effect and
their interactions. This table also includes vital statistical measures, such as degrees of
freedom, sum of squares, mean squares, the F-statistic, and the p-value. Additionally, the
interaction term within the context of a two-way ANOVA signifies whether the impact of
one factor on the dependent variable is contingent upon the specific level of the other factor.
This interaction term provides insight into how the combined effects of the two factors
contribute to the overall outcome.

The sole disparity between two-factor ANOVA and single-factor ANOVA lies in the
approach to computation. The divergence emerges in the sequence of calculations: initially,
calculate the sum of squares factor A (SSa) to assess the squared deviations attributed to
variations in factor A. Subsequently, calculate the sum of squares factor B (SSb) to quantify
the squared deviations stemming from variations in factor B. Following this, calculate
the sum of squares interaction (SSi) to determine the squared differences resultant from
the interplay between factor A and factor B. Importantly, it should be acknowledged that
these sources of variation in the two-factor ANOVA table are calculated and presented
in the same manner as observed in the single-factor ANOVA table, as explained in the
earlier subsection.

Consequently, the determination of the degrees of freedom becomes imperative to
establish the suitable degrees of freedom for each source of variation (A, B, interaction,
error). The concluding step entails the calculation of p-values, specifically selecting p-values
aligned with each F-statistic through reference to the F-observed in the F-distribution
table [58]. This signifies that the process of generating an ANOVA table in a two-way
ANOVA possesses heightened intricacy due to the incorporation of multiple factors and
their interactions.

5. Result and Statistical Analysis

The outcome determination based on the methodology has been established. Initially,
a variety of stochastic algorithms are chosen to assess statistical outcomes and their concur-
rence. It is worth noting that each algorithm was employed to verify the accuracy of the
proposed algorithm. To gauge the efficacy of this algorithm, multiple common benchmark
functions from the existing literature were employed. Algorithms for making selections
in diverse scenarios are categorized based on the strategies employed in automatic pa-
rameter tuning. These strategies are then further organized into three distinct tiers: the
straightforward generate–evaluate methods, the iterative generate–evaluate methods, and
the advanced high-level generate–evaluate methods [59].
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In the pursuit of optimization, various parameters are carefully chosen, guided by the
principles of evolutionary inspiration. The process of parameter tuning becomes a delicate
tightrope act, aiming to strike the perfect equilibrium between avoiding underfitting and
guarding against overfitting. Yet, many of these studies fall short in substantiating how they
maintain the vital balance between exploration and exploitation. It is insufficient merely
to assert that the first algorithm surpasses the second in maintaining this balance; such
claims necessitate empirical scrutiny to establish their validity. Some approaches achieve
this equilibrium by employing evolutionary operators explicitly designed to enhance
it, like crossover and mutation operators. Meanwhile, different algorithms investigate
how authors gauge the exploration and exploitation balance, often relying on indirect
measures, such as convergence towards optimal solutions, diversity, and tangibility of the
solutions [38,60].

Moreover, some algorithms put forth a classification of techniques aimed at fostering
population diversity. Authors aspiring to incorporate this analysis into their research
endeavors must undertake a quantitative experimental investigation to substantiate their
assertions [38]. In consideration of the background of this research field and the pursuit
of global algorithmic excellence, it is challenging to identify innovative standards for the
determination of testing rounds and the process of iterative exploration. Depending on the
most recent algorithms we have employed in this study, which collectively established a
consensus, we have prescribed the utilization of 30 rounds as a universally accepted ap-
proach, involving 500 successive iterations to attain a global point in each round, employing
an ensemble of 80 search agents.

These evaluations and adjustment errors are carried out under conditions where
sample distributions are either equal to or less than 30, and where assumptions are roughly
equivalent or symmetric. However, it is important to note that the criteria for spread
variance and normalcy are not entirely met. This approach is adopted since, in real-
world scenarios, achieving precise solutions holds more significance than the time taken.
Moreover, the adaptability of algorithms allows for refinement and repeated testing by
virtually anyone, indicating that clients prioritize the effectiveness of an algorithm over
its execution time. In this research, the outcomes of all algorithms, as assessed by the test
functions, are meticulously analyzed to reveal substantial nonparametric relationships.
These results are categorized into two groups: one based on classical benchmarks and the
other on the CEC-C06 2019 benchmark test functions.

5.1. Statistical Assessment of Classical Benchmark Test Functions

In this phase of evaluation, the algorithms are categorized based on their effective-
ness and innovative nature. The initial category pertains to the Leo algorithm, which is
compared against the FDO, LPB, and DA in terms of agreement. Following this, the DA is
compared against FDO and LPB. This is done to establish a rationale for comparison. It
is noteworthy that many initial optimization algorithms, predominantly those rooted in
inspired optimization or population-based optimization, have been previously contrasted
with the DA. Conspicuously, classical benchmarks are distinctly classified across three
tabulated sets, as appraised in the subsequent subsections. These sets encompass a selection
of three types of test functions: unimodal, multimodal, and composite. These test functions
are segregated into these three categories, each designed with the intent of assessing the
algorithm’s efficiency and its alignment with specific benchmark perspectives.

5.1.1. Unimodal Benchmark Test Functions

In a thorough examination of Leo’s impact alongside the FDO, LPB, and DA, utilizing
a set of unimodal benchmark functions, several noteworthy findings come to light. As
outlined in Table 4 from TF1 to TF4, Leo demonstrates statistically significant enhance-
ments over FDO, LPB, and DA (with a p-value of less than 0.05) as determined by Wilcoxon
rank-sum tests. In individual-factor assessments, Leo consistently outperforms the other
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algorithms. Moreover, in two-factor evaluations, Leo consistently exhibits superior perfor-
mance when juxtaposed with the other three algorithms.

Table 4. Unimodal benchmark functions for the statistical comparison of the DA with FDO and LBP.

