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Abstract: A novel approach was developed that combined LP-based row generation with optimization-
based sorting to tackle computational challenges posed by budget allocation problems with combina-
torial constraints. The proposed approach dynamically generated constraints using row generation
and prioritized them using optimization-based sorting to ensure a high-quality solution. Compu-
tational experiments and case studies revealed that as the problem size increased, the proposed
approach outperformed simplex solutions in terms of solution search time. Specifically, for a problem
with 50 projects (N = 50) and 2,251,799,813,685,250 constraints, the proposed approach found a
solution in just 1.4 s, while LP failed due to the problem size. The proposed approach demonstrated
enhanced computational efficiency and solution quality compared to traditional LP methods.

Keywords: row generation; sorting method; linear programming; large-scale problem; budget
allocation; capital budgeting

1. Introduction

Budget allocation problems, commonly referred to as capital budgeting problems,
often involve many constraints [1]. These constraints typically consist of 2N investment
patterns, which further increase to 2 × (2N − 1) patterns when considering upper and
lower bounds. Consequently, efficiently and effectively solving these problems becomes
increasingly challenging, particularly when considering the total number of projects repre-
sented by N. Traditional optimization techniques may struggle to handle the combinatorial
explosion of constraints, often resulting in time-consuming computations and no guarantee
of optimal solutions within a reasonable timeframe [2]. However, recent advancements in
linear programming-based row generation and optimization-based sorting methods offer
promising solutions to address these challenges.

Linear programming (LP) provides a powerful framework for modeling and solving
optimization problems with linear constraints. By formulating the budget allocation
problem as an LP model, decision makers can systematically allocate resources to various
activities while considering multiple objectives and constraints [3–5]. However, when
faced with many combinatorial constraints, the traditional LP formulation may become
computationally intractable.

An innovative approach combines linear programming-based row generation to over-
come this challenge. Row generation involves iteratively generating new constraints (rows)
added to the problem formulation, effectively expanding the solution space and refining the
solution quality [6]. By iteratively adding constraints that are most relevant to the current
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solution, the row generation process enables efficient exploration of the combinatorial
constraint space.

Furthermore, optimization-based sorting methods enhance the row-generation process
by incorporating sorting algorithms tailored to the specific constraints and objectives of the
budget allocation problem. This algorithm employs intelligent search strategies to efficiently
discover the optimal solutions. With a focus on practical applications, the optimization-
based sorting method has demonstrated the ability to generate optimal solutions within a
reasonable timeframe [7,8].

The combination of linear programming-based row generation and optimization-
based sorting methods offers a powerful approach to solving budget allocation problems
with a combinatorial number of constraints. This integrated methodology allows decision
makers to handle large-scale optimization problems, allocate resources efficiently, and
identify optimal budget allocation strategies.

This study aims to explore and analyze the proposed method by investigating the-
oretical foundations, outlining the advantages and challenges of related techniques, and
discussing practical implementation. Randomly generated structural problems are exam-
ined to illustrate the efficiency and potential of this approach in complex budget allocation
scenarios. Extensive computational experiments and case studies demonstrate that our ap-
proach outperforms simplex solutions in solution search time as the problem size increases.

By leveraging the capabilities of linear programming-based row generation and
optimization-based sorting, decision makers can make informed budget allocation deci-
sions, optimize resource utilization, and achieve superior financial outcomes. The proposed
methodology holds immense promise for organizations facing complex budget allocation
challenges, enabling them to navigate the intricate landscape of constraints and make
strategic resource allocation decisions. Further elaboration on our proposed approach can
be found in Sections 3–7. Section 3 introduces problem structures and notations. Section 4
applies row generation to solve the budget allocation model. Section 5 demonstrates the
application of sorting methods in the row-generation process. Section 6 proves the op-
timal solutions derived from sorting methods. Finally, Section 7 showcases the model’s
application in solving budget allocation problems.

2. Literature Review

Budget allocation problems with combinatorial constraints are complex optimization
models originating from the study by Weingartner [9], which has found applications in
various fields such as resource allocation and project planning. Linear programming (LP) is
a widely used technique to solve such problems efficiently. However, when dealing with a
large number of constraints, the computational complexity of LP becomes time-consuming
to solve. This literature review explores the application of the row-generation techniques to
enhance the efficiency of solving budget allocation problems with combinatorial constraints
using sorting methods.

Row generation, a sub-technique within Benders decomposition, is a powerful ap-
proach initially proposed by Unger [10,11], which offers an application for solving large-
scale LP problems in budget allocation. It focuses on generating a subset of constraints,
known as “rows”, dynamically during the optimization process. Hummeltenberg [12],
Zak [13], Muter et al. [14], Muter and Sezer [15] and Witthayapraphakorn et al. [16] consis-
tently highlight the advantages of employing a row generation algorithm that incorporates
a warm-start strategy and an approximation scheme, surpassing the performance of lin-
ear programming, particularly in scenarios involving a substantial number of constraints.
These compelling findings affirm the efficacy of row-generation technique as an effective
approach for addressing linear programming problems characterized by a comprehensive
set of constraints. According to the literature reviews over the past decade, a limited
number of studies have investigated the application of row-generating techniques in the
context of budget allocation problems; however, notable research by Fard et al. [17] has
contributed to this area. Their study presents a model employing the bender decomposi-
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tion method for budgeting purposes within international humanitarian organizations and
provides analytical insights into the optimal solution. Additional scholarly studies employ
the row generation method to allocate various types of resources, such as energy [18] and
location [19,20]. Although the row generation method accelerates solution discovery in
large linear problems, its efficacy may diminish with an abundance of constraints, leading
to slower solution times. Consequently, researchers are exploring additional methods, such
as sorting techniques [21], to enhance the effectiveness of row generation in addressing very
large-scale problems. However, there is no observed research integrating heuristics into
row generation to address problem solving in large-scale linear programming problems,
existing heuristics for solving LP problems with combinatorial constraints prioritize finding
the best solution without guaranteeing optimization [22].

