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Abstract: Currently, the sampling problem has gained wide popularity in the field of autonomous
mobile agent control due to the wide range of practical and fundamental problems described with
its framework. This paper considers a combined decentralized control strategy that incorporates
both elements of biologically inspired and gradient-based approaches. Its key feature is multitasking,
consisting in the possibility of solving several tasks in parallel included in the sampling problem:
localization and monitoring of several sources and restoration of the given level line boundaries.

Keywords: sampling problem; concentration field; control strategy; autonomous agents; swarm
intelligence

1. Introduction

The sampling problem [1] is a class of problems that implies a collective study of
some given area by a set of coordinated agents. The research objects of the survey are
concentration fields—objects, processes, or phenomena that, in general, can be described by
some scalar function. At the same time, an important constraint is the ability of agents to
interact with the concentration field—to measure the function value—only at their current
coordinates and with a given periodicity. Depending on the nature of the field origin, it is
commonly accepted to divide them into the following three classes: chemical [2,3], an ex-
ample of which is the salinity field; physical [4], represented, for example, by thermoclines;
and biological [5], which describe the behavior of one or several populations of organisms.
Due to such variability and the wide range of both practical and fundamental problems
that can be formulated on the basis of the sampling problem, this direction has gained high
popularity in the scientific community.

It is usually accepted to distinguish three main purposes of a survey:

• Localization of one or several extrema [6] of the function (sources) describing the con-
centration field, in the case of a nonstationary field often accompanied by subsequent
tracking of their movements in space (monitoring);

• Level lines reconstruction [7], a particular and the most interesting case of which is a
search for a zero level line (front) separating an area with positive field values from an
area with zero values;

• Mapping [8] of the investigated area, which is often auxiliary for the considered
problem and related ones.

Currently, there are a wide range of approaches to solving the sampling problem,
which can be roughly divided into the following classes: single-robot control strategies
and centralized and decentralized group strategies. The application of each of them is
determined by the number of available robots; their hardware characteristics, including
computing power and available equipment; the purpose of the survey; and the constraints
imposed on this process.

Representatives of the first class are various kinds of trajectory strategies that realize
zigzag, tack, spiral, or other maneuvers of agents in space. In this case, the trajectory
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can be either predetermined [9,10], departure from which is inadmissible, and adaptively
adjusting [11,12] to the current results of problem solving. Obviously, the first option has
the lowest requirements for the robot computing power and is the simplest to implement.
However, it requires a complete trajectory traversal to announce the results of the survey,
has increased requirements for the storage volume of measurement results, and is practically
inapplicable in the case of surveying nonstationary concentration fields. The prototypes of
the second approach are often bacteria [13,14], insects [15,16], or other biological species [17].
Thus, one of the most well-known strategies is “surge and cast” [18]. It involves straight-
line movement towards the estimated location of the field source (surge) and diverging
zigzag maneuvers (cast), providing both initial detection of the source trace and its retrieval
when the signal is lost. Separately, we should mention the existence of control strategies
targeting specific types of robots. As an example, a study [19] applied a gradient-based
control strategy for field source search based on the behavior of lobsters. The robot was
equipped with several independent sensors that provided an approximation of the field
gradient and therefore allowed movement along it.

In general, the simultaneous use of a group of robots can improve both the accuracy
and speed of problem solving, which is of particular importance when surveying concen-
tration fields of high size or complex spatial structure. Thus, in the paper [20], a centralized
framework is proposed for multiagent control in the task of recovering distributed spatial
characteristics of a stationary thermal concentration field. The authors have compared the
proposed strategy with a more traditional tack search that results in the demonstration
of a significant gain in both speed and accuracy in solving the problem even if the same
number of agents is involved. However, such an approach leads to the need for a stable
communication channel among the agents, increasing the complexity of the strategy as
well as the computational cost. Some of these types of control strategies are developments
of ideas from the previous class. For example, in [21], the authors propose an approach
in which a concentration field is first surveyed by a group of independent robots moving
along predetermined trajectories, after which the collected data are transmitted to a leader
machine. The leader, in turn, performs interpolation and extrapolation calculations to re-
construct a stationary concentration field map. Another example is the approach proposed
by Petillo [7], which is specially designed for the organization of several vehicles’ collective
work. According to it, the robots move in parallel courses, performing maneuvers (zigzag
and spiral) that are set by the leader. However, each follower, in addition, performs its
own zigzag maneuvers along a common course independently of the others. Another type
of centralized approaches is paired systems that separate the vehicles that provide the
direct solution to the task and those that are third-party observers or computational centers.
The latter, in turn, can be either autonomous or manned. As an example, the Fiorelli
strategy [22] aims to detect the boundaries of a temperature front by a team of AUVs,
supported by a specially equipped aircraft that provides up-to-date measurements of the
surveyed field.