TFs p-Value Tests DA vs. FDO DA vs. LBP

TF1

Wilcoxon rank-sum test 4.32 × 10−8 0.000002

Single-factor 3.10 × 10−1 7.72 × 10−6

Two-factor 3.14 × 10−1 3.23997 × 10−5

TF2

Wilcoxon rank-sum test 0.000002 0.000002

Single-factor 6.47 × 10−2 1.07 × 10−10

Two-factor 6.98 × 10−2 1.16 × 10−8

TF3

Wilcoxon rank-sum test 0.000002 0.000002

Single-factor 8.72 × 10−2 5.52 × 10−9

Two-factor 9.25 × 10−2 1.65 × 10−7

TF4

Wilcoxon rank-sum test 0.000031 0.000031

Single-factor 3.21 × 10−1 3.42 × 10−6

Two-factor 3.26 × 10−1 4.25684 × 10−5

TF5

Wilcoxon rank-sum test 0.005667 0.002765

Single-factor 4.04 × 10−3 6.74 × 10−3

Two-factor 5.94 × 10−3 1.05 × 10−2

TF6

Wilcoxon rank-sum test 0.323358 0.000031

Single-factor 3.16 × 10−1 7.53 × 10−1

Two-factor 3.21 × 10−1 7.63 × 10−1

TF7

Wilcoxon rank-sum test 0.000002 0.000002

Single-factor 3.17 × 10−14 7.77 × 10−13

Two-factor 6.69 × 10−11 5.47 × 10−10

Bold values indicate no statistical significance at p < 0.05.

Interestingly, the examination of TF5 in Table 3 showed no statistically significant
differences in the comparison between Leo and FDO, as well as Leo and LPB. This lack of
significance was attributed to all three tests having p-values that exceeded the predeter-
mined alpha threshold of 0.05. Conversely, the comparison between Leo and DA did show
statistical significance in the Wilcoxon rank-sum test. Also, Leo’s performance was notably
significant when compared to the DA in single-factor analysis, demonstrating substantial
advancements over the DA, but not significant for the two-factor. Thus, Leo’s competitive
performance against the DA is evident. Conversely, Leo’s performance in the context of
single-factor and two-factor analyses was not found to be statistically significant when
compared to the FDO and LPB. For TF6, Leo’s performance did not exhibit substantial
deviation from the DA in all three model tests. Conversely, Leo’s performance significantly
outshone all alternatives in both TF6 and TF7, as indicated by the Wilcoxon rank-sum
test, single-factor, and two-factor evaluations. In summary, when evaluating a spectrum
of unimodal benchmark functions, Leo consistently manifests significant performance
enhancements over the FDO, LPB, and DA under diverse scenarios.

The outcomes presented in Table 4 pertain to the statistical comparison between the
DA and FDO, as well as the DA and LBP, using unimodal benchmark functions. As
observed in TF1-4, in all instances, the DA exhibited substantial superiority over both
the FDO and LBP (with a p-value less than 0.05), as confirmed by the Wilcoxon rank-
sum test. The comparison consistently revealed enhanced performance in single-factor
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tests, and it also displayed a significant advantage in two-factor tests. TF5 revealed that
the DA’s performance significantly surpassed that of the FDO and LBP, as verified by
the Wilcoxon rank-sum test, along with single-factor and two-factor tests, establishing a
competitive performance edge. While TF6 indicated that the DA’s performance was not
notably divergent from the FDO (with a p-value greater than 0.05), it still outperformed the
LBP based on the Wilcoxon rank-sum test due to a p-value less than 0.05. In TF7, the DA’s
performance outshined both the FDO and LBP in single-factor and two-factor tests. To recap,
across the spectrum of unimodal benchmark functions, the DA consistently showcased
noteworthy performance enhancements over the FDO and LBP in diverse scenario.

5.1.2. Multimodal Benchmark Test Functions

Tables 5 and 6 display the results obtained from tests conducted on multimodal bench-
mark functions featuring 10 dimensions. Table 5 specifically highlights a comparison
between Leo and three distinct algorithms: FDO, LPB, and DA. The significance of these
comparative analyses is denoted by the accompanying p-values. Regarding TF 8, Leo
significantly outperformed the FDO, LPB, and DA, with extremely low associated p-values.
In TF9 and TF10, Leo consistently displayed significant superiority over the FDO, LPB,
and DA, supported by remarkably small p-values. In TF11 and TF12, Leo’s performance
remained notably superior, accompanied by consistently small p-values. However, in
TF12, p-values were lower for the FDO and LPB comparisons, but relatively higher for
the DA comparisons. Furthermore, in TF13, Leo upheld its superiority over them, with
low p-values for the FDO and LPB comparisons, and a relatively higher p-value for the
DA comparison. Across a variety of multimodal benchmark functions, Leo exhibited an
unwavering tendency to outshine the FDO, LPB, and DA in diverse situations. These eval-
uations especially hinged on p-values gleaned from Wilcoxon rank-sum tests, consistently
unmasking statistically noteworthy enhancements in Leo’s performance.

Table 5. Statistical comparison of Leo with the FDO, LBP, and DA using 10-dimensional multimodal
benchmark functions.

TFs p-Value Tests Leo vs. FDO Leo vs. LPB Leo vs. DA

TF8

Wilcoxon rank-sum test 0.000016 0.000002 0.031603

Single-factor 7.18 × 10−5 1.30915 × 10−21 2.20 × 10−2

Two-factor 1.97 × 10−4 2.73227 × 10−15 2.56 × 10−2

TF9

Wilcoxon rank-sum test 0.000002 0.000002 0.000002

Single-factor 5.98981 × 10−16 1.25973 × 10−23 1.25717 × 10−23

Two-factor 1.45999 × 10−11 2.62462 × 10−16 2.6251 × 10−16

TF10

Wilcoxon rank-sum test 0.000002 0.000002 0.000002

Single-factor 6.72092 × 10−13 1.16363 × 10−9 5.59255 × 10−13

Two-factor 3.55204 × 10−10 5.61266 × 10−8 3.95574 × 10−10

TF11

Wilcoxon rank-sum test 0.000002 0.000002 0.000002

Single-factor 1.0768 × 10−15 5.96269 × 10−17 8.59 × 10−3

Two-factor 8.64413 × 10−12 1.55804 × 10−12 1.09 × 10−2

TF12

Wilcoxon rank-sum test 0.000002 0.000002 0.328571

Single-factor 3.67963 × 10−10 1.97 × 10−4 1.38 × 10−1

Two-factor 2.62616 × 10−8 4.28 × 10−4 1.43 × 10−1

TF13

Wilcoxon rank-sum test 0.000002 0.000002 0.517048

Single-factor 7.41491 × 10−7 1.65 × 10−3 1.67 × 10−1

Two-factor 5.50366 × 10−6 2.56 × 10−3 1.72 × 10−1
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Table 6. Statistical comparison of the DA with the FDO and LBP using 10-dimensional multimodal
benchmark functions.