The possibility of utilizing effective heuristic methods to generate initial starting points
in combinatorial optimization motivates the exploration of applying sorting techniques,
specifically in budget allocation problems known for their exceptional efficiency in iden-
tifying feasible solutions [21]. Sorting is a technique that aims to prioritize constraints
based on their potential impact on the solution quality. This approach involves assigning
weights or scores to constraints and ordering them in a way that maximizes the likelihood
of finding a feasible solution quickly. Sorting has been successfully employed in various
allocation problems. For example, Song and Mu [23] propose a heuristic algorithm based
on assignment to solve the sequence sorting problem of large-scale automated storage
requests in multiple input/output (multi-I/O) depots. The proposed algorithm considers
equivalent merging and minimum cost merging methods of subloops to eliminate subloops
that emerged in the sorting process. Their proposed algorithm offers a solution to opti-
mize the sequence of storage requests in multi-I/O depots, which can improve efficiency
and cost-effectiveness in practice. Weiner et al. [24] provide valuable insights into the
utilization of sorting in subproblems optimization and highlight its potential for solving
large-scale mixed-integer programs (MIPs). Specifically, their research demonstrates the
effective utilization of machine learning (ML) for ranking constraint relaxations of MIPs.
Their proposed method outperforms existing heuristic and ML-based methods in terms of
solution quality and computational time. The authors suggest that their approach has the
potential to be applied to other optimization problems beyond MIPs.

The feasibility of using row generation methods (i.e., Benders decomposition) is hin-
dered by the complexity of combinatorial constraints and the limited time availability for
solution generation. Consequently, the utilization of sorting techniques is motivated by the
intricate nature of combinatorial constraints while also taking into account the potential
implementation of row-generation methods within the available computational time and
the problem size to be solved. The current literature on budget allocation problems lacks
evidence supporting the effectiveness of combining heuristics and LP approaches (i.e.,
integer programming, Benders decomposition, and row generation) in achieving optimal
solutions. Moreover, studies in related fields, like location allocation and network allo-
cation, provide insights into the comparative speed of solution discovery using mixed
methods. Fischetti et al. [25] demonstrate the practical effectiveness and straightforward
implementation of their proposed approach, which applies Benders decomposition to solve
the facility allocation master problem with non-separable subproblems. By employing a
simple sorting application on Benders cut, their study showcases the successful application
of generalized Benders cuts for convex problems. Furthermore, numerous studies have
explored alternative heuristics beyond sorting to identify optimal solutions in combination
with the Benders decomposition method. For example, Maher [26] reveals how large
neighborhood search heuristics can enhance Benders decomposition algorithms and im-
prove mixed-integer programming solvers. Costa and Gendron [27], Maheo et al. [28],
and Oliveira et al. [29] employ heuristic techniques, such as branch-and-cut, local search,
Pareto-optimal cuts, and multiple cuts, to generate additional cuts when solving the master
problem through Benders decomposition. Their respective studies focus on fixed-charge
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network design [27], bin allocation for waste management [28], and multiple allocation
hub network design [29].

The review provides a comprehensive overview of the evolution in budget allocation
or capital budgeting research, transitioning from traditional linear programming and row
generation to the utilization of diverse heuristic approaches, specifically focusing on the
utilization of sorting algorithms. Our main contribution to this study is represented in the
implementation of linear programming-based row generation using optimization-based
sorting methods for budget allocation problems. The study compares the efficiency of
solution-finding, measured in terms of time, by employing linear programming, the row
generation method, and a hybrid approach combining row generation and sorting. Through
computational experiments and case studies, we have demonstrated the advantages of this
combined approach and proved whether employing sorting methods will yield equivalent
results with binary programming or integer programming techniques, particularly when
compared to the conventional row generation method and linear programming.

3. Problem Structures and Notations

The problem structure of budget allocation involves determining how available budget
resources should be allocated among different projects within an organization or govern-
ment entity, considering factors such as maximizing profits and constraint-based resource
limitations. When making investment decisions for each project, there are two options:
invest or not invest. This results in a total of 2N possible patterns, considering all projects
N. Furthermore, when considering budget allocation within the investment boundaries as
lower and upper bounds, there are a total of 2 × (2N − 1) combinatorial constraints to be
considered. Efficiently solving large problems involves employing the principle of row gen-
erations while considering maximum and minimum total investments for project groups.
Furthermore, utilizing the sorting method to rank constraints enhances problem-solving
efficiency through row generation.

The proposed approach for budget allocation, following the structure described by
Sangkhasuk et al. [30], can be stated as:

• The objective is to maximize the overall benefits obtained from allocating budget
resources among the different projects.