On the other hand, decentralized control strategies distribute the computational load
evenly among all agents, which positively affects the fault tolerance of the system in
general. This class of approaches loads the communication channel to an even greater
extent, but this disadvantage is compensated by the lower dependence of the problem
solving process on the imposed maximum message transmission range constraints. Thus,
in [23], a decentralized adaptive sampling approach based on reinforcement learning
during the problem solving process is proposed. The strategy has been compared with the
centralized DARP area division algorithm [24], taking into account the different numbers
of mobile robots used and the communication range constraints. The results show that
the proposed approach performs at least as well as its centralized alternative, and under
several test conditions even outperforms it.

Formation-based strategies stand out as they can be implemented either centrally or
decentrally. In general, the strategies are reduced to ensuring that the agents hold some
given spatial configuration and organize their movement based on a mutual comparison of
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the field measurements taken. For example, in [25], an anemotaxis method for controlling
V-shaped, linear, and square robot formations is presented. Depending on the goals of the
survey, the formation can take different forms—linear, wedge shaped, or circular—each
having its positive and negative features [26]. A characteristic drawback of this approach
for some types of formations is the lack of data in the center of the group, which can
negatively affect the source search subproblem. One of the ways to avoid this issue is an
approach proposed by Ogren et al. [27]. It provides interpolation of measurements within
the formation based on the least squares method.

With respect to this class of control strategies, the approaches of organization and
retention of formation are of most interest. One of the first such approaches, still in use
today, is the “follower–leader” approach [28], where one or more vehicles are taken as the
leaders and the rest as followers. Leaders are the anchor points around which the formation
is built, and also can dictate the reference trajectories for followers. The latter, in turn,
track the geometry of the group using distance–distance and distance–angle methods,
the combination of which yields various formations, such as triangular, rhombic, and
linear [29]. Despite the simplicity of implementation and the scalability of this approach,
the main disadvantage is the high dependence of the group on the technical characteristics
of the leader, as well as the low robustness with respect to the possibility of its failure.

Another method of formation organization, primarily related to centralized control, is
the virtual structure [30,31]. It consists in the creation of virtual points in a single coordinate
system for all agents, which determine the mutual location of agents within the group. Each
robot tends to minimize the error between its current and desired coordinates. To solve
the problem of surveying the concentration field, the entire virtual structure moves as a
unit, realizing the approaches discussed above or implementing other solutions unique
to this case. Shape control [32] can be considered as a special case, which removes strict
requirements on the mutual location of agents and only requires them to be located within
the desired subarea (shape).

Finally, the artificial potential function (APF) method, on the contrary, is more often applied
in cases of decentralized control of agents. In general, two forces are given: an attractive and
a repulsive one, acting on each robot [33]. The first one ensures the unity of the group by
preventing agents from leaving the formation and guides them to the desired position, while the
second one is responsible for the absence of collisions within the group and obstacle avoidance.
The final control is obtained by adding these two forces. The method of artificial potential
functions is now widely used in control problems of mobile robots [34–36], including the
sampling problem. Its main disadvantage is the possibility of agents getting into the local
extrema of the potential function, the exit from which is impossible without the use of
additional control mechanisms. The method of behavioral structure proposed by Balch and
Arkin [37] can be considered as an ideological development of APF. This approach assumes
the simultaneous existence of multiple mission goals (behaviors), each of them influencing
the robot in the form of some force. The weighted sum of such forces is applied as control.
At the same time, the amplification coefficients can be either predetermined or dynamically
changing depending on the process of problem solving and external conditions. As in the
method of artificial potential functions, there remains a high complexity of group dynamics
formalization, and as a consequence, the stability of such a system cannot be guaranteed.
An example of this approach’s implementation is the organization of robot swarms’ circular
motion described in [38].

Based on the overview, it can be concluded that the vast majority of approaches
described above only survey stationary and quasi-stationary fields, i.e., those that change
at such a small rate that it can be neglected in the framework of the search mission.
However, in the case of nonstationary fields, in particular the fields of biological origin,
such approaches have a large error in the results. In addition, they often solve only one of
the concentration field survey subtasks. In rare exceptions, radically differing algorithms are
sequentially applied to each of them. In this paper, we propose a decentralized multiagent
control strategy designed to solve in parallel the subtasks of source localization and level
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line reconstruction of a nonstationary concentration field. It is based on combining elements
of bioinspired [19] and gradient approaches, described in terms of APF.

2. Problem Formulation

Let the nonstationary scalar concentration field in the general case be described by the
following function:

f (t, q) : T × Q → R, Q ⊆ Rp, T = [0, ∞), (1)

where p ≥ 2.
Four classes of stationary concentration fields are considered in this study, examples

of which models are shown in Figure 1. In addition, two models of nonstationary fields of
biological nature are presented. This choice is due to the fact that, in most cases, chemical
and physical processes are much slower. Therefore, it is possible to neglect their variability
within the framework of real problems, considering them as stationary ones, which greatly
simplifies the task of the concentration field survey.

(a) (b) (c) (d)

Figure 1. Simplified cases of stationary concentration field models: (a) convex, (b) nonconvex (star
domain), (c) nonconvex (general case), and (d) nonconvex with several sources.