TFs p-Value Tests DA vs. FDO DA vs. LBP

TF8

Wilcoxon rank-sum test 0.00002 0.000002

Single-factor 8.43646 × 10−5 4.23 × 10−27

Two-factor 2.14 × 10−4 3.47 × 10−18

TF9

Wilcoxon rank-sum test 0.000002 0.000002

Single-factor 7.74 × 10−20 1.91 × 10−5

Two-factor 3.38 × 10−14 6.56 × 10−5

TF10

Wilcoxon rank-sum test 0.0000001 0.000002

Single-factor 3.21 × 10−1 1.08 × 10−9

Two-factor 3.26 × 10−1 5.41 × 10−8

TF11

Wilcoxon rank-sum test 0.000002 0.000002

Single-factor 1.08 × 10−15 5.96 × 10−17

Two-factor 8.64 × 10−12 1.56 × 10−12

TF12

Wilcoxon rank-sum test 0.000002 0.158855

Single-factor 4.00 × 10−10 1.38 × 10−1

Two-factor 2.61 × 10−8 1.43 × 10−1

TF13

Wilcoxon rank-sum test 0.000002 0.004682

Single-factor 7.73 × 10−7 1.85 × 10−1

Two-factor 5.77 × 10−6 1.91 × 10−1

Table 6 exhibits the results of comparisons involving the DA, FDO, and LPB across a
range of diverse multimodal benchmark functions. In both TF8 and TF9, the DA showcased
a significant advantage over the FDO and LPB. Notably, the p-values remained exceptionally
small, underscoring the pronounced significance of these disparities, much akin to the
observations in TF11. In TF10, the DA’s performance distinctly outperformed the FDO,
though not to the same extent as the LPB. Here, the DA maintained a substantial edge over
the FDO and LPB. The p-values corresponding to these contrasts were notably diminutive,
reaffirming their statistical relevance. While the DA outperformed the FDO in terms of
performance, this difference was not statistically significant when compared to the LPB. The
p-values exhibited variability, registering as low against the FDO and comparatively higher
against the LPB, as illustrated in TF12. For TF13, the p-values underscored noteworthy
disparities, particularly when pitted against the FDO, indicating significant distinctions.

Influence-wise, the comparisons consistently demonstrate the DA’s prevalent agree-
ment with FDO and often over LBP as well. This underscores the DA’s robustness across
diverse scenarios and benchmark functions in all three tests. The p-values further affirm
the statistical importance of these performance disparities.

5.1.3. Composite Benchmark Test Functions

Table 7 displays a sequence of comparisons encompassing Leo, FDO, LPB, and DA
across diverse composite benchmark functions. The derived p-values from the three selected
tests indicate the statistical significance of these comparative analyses.

In TF14, Leo significantly improved over the FDO, LPB, and DA in all comparisons,
supported by relatively low p-values that underscored these distinctions. In TF15 and TF17,
Leo’s performance was not notably different from the FDO, yet it displayed an advantage
over the LPB and DA. The p-values varied, with the DA in TF15 exhibiting significantly
low p-values against Leo. In TF16, Leo exhibited significant enhancements in line with the
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FDO, LPB, and DA across all comparisons. The accompanying p-values were exceptionally
low, indicating substantial disparities. In TF18, Leo’s performance outperformed the FDO
and LPB significantly, while it was not significantly different from the DA. In TF18, the
p-values for Leo’s comparisons against the FDO and LPB were low, while TF19’s p-values
underscored the statistical significance of Leo’s comparisons.

Table 7. Comparative statistical analysis involving Leo, FDO, LBP, and DA using composite
benchmark functions.

TFs p-Value Tests Leo vs. FDO Leo vs. LPB Leo vs. DA

TF14

Wilcoxon rank-sum test 0.002929 0.000013 0.000013

Single-factor 5.91 × 10−4 5.4285 × 10−7 5.4285 × 10−7

Two-factor 9.91 × 10−4 4.36958 × 10−6 4.36958 × 10−6

TF15

Wilcoxon rank-sum test 0.781264 0.012453 0.000359

Single-factor 4.85 × 10−1 4.70 × 10−1 1.74 × 10−1

Two-factor 4.96 × 10−1 4.93 × 10−1 1.79 × 10−1

TF16

Wilcoxon rank-sum test 0.000115 0.000002 0.000001

Single-factor 5.05424 × 10−7 5.04706 × 10−7 5.0468 × 10−7

Two-factor 4.14528 × 10−6 4.14087 × 10−6 4.14078 × 10−6

TF17

Wilcoxon rank-sum test 0.120288 0.000002 0.000001

Single-factor 6.19 × 10−3 1.21 × 10−3 1.21 × 10−3

Two-factor 7.95 × 10−3 1.96 × 10−3 1.96 × 10−3

TF18

Wilcoxon rank-sum test 0.00015 0.000393 0.00015

Single-factor 2.84942 × 10−5 2.86032 × 10−5 2.84942 × 10−5

Two-factor 8.98958 × 10−5 9.02907 × 10−5 8.98958 × 10−5

TF19

Wilcoxon rank-sum test 0.000004 0.000002 0.000002

Single-factor 9.00179 × 10−7 8.68172 × 10−7 8.6827 × 10−7

Two-factor 6.30703 × 10−6 6.18774 × 10−6 6.18881 × 10−6

This assessment underscores Leo’s continual performance enhancements with the
FDO, LPB, and frequently DA across a range of composite benchmark functions. The
p-values validate the statistical importance of these distinctions.

Table 8 paints a comparative picture involving the DA, FDO, and LPB across an
array of composite benchmark functions. Unveiled through the lens of the tests, the
p-values shed light on the statistical weight of these contrasts. In TF14, the DA significantly
outperformed FDO, while the comparison between the DA and LBP lacked statistical
significance. Intriguingly, the p-values for the DA’s superiority over the FDO showed
a disparity between the Wilcoxon rank-sum test and two ANOVA tests, whereas the
comparison with the LBP was not significant in the initial test. For TF15 and TF17, the DA’s
performance stood out against the FDO but remained insignificantly different from the LBP.
In TF16, the p-values were remarkably low, underscoring the significance of the distinctions.
In TF18, the DA exhibited a significant advantage in line with the FDO and LBP, supported
by remarkably low p-values that emphasized statistical importance. The p-values for TF19
indicated insignificance between the DA and FDO, while signifying significance against
the LBP. This immediate analysis highlights the diverse impact of the DA compared to
the FDO and LBP across a range of composite benchmark functions. The p-values further
emphasize the statistical importance of these discrepancies.
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Table 8. Statistical analysis comparing the DA with FDO and LBP for composite benchmark functions.