• Each project receives a budget allocation proportional to its potential benefits, with
allocations not exceeding 1.

• The total budget allocation across all projects is limited to a maximum of 1.
• Combinatorial constraints consist of 2 × (2N − 1) constraints, where N represents the

number of projects.
• Each investment pattern has a lower and upper boundary of each constraint that is

proportional to the amount of investment. For instance, if there are five projects, an
investment pattern must allocate between 0.1 and 0.8 of the investment, resulting in
N − 1 boundary values.

The notations in order to formulate the above model are as follows:
Z—Objective function, which aims to maximize investment benefits.
cj—Benefits obtained from investment project j based on the allocated funds.
xj—Decision variable, which is the proportion of investment in project j.
aij—Allocated investment pattern i in project j (j = 1, 2, . . ., N) among 2 to N − 1

projects, denoted by aij = 1 or 0.
N—Total number of projects.
Uk—Upper bound constraint set on the proportion of investment in k projects.
Lk—Lower bound constraint set on the proportion of investment in k projects.
uk—Proportional investment for a total number of allocated investment projects used

to create the upper bound constraint of investment in Equation (2), where uk < uk+1 and
0 < uk < 1.
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lk—Proportional investment for a total number of allocated investment projects used to
create the lower bound constraint of investment in Equation (3), where lk < uk and lk < lk+1
and 0 < lk < 1.

Lowj—Lower bound of xj
Upj—Upper bound of xj
The mathematical model (1)–(5) is used for budget allocation problems as follows:

Max Z =
N

∑
j=1

cjxj (1)

subject to
N

∑
j=1

aijxj ≤ Uk, i = 1, 2, . . . , 2N − N − 1 (2)

N

∑
j=1

aijxj ≥ Lk, i = 1, 2, . . . , 2N − N − 1 (3)

N

∑
j=1

xj ≤ 1 (4)

Lowj ≤ xj ≤ Upj (5)

where the values of Uk and Lk are related to the total number of allocated investment
projects k.

The objective function (1) is formulated to optimize investment profits. The upper
(Uk) bound (2) and lower (Lk) bound (3) serve to establish boundaries for the investment
pattern. In this particular context, binary sequences are employed to conveniently represent
investment patterns, with 1 indicating funding and 0 denoting a lack of funding (e.g.,
1 1 0 0 0 or 1 0 1 0 0 for five projects). Constraint (4) ensures cumulative investment
proportions for funded projects do not exceed 1, maintaining the total investment within
available budgets. Additionally, constraint (5) imposes a restriction on the investment
proportion, confining it within the range of 0 to 1. Table 1 presents the values of variables
uk and lk in constraints (2) and (3), respectively, which are dependent on the total number
of allocated investment projects.

Table 1. Relationship between Uk and Lk with the total number of allocated investment projects.

N
∑
j=1

aij Uk Lk

2 u2 l2
...

...
...

k uk lk
...

...
...

N − 1 uN − 1 lN − 1

4. Row Generation Applied to Solving Budget Allocation Model

The utilization of the row generation method in the context of the budget allocation
problem encompasses three distinctive sub-models, which consist of:

• Mathematical model for relaxed budget allocation;
• Row generation applied to the upper bound model;
• Row generation applied to the lower bound model.
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4.1. Sub-Model 1: Mathematical Model for Relaxed Budget Allocation

Introduce relaxations to account for flexibility in the budget allocation process. Re-
laxations allow for partial allocations or fractional allocations of the budget. Instead of
using binary variables, we may allow fractional values for decision variables. This enables
allocating a portion of the budget to multiple alternatives, allowing for more fine-grained
resource allocation. The mathematical model for relaxed investment allocation incorporates
the objective function (1) and constraints (4) and (5), with constraints (2) and (3) substituted
by constraints (6) and (7), respectively,

N

∑
j=1

aU
rj xj ≤ Uk, r = 1, 2, . . . , R, (6)

N

∑
j=1

aL
rjxj ≥ Lk, r = 1, 2, . . . , R, (7)

where the aU
rj and aL

rj represent the upper and lower bounds of investment in project j
for round r of solution finding, the initial solution is obtained by utilizing the objective
function (1), and constraints (4) and (5) during the first round (r = 0). Subsequently,
constraints (6) and (7) are incrementally added in each subsequent round until the most
feasible and optimal solution is achieved at round R, where R ≤ 2N − 1.

4.2. Sub-Model 2: Row Generation Applied to the Upper Bound Constraint

By iteratively generating new constraints, row generation refines the mathematical
model and progressively narrows down the feasible solution space. The lower bound is
gradually improved by finding better feasible solutions at each iteration, while the upper
bound is tightened by adding new constraints to the model. This process continues until
the optimal solution is obtained or until the termination criterion is satisfied. Specifically,
in the case of row generation for the upper bound model, the mathematical model can be
expressed as follows:

Max TU
k =

N

∑
j=1

a∗Ujk x∗r−1
j −Uk, (8)

subject to
N

∑
j=1

a∗Ujk = k, (9)

a∗Ujk = {0, 1}, (10)

k = 2, . . . , N − 1, (11)

where TU
k is the target value, in an unconventional form, represents the objective of finding

an investment pattern that violates the upper limit constraint under k investment projects,
a∗Ujk is the decision variable for investing in project j in case of allocating k investment

projects that violates the highest upper limit constraint, x∗r−1
j is a constant obtained from

finding the value of xj in the mathematical model for capital budgeting under relaxed
conditions in the previous round r − 1, and k is the sum of the number of investment
projects, with a value ranging from 1 to N − 1.

The model described in (8)–(11) is utilized to generate constraints (6) in round r. The
objective function (8) aims to identify an investment pattern that surpasses the upper limit
constraint the most among k investment projects. Constraint (9) outlines the requirement
for investing in k investment projects. Constraint (10) determines the decision of investing
or not in project j, given the allocation of k investment projects. Constraint (11) ensures that
all potential solutions are iterated for N − 1 rounds using the objective function (8) under
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constraints (9) and (10). The value of a∗Ujk that yields the highest positive value of TU
k is

then then transferred to aU
rj in constraint (6).

4.3. Sub-Model 3: Row Generation Applied to the Lower Bound Constraint

During row generation for the lower bound constraint, the feasible solution space
undergoes further refinement, integrating stricter constraints and narrowing down the
range of potential solutions. This iterative process facilitates the exploration of various
allocations and enhances resource optimization, taking into account the lower bound. The
model for this process is as follows:

Min TL
k =

N

∑
j=1

a∗L
jk x∗r−1

j − Lk, (12)

subject to
N

∑
j=1

a∗L
jk = k, (13)

a∗L
jk = {0, 1}, (14)

k = 2, . . . , N − 1, (15)

where TL
k is the target value with the objective of violating the lowest upper bound in-

vestment format under k investment projects, a∗L
jk is the decision variable for investing in

project j in the case where there is investment in project k, which violates the lower bound
constraint the most, and k is the total number of investment projects with a value ranging
from 1 to N − 1.

The model represented in (12) to (15) is utilized for generating the constraints (7)
in round r. The objective function (12) is designed to identify the investment pattern in
project k that maximally violates the lower bound constraint. Constraint (13) establishes
the investment constraint for project k. Constraint (14) determines the investment status of
project j when project k is being investment. Constraint (15) sets the condition for exploring
all possible solutions in N − 1 rounds by the objective function (12) under constraints (12)
to (14). Subsequently, it assigns the value of aL

jk that yields the lowest negative value of TL
k

to aL
rj in in constraint (7).

The working process of row generation applied to solving the budget allocation model,
using three sub-models, can be summarized concisely based on the steps outlined in
Figure 1. The specific details of each step are as follows:

• Step 1: Find the value of xj in round r = 1 using linear programming with Equations (1),
(4) and (5), then set x∗0j = xj;

• Step 2: Use x∗r−1
j and Equations (8) to (11) to find the value of a∗Ujk using binary

programming;
• Step 3: Use x∗r−1

j and Equations (12) to (15) to find the value of a∗L
jk using binary

programming;
• Step 4: Check the values of Max(TU

2 , TU
3 ,. . .,TU

N−1) and Min(TL
2 , TL

3 ,. . .,TL
N−1), and

separate into four conditions: Max(TU
2 , TU

3 ,. . .,TU
N−1) > 0 and Min(TL

2 , TL
3 ,. . .,TL

N−1) <
0, proceed to Step 5; Max(TU

2 , TU
3 ,. . .,TU

N−1) > 0 and Min(TL
2 , TL

3 ,. . .,TL
N−1) ≥ 0, proceed

to Step 6; Max(TU
2 , TU

3 ,. . .,TU
N−1) ≤ 0 and Min(TL

2 , TL
3 ,. . .,TL

N−1) < 0, proceed to Step 7;
Max(TU

2 , TU
3 ,. . .,TU

N−1) ≤ 0 and Min(TL
2 , TL

3 ,. . .,TL
N−1) ≥ 0, proceed to Step 9;

• Step 5: Set aU
rj = a∗Ujk , where a∗Ujk is the set of answers for Max(TU

2 , TU
3 ,. . .,TU

N−1), then

use aU
rj to create Equation (6). Set aL

rj = a∗L
jk , where a∗L

jk is the set of answers for Min(TL
2 ,

TL
3 ,. . .,TL

N−1), then use aL
rj to create Equation (7). Proceed to Step 8;



Computation 2023, 11, 242 8 of 20

• Step 6: Set aU
rj = a∗Ujk , where a∗Ujk is the set of answers for Max(TU

2 , TU
3 ,. . .,TU

N−1), then

use aU
rj to create Equation (6). Proceed to Step 8;

• Step 7: Set aL
rj = a∗L

jk , where a∗L
jk is the set of answers for Min(TL

2 , TL
3 ,. . .,TL

N−1), then use

aL
rj to create Equation (7). Proceed to Step 8;

• Step 8: Adjust the value of r = r + 1, find the value of xj in round r using Linear
Programming with Equations (1), (4), (5), (6) and (7), then set x∗r−1

j = xj. Return to
Step 2;

• Step 9: stops the search for solutions, with xj being the final solution set that provides
the best result. The entire process of the nine steps can be summarized as shown in
Figure 1.
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5. Application of Sorting Method in Row Generation Process

The row generation process in the budget allocation model incorporates a sorting
method that utilizes descending order sorting for determining a∗Ujk from Equations (8) to