TFs p-Value Tests DA vs. FDO DA vs. LBP

TF14

Wilcoxon rank-sum test 0.000049 1.00

Single-factor 2.37 × 10−7 4.63 × 10−2

Two-factor 2.38 × 10−6 5.10 × 10−2

TF15

Wilcoxon rank-sum test 0.047039 0.000082

Single-factor 7.39 × 10−2 2.54 × 10−2

Two-factor 7.90 × 10−2 2.92 × 10−2

TF16

Wilcoxon rank-sum test 0.00000004 0.000292

Single-factor 0 × 100 3.38 × 10−2

Two-factor 0 × 100 3.80 × 10−2

TF17

Wilcoxon rank-sum test 0.000001 0.001474

Single-factor 4.40 × 10−5 8.93 × 10−2

Two-factor 1.27 × 10−4 9.46 × 10−2

TF18

Wilcoxon rank-sum test 0.000001 0.000132

Single-factor 3.55 × 10−48 7.90 × 10−3

Two-factor 4.44 × 10−29 1.01 × 10−2

TF19

Wilcoxon rank-sum test 0.630701 0.000146

Single-factor 1.82 × 10−3 3.58 × 10−1

Two-factor 2.81 × 10−3 3.62 × 10−1

5.2. Statistical Assessment of CEC-C06 2019 Benchmark Test Functions

This segment is subject to assessment using a variety of stochastic algorithms, encom-
passing well-established and innovative population-based or inspired algorithms. The
evaluation centers around the CEC-C06 2019 benchmark test functions, aiming to generate
results for all algorithms and subsequently assess the concordance to address all p-values
among them, utilizing the three mentioned statistical tests as per the study’s methodology.
The algorithms evaluated within this benchmark encompass ten test functions, specifically
Leo, FOX, FDO, WOA, SSA, and DA. The statistical assessment is divided into four distinct
categories of agreement comparisons, as outlined in the ensuing four tables.

Table 9 presents the outcomes of statistical assessments on test functions, employing
diverse comparison methods. The central focus lies in appraising the performance of
an entity, Leo, vis-à-vis several others: FOX, FDO, WOA, SSA, and DA. This evaluation
employs distinct statistical tests. The table’s provided p-values serve as indicators of
the statistical significance of comparisons. In general, smaller p-values suggest stronger
evidence against the null hypothesis, implying no significant difference.

For instance, in the first row (CEC01), the tiny p-value (0.000002) when comparing Leo
and the FDO indicates a highly significant performance disparity. A similar pattern can be
discerned in various other comparisons within the table. These findings are instrumental
in concluding Leo’s performance relative to diverse test functions and scenarios. However,
intriguingly, some anomalies emerged. For instance, Leo’s agreement with the SSA in
CEC01 is not significant due to p-values exceeding 0.05 across all three outcomes. It is
worth emphasizing that a comprehensive interpretation of these findings necessitates an ap-
preciation of the particular test functions employed and the broader context underpinning
these comparative analyses.
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Table 9. Statistical comparisons through testing between Leo and FOX, FDO, WOA, SSA, and DA.

TF p-Value Tests Leo vs. FOX Leo vs. FDO Leo vs. WOA Leo vs. SSA Leo vs. DA

CEC01

Wilcoxon rank-sum test 0.000002 0.000002 0.038723 0.360039 0.000012

Single-factor 3.88 × 10−9 3.88 × 10−9 1.23 × 10−3 3.67 × 10−1 3.13 × 10−4

Two-factor 1.30 × 10−7 1.30 × 10−7 2.12 × 10−3 4.11 × 10−1 5.78 × 10−4

CEC02

Wilcoxon rank-sum test 0.000002 0.000002 0.000002 0.000002 0.000002

Single-factor 1.39 × 10−48 2.10 × 10−117 1.05 × 10−48 1.47 × 10−48 3.25 × 10−4

Two-factor 2.72 × 10−29 8.99 × 10−64 2.47 × 10−29 2.86 × 10−29 6.48 × 10−4

CEC03

Wilcoxon rank-sum test 0.000001 0.000001 0.000001 0.000001 0.000001

Single-factor 2.15 × 10−167 2.46 × 10−170 2.46 × 10−170 3.39 × 10−169 2.46 × 10−164

Two-factor 2.45 × 10−88 3.08 × 10−90 3.08 × 10−90 3.72 × 10−89 1.36 × 10−86

CEC04

Wilcoxon rank-sum test 0.000002 0.000005 0.000002 0.000125 0.000012

Single-factor 3.34 × 10−15 4.03 × 10−9 1.81 × 10−9 1.42 × 10−5 6.11 × 10−4

Two-factor 2.23 × 10−11 4.07 × 10−8 6.67 × 10−8 3.81 × 10−5 1.19 × 10−3

CEC05

Wilcoxon rank-sum test 0.000002 0.000004 0.688359 0.000026 0.033264

Single-factor 1.95 × 10−20 1.92 × 10−10 7.86 × 10−1 6.79 × 10−9 4.42 × 10−2

Two-factor 4.08 × 10−14 5.52 × 10−9 7.92 × 10−1 6.07 × 10−7 3.42 × 10−2

CEC06

Wilcoxon rank-sum test 0.000002 0.000002 0.000002 0.000002 0.000002

Single-factor 9.18 × 10−10 4.64515 × 10−50 3.21068 × 10−39 2.61977 × 10−14 1.25449 × 10−28

Two-factor 1.98 × 10−8 1.85926 × 10−32 2.283 × 10−23 2.7012 × 10−12 2.08731 × 10−18

CEC07

Wilcoxon rank-sum test 0.000148 0.171376 0.000115 0.011079 0.000359

Single-factor 1.76 × 10−5 8.80 × 10−2 9.77315 × 10−7 2.65 × 10−3 2.93533 × 10−6

Two-factor 4.54 × 10−5 9.17 × 10−2 4.74379 × 10−6 9.32 × 10−3 3.93668 × 10−5

CEC08

Wilcoxon rank-sum test 0.000082 0.000008 0.000002 0.000002 0.000002

Single-factor 1.28 × 10−5 3.56726 × 10−8 4.28708 × 10−23 1.22371 × 10−13 4.68724 × 10−21

Two-factor 1.43 × 10−5 5.00 × 10−7 6.5426 × 10−15 1.75576 × 10−11 7.46623 × 10−16

CEC09

Wilcoxon rank-sum test 0.001593 0.000002 0.000002 0.002765 0.000003

Single-factor 7.31 × 10−4 4.58088 × 10−13 4.69055 × 10−11 5.76 × 10−3 3.33322 × 10−6