(11), and ascending order for determining a∗L
jk from Equations (12) to (15). This sorting

method is utilized as an alternative to binary programming in order to derive the solutions
for a∗Ujk and a∗L

jk variables during steps 2 and 3 of the row generation process outlined in
Section 4. The sorting technique proposed by Witthayapraphakorn et al. [16] is adopted,
although its effectiveness in yielding the maximum value of TU

k for all values of k and the
absence of lower boundary conditions is yet to be formally proven. Consequently, this
section focuses on explaining the procedure for obtaining the solution for TL

k . The proof
demonstrating that the sorting method attains the maximum value of TU

k for all values of k
is presented in Section 6. The proof employs a case-by-case approach similar to that used
for TL

k , but modified to demonstrate the attainment of the minimum value instead of the
maximum value. The steps for the sorting method, aiming to minimize the value of a∗L

jk , are
presented concisely in Figure 2. The following are the detailed explanations for each step:

• Step 1: Set k = 2;
• Step 2: Sort a∗L

jk in ascending order using the value of x∗r−1
j ;

• Step 3: Set a∗L
jk to 1 for the first k elements and 0 for the remaining elements;
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• Step 4: Compute TL
k using Equation (12) with the updated values of a∗L

jk , and record

the value of TL
k and a∗L

jk . update k = k + 1;

• Step 5: Check if k < N − 1. If true, go to Step 2; otherwise, go to Step 6;
• Step 6: End the process and return the values of TL

k and a∗L
jk for use in the Row

Generation process.
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Figure 2. Applying the sorting method to find a∗L
jk in row generation.

For determining the value of a∗Ujk , a comparable methodology to that presented in
Figure 2 will be employed, with the exception that step 2 will involve sorting in descending
order, and step 4 will entail determining the value of TU

k using Equation (8). A comprehen-
sive overview of the entire procedure is depicted in Figure 3.

In the sorting method outlined in Figures 2 and 3, when applied to row generation (as
explained in Section 4, it serves as an alternative to binary programming in determining
the values of a∗Ujk and a∗L

jk in steps 2 and 3. The resulting flow chart is similar to Figure 1,
but Figure 4 highlights notable differences with two distinct colored text boxes.
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Figure 4. Row generation sorting for determining upper and lower bounds in the capital budget-
ing model.
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6. Proving Optimal Solutions Derived from Sorting Methods

In this section, our objective is to provide proof of optimality for the sorting method
presented in Figure 3, specifically in determining the optimal value of TU

k for any feasible
solution a∗Uk . We aim to demonstrate that the value obtained from the sorting method is
greater than or equal to the value of TU

k obtained from a∗Uk .
Let a∗Uk represent an arbitrary feasible solution. Without loss of generality, we assume

that the coefficients x∗r−1
j are sorted in descending order as b(j), following the prescribed

sorting method.
For any k = 2,. . ., N − 1, in accordance with the sorting method, we assign a∗Ujk = 1

to the k largest coefficients in b, denoted by b(j), while setting a∗Ujk = 0 for the remaining
coefficients. Let S denote the set of indices corresponding to the k largest coefficients in
b, defined as S = {j: b(j) belongs to the k largest coefficients in b}. Consequently, we have
a∗Ujk = 1 for j ∈ S, and a∗Ujk = 0 for j /∈ S.

Subsequently, we proceed to calculate the value of TU
k for the solution obtained

through the sorting method:

TU
k = b(1)a∗U1k +b(2)a∗U2k + . . . + b(N)a∗UNk = b(1) + b(2) + . . . + b(k)

The rationale behind the final step is based on the fact that a∗Ujk is assigned a value of 1
for j ∈ S, where S represents the indices corresponding to the k largest coefficients in b. This
implies that the elements within S are indeed the k largest coefficients in b.

Moving forward, let us now proceed to compute TU
k for the arbitrary solution a∗Uk :

TU
k = x∗r−1

1 a∗U1k +x∗r−1
2 a∗U2k +... + x∗r−1

N a∗UNk= ∑
(

x∗r−1
j ×a∗Ujk

)
,

TU
k = ∑(x∗r−1

j ), for j ∈ S (because a∗Ujk = 1 for j ∈ S) + ∑(x∗r−1
j ), for j /∈ S (because a∗Ujk = 0

for j /∈ S).
Since x∗r−1

j is sorted in descending order as b(j), we have b(j)≥ x∗r−1
j for all j. Therefore:

∑
(

x∗r−1
j

)
, for j ∈ S ≤∑(b(j)), for j ∈ S,

∑
(

x∗r−1
j

)
, for j /∈ S ≤∑(b(j)), for j /∈ S.

By combining the aforementioned inequalities, we obtain the following expression:

TU
k = ∑

(
x∗r−1

j ), for j ∈ S + ∑
(

x∗r−1
j

)
, for j /∈ S

≤∑(b(j)), for j ∈ S + ∑(b(j)), for j /∈ S = ∑(b(j)) = TU
k (from the sorting method)

It has been demonstrated that the value of TU
k obtained from the sorting method

solution is greater than or equal to the value derived from any alternative feasible solution
a∗Uk . Consequently, the sorting method yields an optimal solution.

In order to establish the validity of the sorting method presented in Figure 2, we
can employ a similar proof approach as previously used, wherein we demonstrate the
minimization of the obtained value and subsequently apply the sorting method in ascend-
ing order.

7. Computational Studies

This section applies the proposed approach to exemplify a budget allocation problem
and compares the solving time among three methods: linear programming, row gen-
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eration, and the proposed model (row generation using an optimization-based sorting
method: ROS).

7.1. Experimental Model

The experiments are conducted using Matlab Version R2022b with Computer Spec
Processor IntelI CoreI i7-7700 3.60 GHz, RAM 32.0 GB solving by linprog function for linear
programming and intlinprog for binary programming.

To formulate the problem, random values cj, uk, and lk will be generated in accordance
with the assumptions specified in Equations (1) to (5). Initially, there will be a substantial
gap between the values of uk and lk for an equivalent number of projects to preclude the
occurrence of infeasible solutions; the Matlab code for configuring the problem can be
accessed from the following link: http://surl.li/ngrgi (accessed on 20 November 2023).
The experiments are conducted in two parts:

• Comparison of processing time for all three methods with project sizes ranging from 5
to 20 projects, with one additional project added for each iteration;

• Comparison of processing time for row generation and ROS methods for larger prob-
lem sizes, with project sizes ranging from 5 to 50 projects, with an additional five
projects added for each iteration.

To gather data on processing time, the initial 10 examples were recorded, and any
outliers were eliminated through the utilization of box plots. Subsequently, further data
were acquired until no outliers remained, and the average processing time was computed.
The process is visually presented in Figure 5.
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7.2. Experimental Results

The experimental findings involved a comparative assessment of processing time
across three different methods within the context of a linear problem structure, categorized
by problem sizes. These sizes were divided into two ranges: (1) spanning from 5 to
20 projects and (2) spanning from 5 to 50 projects. Table 2 presents the outcomes of
the processing time comparison for problem sizes ranging from 5 to 20 projects, visually
represented in Figures 6 and 7. Additionally, Figure 8 illustrates the comparison for problem
sizes ranging from 5 to 50 projects.

http://surl.li/ngrgi
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Table 2. Average processing time in seconds.

Number of
Projects

Number of
Constraints

Primal
Model

Row
Generation

ROS
Model

5 62 0.01 0.51 0.05
6 126 0.01 0.69 0.06
7 254 0.01 0.86 0.06
8 510 0.01 1.32 0.08
9 1022 0.01 1.47 0.09
10 2046 0.01 2.42 0.11
11 4094 0.03 2.64 0.12
...

...
...

...
...

19 1,048,574 373.57 10.38 0.29
20 2,097,150 1757.13 10.79 0.30
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Table 2 demonstrates the superiority of the linear programming primal model over
alternative methods in speed for problem sizes from 5 to 9 projects. For larger sizes
(11 projects or more), the ROS method outperforms the linear programming model. Fur-
thermore, a comparison with the row generation method consistently shows that the ROS
method provides faster performance, attributed to the efficiency of sorting algorithms in
identifying optimal solutions from sortable values. Figures 6 and 7 visually illustrate the
processing time and problem size relationships, indicating an exponential increase for the
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primal model in linear programming with problem size, while both row generation and
ROS methods exhibit linear correlations, particularly noticeable for smaller problem sizes
(N < 17 for row generation or N < 9 for ROS, as indicated in Table 2).
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The advantage of employing the primal model in linear programming is evident for
smaller problem sizes due to its smaller matrix structure and the need for only a single
computation cycle, unlike the row generation method requiring multiple rounds (R rounds)
and more time. However, for larger sizes, such as 20 projects, the primal model’s matrix
dimensions can become impractically large, making it less time-efficient. In contrast, the
row generation and ROS methods, despite requiring multiple rounds, often prove faster
due to their more compact problem matrices. The ROS method, in particular, exhibits
a less steep slope in processing time compared to the row generation method. Figure 8
confirms the consistent linear relationship between processing time and problem size for
both row generation and ROS methods at 50 projects, with the ROS method displaying a
less pronounced slope. Additional experiments were performed to clarify the relationship
between processing time and problem size for these methods. Furthermore, a comparative
analysis of solutions derived from linear programming with the primal model and the ROS
method underscores the markedly smaller matrix size produced by the row generation
approach, detailed in Section 8.

The row generation and ROS methods developed in this study rely on a unique
structure defined by Equations (1) to (5). Their applicability is limited to problems strictly
adhering to these assumptions, rendering them ineffective for deviations from the specified
structure. This specificity extends to the experimental design, requiring even randomly
generated examples to align with predetermined assumptions. In contrast, the linear
programming approach remains adaptable to solution-finding within the scope of a linear
model, regardless of structural changes in the problem.

8. Comparative Analysis: Solving Solutions Utilizing the Primal Model and ROS Method

This section illustrates a comparative example between solutions obtained through
linear programming with the primal model and the ROS method. The focus is on assessing
solution equivalence and exploring the extent of matrix size differences between the two
approaches. The hypothetical scenario involves a company with eight projects, each having
a distinct return on investment, as detailed in Table 3. Specific investment conditions,
including upper and lower limits as a percentage of the total investment, are outlined in
Table 4. Additionally, individual project investment constraints are specified as a percentage
of the total investment in Table 5. With a total investment budget of USD 4,000,000, the
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objective is to determine the optimal investment pattern maximizing profit under the
given conditions.

Table 3. Individual project earnings in dollars.

Project 1 2 3 4 5 6 7 8

Earning in dollars (USD) 10 30 1 14 40 14 40 20

Table 4. Investment limit based on the number of projects.