Two-factor 2.34 × 10−3 3.49104 × 10−10 7.97908 × 10−9 1.07 × 10−2 8.5846 × 10−6

CEC10

Wilcoxon rank-sum test 0.000002 0.000002 0.000002 0.000002 0.000002

Single-factor 6.40 × 10−82 8.8928 × 10−155 4.78917 × 10−54 6.32896 × 10−57 1.62182 × 10−43

Two-factor 3.12 × 10−46 1.85107 × 10−82 1.84546 × 10−32 1.23696 × 10−32 6.88248 × 10−27

At the culmination of the analysis, Table 10 presents an extensive comparison of
statistical concurrences across diverse test functions. The primary focus centers on the
dynamics between the DA, WOA, SSA, and FOX concerning the FDO. The significance
of the p-values within the table is paramount. They serve as indicators of the statistical
importance of the concurrences, with smaller p-values denoting greater evidence against the
null hypothesis. When a p-value approaches zero, it underscores the statistical significance
of the disparities between the entities being compared. For example, an examination of
CEC01 underscores this phenomenon. The diminished p-values in the context of the FDO’s
interactions with the WOA, DA, and SSA underscore substantial performance differences.
Conversely, the comparatively larger p-value for the FOX against FDO comparison implies
a lesser degree of performance differentiation.
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Table 10. Statistical testing for agreement comparison of the FDO against the DA, WOA, SSA,
and FOX.

TF p-Value Tests DA vs. FDO WOA vs. FDO SSA vs. FDO FOX vs. FDO

CEC01

Wilcoxon rank-sum test 0.000002 0.000002 0.000002 0.018519

Single-factor 4.03 × 10−5 1.08 × 10−4 3.18 × 10−9 4.12 × 10−4

Two-factor 1.18 × 10−4 2.62 × 10−4 1.13 × 10−7 2.73 × 10−4

CEC02

Wilcoxon rank-sum test 0.000002 0.000002 0.000002 0.000002

Single-factor 1.81 × 10−5 1.10 × 10−196 3.17 × 10−252 4.01 × 10−250

Two-factor 6.30 × 10−5 2.06 × 10−103 3.49 × 10−131 3.93 × 10−130

CEC03

Wilcoxon rank-sum test 0.040475 4.32 × 10−8 0.000003 0.000003

Single-factor 2.45 × 10−1 1.20 × 10−306 3.64 × 10−1 3.46 × 10−1

Two-factor 2.50 × 10−1 2.15 × 10−158 3.67 × 10−1 3.50 × 10−1

CEC04

Wilcoxon rank-sum test 0.000002 0.000002 0.115608 0.000002

Single-factor 1.24 × 10−4 7.44 × 10−11 9.59 × 10−2 7.85 × 10−16

Two-factor 2.82 × 10−4 7.17 × 10−9 1.18 × 10−1 7.00 × 10−12

CEC05

Wilcoxon rank-sum test 0.000007 0.000002 0.004992 0.000002

Single-factor 6.05 × 10−9 2.37 × 10−15 7.88 × 10−3 8.92 × 10−25

Two-factor 4.16 × 10−7 2.78 × 10−12 5.48 × 10−3 5.28 × 10−17

CEC06

Wilcoxon rank-sum test 0.000006 0.000031 0.000002 0.000002

Single-factor 2.90 × 10−9 1.97 × 10−8 2.20 × 10−28 1.69 × 10−34

Two-factor 4.67 × 10−8 9.96 × 10−7 1.63 × 10−19 2.30 × 10−22

CEC07

Wilcoxon rank-sum test 0.000004 0.000002 0.000011 0.000002

Single-factor 2.69 × 10−10 6.27 × 10−15 1.04 × 10−6 1.84 × 10−13

Two-factor 2.48 × 10−8 2.12 × 10−11 8.20 × 10−6 1.26 × 10−10

CEC08

Wilcoxon rank-sum test 0.000332 0.000082 0.120445 0.03001

Single-factor 2.36 × 10−5 5.23 × 10−6 1.32 × 10−1 1.62 × 10−2

Two-factor 1.11 × 10−4 9.87 × 10−6 1.27 × 10−1 2.47 × 10−2

CEC09

Wilcoxon rank-sum test 0.000002 0.000002 0.000002 0.000002

Single-factor 1.80 × 10−10 7.40 × 10−19 3.80 × 10−43 8.52 × 10−36

Two-factor 1.63 × 10−8 1.22 × 10−13 1.59 × 10−26 9.36 × 10−23

CEC10

Wilcoxon rank-sum test 0.000002 0.000002 0.000001 0.000002

Single-factor 2.22 × 10−111 2.46 × 10−122 6.40 × 10−131 8.61 × 10−198

Two-factor 9.27 × 10−61 3.08 × 10−66 1.57 × 10−70 5.76 × 10−104

CEC03 involves comparing the DA, WOA, SSA, and FOX against the FDO using a
range of statistical tests. The Wilcoxon rank-sum test highlights a statistically significant
performance difference between the WOA, DA, and SSA in contrast to the FDO. Conversely,
the single-factor and two-factor tests through ANOVA suggest no significant performance
differences between the DA, SSA, and FOX when compared to the FDO. However, these
tests emphasize a remarkably significant performance distinction between the WOA and
FDO. Additionally, within CEC08, these observations point to a notable contrast in perfor-
mance between the SSA and FDO in this specific benchmark test function, substantiated by
the utilization of all three diverse statistical tests.

Table 11 offers an extensive comparison of p-values for various tests involving the
FOX against the FDO, DA, WOA, and SSA across different test functions in the CEC-C06
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2019 benchmark. These p-values serve as indicators of the statistical significance of these
comparisons. In most cases, smaller p-values imply stronger evidence against the null
hypothesis, which is evident in the majority of the table’s outcomes, suggesting notable
performance differences.

Table 11. Statistical testing comparisons for the FOX against the FDO, DA, WOA, and SSA.