Number of Projects 2 3 4 5 6 7

Lower bound (%) 1 3 4 5 6 7
Upper bound (%) 30 40 60 65 80 90

Table 5. Individual project investment limit.

Project 1 2 3 4 5 6 7 8

Lower bound (%) 14 0.70 0.50 0.34 0.25 12 0.40 13
Upper bound (%) 50 70 50 40 80 40 50 20

8.1. Demonstration of Problem Solving with the Primal Model

The given problem statement transforms into the primal model with the following
mathematical representation:

Max Z = 10x1 + 30x2 + x3 + 14x4 + 40x5 + 14x6 + 40x7 + 20x8,

subject to
x1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 ≤ 0.50,
x1 + x2 + 0 + 0 + 0 + 0 + 0 + 0 ≤ 0.30,

0 + x2 + x3 + x4 + x5 + x6 + x7 + x8 ≤ 0.90,
...

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 ≤ 1.00.

Solving the matrix size of 510× 8 for the primal model using linear programming and
applying the results to the investment scenario yields an USD 86.2 million return (Z = 21.55),
representing the solution to this example problem as detailed in Table 6.

Table 6. Results obtained through the application of the primal model-solving approach.

xj x1 x2 x3 x4 x5 x6 x7 x8

Investment Proportion (%) 14.00 12.50 10.00 12.50 12.50 12.50 13.00 13.00
Project 1 2 3 4 5 6 7 8
Amount of Investment
(in Million USD) 0.56 0.50 0.40 0.50 0.50 0.50 0.52 0.52

8.2. Demonstration of Problem Solving with the ROS Method

Applying the ROS method for problem solving involves structuring the example
problem into a mathematical model with Equations (1), (4) and (5), as follows:

Max Z = 10x1 + 30x2 + x3 + 14x4 + 40x5 + 14x6 + 40x7 + 20x8,
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subject to
x1 + 0 + 0 + 0 + 0 + 0 + 0 + 0≤ 0.50,
0 + 0 + 0 + 0 + 0 + 0 + 0 + x8≤ 0.20,
x1 + 0 + 0 + 0 + 0 + 0 + 0 + 0≥ 0.14,

...
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8≤ 1.0,

The established mathematical model reveals a smaller initial problem size with a ma-
trix dimension of 17× 8, which is significantly smaller than the primal model. This smaller
size leads to faster computation when solving with linear programming, as demonstrated in
Table 7. Substituting obtained solutions into x∗0j facilitates the calculation of a∗Ujk and a∗L

jk . By

arranging x∗0j in descending order (x∗05 , x∗01 , x∗08 , x∗06 , x∗02 , x∗03 , x∗07 , x∗04 ), the solution pattern

for a∗Ujk maximizing the value of TU
k (2 ≤ k ≤ N − 1) is presented in Table 8. Choosing

the pattern from with the highest value, we convert it into Equation (6) and incorporate it
into the initial model. Before proceeding, it’s crucial to identify the solution pattern for a∗L

jk

minimizing TL
k . Arranging x∗0j values in ascending order yields the sequence x∗04 , x∗07 , x∗03 ,

x∗02 , x∗06 , x∗08 , x∗01 , x∗05 , with the resulting pattern displayed in Table 9.

Table 7. Results of xj.

xj x1 x2 x3 x4 x5 x6 x7 x8

Solution 0.14 0.007 0.005 0.0034 0.5906 0.12 0.004 0.13

Table 8. Results of a∗Ujk and TU
k .

TU
k =

N
∑
j=1

a*U
jk x*r−1

j −Uk Uk k a*U
1k a*U

2k a*U
3k a*U

4k a*U
5k a*U

6k a*U
7k a*U

8k

0.43 0.30 2 1 0 0 0 1 0 0 0
0.46 0.40 3 1 0 0 0 1 0 0 1
0.38 0.60 4 1 0 0 0 1 1 0 1
0.34 0.65 5 1 1 0 0 1 1 0 1
0.19 0.80 6 1 1 1 0 1 1 0 1
0.10 0.90 7 1 1 1 0 1 1 1 1

Table 9. Results of a∗L
jk and TL

k .

TL
k=

N
∑
j=1

a*L
jk x*r−1

j −Lk Lk k a*L
1k a*L

2k a*L
3k a*L

4k a*L
5k a*L

6k a*L
7k a*L

8k

−0.003 0.01 2 0 0 0 1 0 0 1 0
−0.018 0.03 3 0 0 1 1 0 0 1 0
−0.020 0.04 4 0 1 1 1 0 0 1 0
0.089 0.05 5 0 1 1 1 0 1 1 0
0.209 0.06 6 0 1 1 1 0 1 1 1
0.339 0.07 7 1 1 1 1 0 1 1 1

Based on Table 9 solutions, we apply solution pattern a∗L
j4 from TL

4 , featuring the

lowest value. Integrating this a∗L
j4 value into Equation (7) and incorporating it into the

initial model, we derive Equations (6) and (7) during the solution process for a∗Ujk and

a∗L
jk . These equations are added to the original model, resulting in the articulated updated

model. Following the revised mathematical model, the solution is derived using the process
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outlined in Figure 4 until completion, with summarized results and matrix sizes in each
round r presented in Table 10. The updated model is as follows:

Max Z = 10x1 + 30x2 + x3 + 14x4 + 40x5 + 14x6 + 40x7 + 20x8,

subject to
x1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 ≤ 0.50,
0 + 0 + 0 + 0 + 0 + 0 + 0 + x8 ≤ 0.20,
x1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 ≥ 0.14,

...
...