TF p-Value Tests FOX vs. FDO FOX vs. DA FOX vs. WOA FOX vs. SSA

CEC01

Wilcoxon rank-sum test 0.018519 0.000002 0.000002 0.000002

Single-factor 0.000412408 4.03456 × 10−5 0.000108313 3.18 × 10−9

Two-factor 0.000273177 0.000118478 0.000262183 1.13 × 10−7

CEC02

Wilcoxon rank-sum test 0.000002 0.000002 0.000003 0.000104

Single-factor 4.01 × 10−250 3.88 × 10−4 3.93 × 10−8 1.14 × 10−7

Two-factor 3.93 × 10−130 7.50 × 10−4 5.41 × 10−7 1.20 × 10−5

CEC03

Wilcoxon rank-sum test 0.000003 0.243615 0.317311 0.654721

Single-factor 3.46 × 10−1 6.46 × 10−1 3.21 × 10−1 7.33 × 10−1

Two-factor 3.50 × 10−1 6.54 × 10−1 3.26 × 10−1 7.38 × 10−1

CEC04

Wilcoxon rank-sum test 0.000002 0.000007 0.000015 0.000002

Single-factor 7.85 × 10−16 1.59 × 10−7 2.81 × 10−8 1.11 × 10−15

Two-factor 7.00 × 10−12 2.36 × 10−7 2.00168 × 10−6 8.66 × 10−12

CEC05

Wilcoxon rank-sum test 0.000002 0.000002 0.000002 0.000002

Single-factor 8.92 × 10−25 5.39 × 10−22 3.91 × 10−21 2.13 × 10−24

Two-factor 5.28 × 10−17 2.87 × 10−14 1.03 × 10−15 9.25 × 10−17

CEC06

Wilcoxon rank-sum test 0.000002 0.000002 0.000002 0.001287

Single-factor 1.69 × 10−34 2.16 × 10−18 3.41 × 10−26 5.31 × 10−3

Two-factor 2.30 × 10−22 2.22 × 10−12 1.88 × 10−19 1.22 × 10−3

CEC07

Wilcoxon rank-sum test 0.000002 0.14139 0.703564 0.205888

Single-factor 1.84 × 10−13 8.37 × 10−2 4.94 × 10−1 4.73 × 10−1

Two-factor 1.26 × 10−10 1.12 × 10−1 4.62 × 10−1 4.74 × 10−1

CEC08

Wilcoxon rank-sum test 0.03001 0.000003 0.000002 0.000174

Single-factor 1.62 × 10−2 1.83 × 10−12 5.78 × 10−14 1.21 × 10−5

Two-factor 2.47 × 10−2 6.76 × 10−10 4.11 × 10−11 2.47 × 10−5

CEC09

Wilcoxon rank-sum test 0.000002 0.000003 0.000002 0.062676

Single-factor 8.52 × 10−36 7.50917 × 10−5 3.83 × 10−9 1.06 × 10−1

Two-factor 9.36 × 10−23 2.23 × 10−4 5.23 × 10−8 1.12 × 10−1

CEC10

Wilcoxon rank-sum test 0.000002 0.000002 0.000002 0.000003

Single-factor 8.61 × 10−198 4.10 × 10−12 1.56 × 10−20 5.56 × 10−4

Two-factor 5.76 × 10−104 1.20 × 10−9 1.42 × 10−14 9.75 × 10−4

It is noteworthy that in CEC03, the Wilcoxon rank-sum test highlights significant
performance differences between the FOX and DA, WOA, and SSA. However, the single-
factor and two-factor tests do not demonstrate significant differences for most of the
comparisons in this scenario. The application of the Wilcoxon rank-sum test reveals a
p-value of 0.000003 for the FOX vs. FDO, signifying a statistically significant performance
difference. However, when examining the FOX vs. DA, WOA, and SSA, the p-values
are higher, specifically 0.243615, 0.317311, and 0.654721. These elevated p-values suggest
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that the observed performance differences between the FOX and DA, WOA, and SSA are
not statistically significant according to this test. Interestingly, both the single-factor test
and two-factor test consistently exhibit statistically significant performance differences
between the FOX and all four entities (FDO, DA, WOA, SSA) in CEC03, thereby rejecting
the null hypotheses.

Within CEC07, the statistical assessments encompass FOX’s comparisons with the DA,
WOA, and SSA. The results imply that the discerned performance variations between the
FOX and DA, WOA, and SSA lack statistical significance based on this specific test. How-
ever, these diminutive p-values underscore a significant performance difference between
the FOX and FDO according to the same tests. Furthermore, across all three evaluations,
the Wilcoxon rank-sum test suggests nonsignificant performance differences between the
FOX and DA, WOA, and SSA.

Although the Wilcoxon rank-sum test does not suggest a significant difference, both
the single-factor test and two-factor test consistently highlight a noteworthy performance
distinction between the FOX and SSA in CEC09. This is evident from the p-values of
0.062676, 0.106, and 0.112 for the Wilcoxon rank-sum test, single-factor test, and two-factor
test, respectively.

Table 12 provides a comparison of p-values using various statistical tests for the DA,
WOA, and SSA across different test functions in the CEC-C06 2019 benchmark. The results
demonstrate varying levels of significance in different comparisons and test functions,
underscoring the intricate interactions among the entities being evaluated. In general, the
statistical significance of performance differences between the DA and WOA varies across
different test functions, reflected by differing p-values from various tests. Interpretation
should consider the context of these specific test functions.

Table 12. Statistical testing comparisons between the DA and WOA, as well as between the WOA
and SSA.

TF p-Value Tests DA vs. WOA DA vs. SSA WOA vs. SSA

CEC01

Wilcoxon rank-sum test 0.599936 0.000005 0.023038

Single-factor 4.04 × 10−1 2.22 × 10−4 8.21 × 10−4

Two-factor 4.24 × 10−1 4.66 × 10−4 1.37 × 10−3

CEC02

Wilcoxon rank-sum test 0.000002 0.000002 0.000002

Single-factor 3.89 × 10−4 3.88 × 10−4 8.78 × 10−10

Two-factor 7.51 × 10−4 7.50 × 10−4 4.43 × 10−8

CEC03

Wilcoxon rank-sum test 0.03936 0.243615 0.317311

Single-factor 2.32 × 10−1 4.52 × 10−1 3.21 × 10−1

Two-factor 2.37 × 10−1 4.61 × 10−1 3.26 × 10−1

CEC04

Wilcoxon rank-sum test 0.051931 0.000002 0.000002

Single-factor 5.70 × 10−1 1.83 × 10−4 1.63 × 10−10

Two-factor 5.80 × 10−1 4.15 × 10−4 1.68 × 10−8

CEC05

Wilcoxon rank-sum test 0.051924 0.000024 0.000002

Single-factor 3.02 × 10−2 6.31 × 10−7 4.70 × 10−13

Two-factor 4.21 × 10−2 2.53 × 10−6 6.72 × 10−10

CEC06

Wilcoxon rank-sum test 0.013975 0.000002 0.000002

Single-factor 2.52 × 10−2 2.53 × 10−13 2.94 × 10−20

Two-factor 1.26 × 10−2 3.21 × 10−10 7.77 × 10−13



Computation 2023, 11, 231 24 of 32

Table 12. Cont.