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 ≤ 1.00,
x1 + 0 + 0 + 0 + x5 + 0 + 0 + x8 ≤ 0.40,

0 + x2 + x3 + x4 + 0 + 0 + x7 + 0 ≥ 0.04.

Table 10. The results and the size of the matrix in each round r.

r Variable
j

Matrix Size Z
1 2 3 4 5 6 7 8

1

x∗r−1
j 0.140 0.007 0.005 0.003 0.591 0.120 0.004 0.130

17× 8 29.73aU
rj 1 0 0 0 1 0 0 1

aL
rj 0 1 1 1 0 0 1 0

2

x∗r−1
j 0.140 0.007 0.005 0.003 0.130 0.120 0.465 0.130

19× 8 29.73aU
rj 1 0 0 0 0 0 1 1

aL
rj 0 1 1 1 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

9

x∗r−1
j 0.140 0.125 0.100 0.125 0.130 0.125 0.125 0.130

27× 8 21.55aU
rj 0 0 0 0 0 0 0 0

aL
rj 0 0 0 0 0 0 0 0

Table 10 illustrates the completion of nine rounds, with incremental conditions added
in each round for solution derivation. In the final round, the problem structure had a matrix
size of 27× 8, significantly smaller than the primal model’s 510× 8. Despite the smaller
size, the outcome, with Z = 21.55, yields an identical profit of USD 86.2 million as obtained
using the primal model. These results demonstrate that employing the ROS method leads
to a more compact problem structure, facilitating faster solution processing in each round
r. However, for scenarios with fewer investment projects, the cumulative rounds in the
ROS method may result in longer processing times than the primal model. Conversely, in
scenarios with a larger number of projects, the primal model’s significantly larger matrix
size makes the ROS method comparatively faster due to its smaller matrix size in each
round, as evident from the experiments shown in Section 7.2.

9. Conclusions

The budget allocation problem addressed in this study is a matrix-structured problem
that becomes increasingly complex as the number of projects (N) increases. The traditional
linear programming approach faces significant challenges due to the exponential growth
of constraints, making it computationally expensive and impractical for larger problem
sizes. To overcome this issue, the study proposes a novel solution using the principles of
row generation and sorting methods. The row generation technique incrementally adds
constraints to the problem, eliminating the need to include all constraints upfront. This
approach reduces complexity and improves computational efficiency. Additionally, the
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binary programming method traditionally used to create constraints is replaced with the
sorting method, which proves to be faster and less complex for generating subproblems.

The experimental results demonstrate that the row-generation hybrid sorting method
significantly decreases computation time compared to linear programming. For instance,
when N = 20 with 2,097,150 constraints, the linear programming method takes an average
computation time of 1757.13 s, while the row generation hybrid sorting method only re-
quires 0.30 s. Even when the problem size increases to N = 50 with 2,251,799,813,685,250 con-
straints, the row generation hybrid sorting method is completed in just 1.4 s, while linear
programming fails to find a solution due to problem scales.

Comparisons among the three methods, including linear programming with the primal
model, row generation, and the ROS method, reveal valuable insights. Linear programming
excels for smaller problem sizes but becomes inefficient for larger ones. The ROS method
consistently demonstrates faster processing times compared to both linear programming
and the row generation method. This efficiency can be attributed to the inherent advantages
of sorting algorithms in finding optimal solutions among sorted values. The relationship
between processing time and problem size is visualized in Figures 5 and 6, indicating that
linear programming exhibits a polynomial regression, while the row generation and ROS
methods exhibit linear regressions. The ROS method shows a lower slope than the row
generation method, signifying superior efficiency in scaling with increasing problem sizes.

In summary, the results underscore the considerable time consumption associated
with linear programming for larger problem sizes. Conversely, the row generation hybrid
sorting method and the ROS method maintain a linear relationship with problem size,
providing more efficient solutions. These insights offer a comparative understanding of
method performance concerning problem size and processing time, offering guidance for
addressing similar matrix-structured problems, such as the capital budgeting problem
studied in this research. Utilizing the row generation and ROS methods introduced here
requires exclusive applicability to problems adhering to mathematical structures outlined
by Equations (1) to (5). Adapting these methods to analogous structures with different
conditions or variables mandates a thorough study of the modified structure for appro-
priate adjustments. However, it is crucial to emphasize that, even with a comprehensive
investigation of the problem’s structure, there is no guarantee of consistently successful
adaptations of the row generation and ROS methods.

10. Further Research

Given Equations (3) and (4), the careful assignment of values to Uk and Lk is crucial
to avoid infeasible solutions. To address the potential for infeasibility, a two-stage LP
(stochastic linear programming) approach can be employed, which helps mitigate the risk
of constraint infeasibility. This involves introducing two types of variables into Equations (3)
and (4): corrective action variables and opportunity cost variables. However, it is important
to note that incorporating these variables may significantly increase the model’s complexity,
resulting in a substantial growth in the number of variables to 2× 2N for each variable
type, thereby leading to an LP model with an exceedingly large number of constraints and
variables. This aspect opens avenues for future research and investigation.
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