TF p-Value Tests DA vs. WOA DA vs. SSA WOA vs. SSA

CEC07

Wilcoxon rank-sum test 0.221022 0.015658 0.205888

Single-factor 2.11 × 10−1 3.99 × 10−2 2.13 × 10−1

Two-factor 2.01 × 10−1 7.57 × 10−3 2.11 × 10−1

CEC08

Wilcoxon rank-sum test 0.926255 0.000261 0.004992

Single-factor 7.69 × 10−1 7.53 × 10−4 1.52 × 10−4

Two-factor 7.91 × 10−1 7.57 × 10−4 1.48 × 10−3

CEC09

Wilcoxon rank-sum test 0.797098 0.000002 0.000002

Single-factor 8.57 × 10−1 3.11773 × 10−5 5.78 × 10−10

Two-factor 8.68 × 10−1 9.97662 × 10−5 4.24 × 10−8

CEC10

Wilcoxon rank-sum test 0.829009 0.000002 0.000005

Single-factor 6.75 × 10−1 2.85 × 10−8 1.79 × 10−13

Two-factor 7.03 × 10−1 7.21 × 10−8 2.27 × 10−9

In the realm of CEC01, the Wilcoxon rank-sum test dances with a p-value of 0.599936,
whispering that the tango between the DA and WOA is not statistically significant. The
single-factor and two-factor tests join this gentle sway with elevated p-values (0.404 and
0.424), singing the same refrain of insignificance. Behold, a symphony echoed in CEC04,
CEC05, and CEC06, where the Wilcoxon rank-sum test hums modest p-values (0.051931,
0.051924, and 0.013975) for the DA vs. WOA duet, suggesting nuances of distinction. As
the curtains rise on CEC08 to CEC10, a familiar motif emerges. The Wilcoxon rank-sum
test maintains its moderate tempo, while the single-factor and two-factor tests weave their
tales with diverse p-values.

In the realm of CEC03, the Wilcoxon rank-sum test sweeps the stage with a p-value
of 0.243615 for the dance between the DA and SSA, whispering that their performance
difference is not wrapped in statistical significance. Echoing this theme, the single-factor
and two-factor tests step to the rhythm with elevated p-values (0.452 and 0.461), harmoniz-
ing a chorus of insignificance. For the captivating tale of the WOA vs. SSA in CEC03, the
Wilcoxon rank-sum test takes center stage with a p-value of 0.317311, sharing the sentiment
that the duet’s performance difference is not statistically profound. A harmonious duet of
the single-factor and two-factor tests continue this narrative, echoing similar patterns and
higher p-values (0.321 and 0.326). Overall, the stage of CEC03 offers no grand revelation of
significant performance divergence between the DA and SSA or between the WOA and
SSA. The recurrent theme of higher p-values across the tests suggests that these algorithms’
performance differences with the SSA might not wield statistical significance within this
particular collection of test functions.

In CEC07, the comparison between the WOA and SSA takes the stage. The Wilcoxon
rank-sum test bows with a p-value of 0.205888, a signal that the performance difference
between these two performers does not hold a strong statistical sway at the conventional
significance level (typically 0.05). The single-factor and two-factor tests then join the en-
semble, harmonizing the same note—the observed performance difference lacks statistical
significance in this context. Collectively, the consistent refrain of higher p-values from all
three tests harmonizes the message that there is insufficient statistical evidence to spotlight
a significant performance difference between the WOA and SSA in the tale of CEC07
test functions.
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5.3. Algorithmic Time-Complexity Analysis

The time complexity of the stochastic optimization algorithms is influenced by ele-
ments such as problem intricacy, the algorithmic structure, and computational resources.
These algorithms often prioritize speed over precision, rendering them effective for manag-
ing complex, large-scale issues. Nevertheless, their time complexity can exhibit significant
variability, necessitating meticulous evaluation for real-world application [61]. Additionally,
every algorithm in this study used for analysis requires real-time computational iterations
within a search engine to converge towards the global optimum. Furthermore, as previously
noted, striving for minimal function values at thirty rounds is essential. Yet, each algorithm,
based on inspiration, entails distinct mathematical loops, resulting in varied time com-
plexities that validate their efficacy. Additionally, the functions encompass mathematical
intricacies from classical benchmarks and the CEC-C06 2019 benchmark test functions.
Consequently, the time and effort invested differ depending on the specific functions and
the algorithms inspired by them. Table 13 exemplifies variations in the average time com-
plexity of sample functions, offering insights into the approximate computational effort
needed for implementing computations within the open-source application for developing
selected algorithms.

Table 13. Average execution duration of the chosen test functions across various algorithms.

Sets TFs Sample
Time-Complexity Average (Seconds)

DA FDO LPB Leo

Unimodal TF7 52.63769 23.7459 6.021400933 5.5880676

Multimodal TF13 42.98127 58.4801 4.7816489 4.692978

Composite Modal TF19 47.09351493 24.35697 5.313835 5.780502

CEC-C06 2019 CEC10 56.63626987 34.8759 4.966151 5.1998505

Table 13 depicts the rolling average time for each iteration across different algorithm
groups, corresponding to the specific test function chosen for each group. Our selection
process involved identifying a single test function for each group. The findings reveal that
the DA incurs a higher average execution time compared to other algorithms. In contrast,
the LPB and Leo exhibit commendable speed in computation execution.

6. Evaluation and Discussion

Evaluating the results of single- and multiobjective optimization algorithms requires
a comparison against established benchmarks, often involving both contemporary and
renowned algorithms. The process of selecting these algorithms is no straightforward
task, as it necessitates examining the level of agreement between them and subsequently
assessing their performance. This assessment hinges on calculating agreement metrics
guided by statistical models, which facilitate deciding whether to accept or reject null
hypotheses. Many algorithms lean on statistical models to evaluate significant performance
differences among them. For instance, algorithms like the FOX, LPB, and FDO utilize the
one-factor ANOVA test, while the SSA and WOA employ the Wilcoxon rank-sum test to
determine significant values.

Undoubtedly, adhering to the study’s methodology, as illustrated in Figure 1, imposes
specific constraints on the selection of statistical methods for implementation. Furthermore,
each method entails distinct steps and yields varying outcomes—some reliant on means,
while others on the ranking of individual sums. As a consequence, the results naturally di-
verge. In this study, three different methods have been employed to compute the significance
level (p-value), thereby facilitating error verification and determining the optimal evaluation
model and adjusted error based on the stochastic algorithm’s performance characteristics.

Some classical benchmark results exhibit peculiar discrepancies among the outcomes
of three different tests used for comparing algorithms. The majority of Wilcoxon sum-rank
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test outcomes for the designated algorithms indicate a significant rejection of the null
hypothesis. When the p-value leads to the rejection or retention of the null hypothesis, the
assessment aligns with that of single-factor or two-factor tests. Nevertheless, only two
exceptions have been observed: in cases involving the FDO with Leo in TF17 and the FDO
with the DA in TF19. Strangely, in these exceptions, the p-value of the Wilcoxon sum-rank
test is retained, while it is rejected in the other two tests.

It has been established that the choice of the three tests in our study yields differing
outcomes due to the effectiveness of distinct mathematical methodologies. Many p-values
resulting from the Wilcoxon sum-rank test have rejected the statistical null value. Paradoxi-
cally, concurrently, comparable algorithms show acceptance of the null value in single-factor
and two-factor ANOVA tests. To illustrate, in the context of unimodal benchmark functions,
numerous exceptions have arisen, particularly between the DA and FDO. Furthermore,
analogous patterns have emerged in other evaluations. For more clearance, the hierarchical
ranking of results for the three statistical models, based on the acceptance or rejection of
the null hypothesis, is vividly presented in Figure 3 for classical benchmarks. As will be
highlighted in the research limitations, threats to a study’s validity can vary based on its
design, methods, and data collection or data evolution. Common threats encompass:

Selection bias [62]: This occurs when the sample of participants is not representative
of the larger population, leading to results that may not generalize.

Measurement error: Inaccuracies in data collection, such as imprecise instruments or
biased survey questions, can introduce error into the study.

Sampling error [62]: Random variations in sample selection can lead to different
results in repeated studies with different samples.

Instrument reliability: Inconsistent or unreliable measurement instruments can lead to
inconsistent results.
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classical benchmarks.

For this purpose, a trio of statistical tests has been thoughtfully incorporated for each
pair of algorithms to meticulously unearth the highest performance and accuracy. This
extensive analysis has sought to shed light on the selection of the most fitting algorithm for a
diverse range of applications, providing a robust framework for decision-making based on
statistically significant outcomes. Notably, depending on the results, the Wilcoxon rank-sum
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test emerges as a standout performer in terms of privacy and performance, corroborating
findings from prior research in the background. Moreover, the test methodology applied
to this particular application exhibits minimal limitations, making it a reliable choice for
pinpointing the global solution’s peak performance.

In the context of the CEC-C06 2019 benchmark test functions’ statistical outcomes, a
situation analogous to that of classical benchmarks has unfolded. A significant majority
of p-values derived from statistical comparisons among stochastic algorithms have led to
the rejection of null hypotheses in the Wilcoxon sum-rank test, as well as in single-factor
and two-factor tests. However, certain results have introduced peculiarities, where the
outcome for a given pair of compared algorithms has resulted in the rejection of a statistical
model test while being accepted by another, or vice versa. To illustrate, consider the case
of Leo versus the SSA in CEC09. Here, the p-value for the Wilcoxon sum-rank test and
the single-factor test have both rejected the null value, but this rejection is retained in the
two-factor test. Similarly, in the comparison involving the FDO against the DA, SSA, and
FOX in CEC03, the two tests—whether single-factor or two-factor—for the ANOVA table
have maintained null hypotheses, contrary to their rejection in the Wilcoxon sum-rank test.
This situation also similarly emerges in the FOX against FDO comparison in CEC03.

Multiple instances of retained null hypotheses have arisen based on the three character-
istics of statistical models applied to the same test functions. In light of these complexities,
Figures 4–7 have been included to provide a more lucid presentation of the hierarchical
arrangement of accepted and rejected null values in the ranking of p-value outcomes within
the distinct categories of benchmarks, as defined by the CEC-C06 2019 test functions.
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7. Conclusions

Merely relying on testing functions does not suffice to thoroughly evaluate the pro-
posed algorithms. Their assessment necessitates subjecting them to various statistical
model tests to gauge performance and significance. When comparing outcomes between
algorithm pairs, such as Leo, LPB, DA, FDO, FOX, WOA, and SSA, through three statistical
model tests, the observed p-values exhibit distinct patterns. Consequently, specific results
reject the null hypothesis according to the Wilcoxon sum-rank test, yet simultaneously
uphold it based on single-factor and two-factor ANOVA tests within the same test function.
Conversely, a contrasting scenario occurs in different test functions.

In conclusion, this research underscores the need for a focused evaluation approach
when assessing algorithms, particularly in the pursuit of identifying global points. This
contribution emphasizes the importance of employing the most effective methods for robust
evaluation. Ultimately, the findings offer practical guidance for algorithm selection in real-
world applications, empowering professionals to make sound choices for optimization
challenges. This exploration provides insights into algorithm performance, enriching our
comprehension of their capabilities across diverse evaluation criteria.

The recommendations from [16,63] are to favor nonparametric tests for analyzing
results from evolutionary or swarm intelligence algorithms in continuous optimization
problems. This is crucial, especially in real-coding optimization scenarios where the
initial conditions required for reliable parametric tests may not be met. The techniques
highlighted here offer the research community reliable tools for integrating statistical
analysis into experimental methodologies, addressing these specific needs. Addressing
these limitations is crucial, especially when analyzing data with stochastic algorithms. All
statistical methods are vulnerable to outliers, and their presence can potentially impact
the significance. Additionally, some data, notably in ANOVA factors, might deviate from
normality, offering only directional insights, not specific relationships. Utilizing these
techniques with small sample sizes can yield less reliability and reduced statistical power.
Consequently, it is vital to consider data characteristics and research objectives thoughtfully,
and, if needed, supplement correlation analysis with alternative statistical methods or
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approaches. Hence, there are instances where data analysis with Pearson and Spearman
correlation methods can be employed to identify significant values.

In future works, potential avenues of exploration include subjecting these algorithms
to additional statistical models for evaluation or adjustment, such as the Friedman statis-
tical test. Furthermore, an intriguing direction involves employing stochastic algorithms
for multiobjective optimization, as this study predominantly focused on single-objective
optimization algorithms. These future endeavors could enhance the comprehensiveness of
algorithm assessment and open doors to tackling more complex optimization scenarios.
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