The first model describes the interdependent distribution of two continuously growing
populations in space and time, which can be represented using the following system that is
a special case of [39]:

f (t, q) =
(

ϕ1(t)−
1
r2 ∥q − q0∥2

)3
,

g(t, q) =
(

29
2048

)3(
ϕ2(t)−

1
r2 ∥q − q0∥2

)3
,

t ∈ [0, ∞), q ∈ R2,

(2)

where the functions ϕi(t) describe the growth of agent concentrations at the base boundary
with time and are subject to the following system of differential equations:{

ϕ̇1(t) = 29
6 ϕ2(t)− 11

6 ϕ1(t),
ϕ̇2(t) = 4879

12,288 ϕ1(t)− 4357
12,288 ϕ2(t),

ϕi(0) = 1. (3)

This model has a number of features:

• Each concentration field has a so-called “base” or source qe, represented by a circle of
radius r and centered at q0, the concentration inside which is equal to the concentration
on its perimeter. In this case, the source is the same for both populations and cannot
move, but the field function values grow exponentially with time.

• Level lines are concentric circles, whose radius growth rate also increases exponentially
with time.

• Based on the biological prototype of the model, concentration values cannot take
negative values.
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The second model describes the swarming movement of one or more independent
populations of a fixed size through a closed territory. In this case, the behavior of each
individual qa of population B is modeled according to Reynolds’ laws [40], and the field
function has the following form:

f (t, q) = (a ∗ h)(t, q),

a(t, q) =

{
1 i f ∃k ∈ B : q = qa

k
0

, h(t, q) =

{
1 i f ∥q∥ < r
0

,
(4)

where (a ∗ h) is the convolution operation, and r is the convolution kernel radius, which
is a controllable parameter and represents the characteristics of some sensor capable of
counting the number of individuals in a given neighborhood.

The key difference of this model is the absence of pronounced field sources. In this
case, the source will be understood as a local extremum of the field function, in other words,

qe
j (t) = {q ∈ Q : f (t, q) > f (t, q + ϵ) ∀∥ϵ∥ < ϵ0}, j = 1. . . ne, (5)

where ϵ0 is some small neighborhood, and ne is the number of tracked sources.
The sampling problem in this case consists in a parallel solution of the following

subtasks: sources localization and restoration of the given level line. The first one can be
divided into detection, localization, and long-term monitoring of all sources of a concen-
tration field. In this case, we assume that ne is chosen in such a way that the number of
available robots is sufficient to fulfill the subtask. Restoration of the level line implies the
need for a uniform distribution of agents along the desired level line and tracking its move-
ments in space. What is most interesting in this context is the search for the front — the 0+

level line separating the region of positive concentration from monotonic zero values.
To evaluate the current quality of the solution of each subproblem, we introduce the

following quality criteria:

Me(t) = max
j=(1,ne)

min
i∈Gbase

∥qi(t)− qe
j (t)∥, (6)

M f (t) = ∑
i∈G f ront

f (t, qi(t))
|G f ront|

− s, (7)

where qi(t) are the coordinates of the agents used to solve the problem; Gbase and G f ront are
subsets of agents searching for sources and level lines, respectively; and s is the desired
value of the level line. The criterion Me(t) can only take positive values; accordingly, its
minimization demonstrates that each source has at least one agent in its neighborhood.
On the other hand, the criterion M f (t) can take both positive values, indicating that the
agents are lagging behind the desired level line, and negative values, signaling its advance.
It should be noted that both criteria are used simultaneously, evaluating different aspects
of the concentration field survey process: source localization and level line reconstruction,
respectively.

3. Control Strategy

We assume that the agents used to solve the problem are second-order integrators,
and their dynamics are described by the following system:

q̇i = vi, v̇i = ui, i ∈ G = 1, 2, ..., n, ∥vi∥ ≤ vmax, ∥ui∥ ≤ umax, (8)

where qi ∈ R2, vi ∈ R2, and ui ∈ R2 are, respectively, the position, speed, and control
of the i-th agent; vmax and umax are the limits of speed and control; and G is the set of
available agents with the power of n. Each agent is capable of measuring the value of the
concentration field at the point of its current location with a given periodicity. In addition,
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we assume that each agent can contact any other agent in order to request its current
coordinates and the value of the last measurement made.

The proposed strategy specifies the control of each agent as a weighted sum of several
forces affecting it:

ui = c1Fc
i + c2Fg

i + c3Fs
i + c4F f

i + c5Fr
i + c6Fb

i , (9)

where c1 − c6 are some positive coefficients. Thus, to ensure parallelism in solving the
subproblems of source localization and level line recovery, the set of agents is divided into
two nonoverlapping subsets Gbase and G f ront such that |Gbase| ≪ |G f ront|. Depending on
the affiliation, the influence of some forces on the agents is eliminated by zeroing out the
corresponding coefficients. Thus, for agents providing source search, c4 and c5 are taken to
be zero, while for agents of the G f ront set, this is done with coefficients c1 − c3.

Since the task of surveying the concentration field implies the need to search and
monitor multiple sources in parallel, the Gbase set is partitioned into several search clusters
such that

τ = {τ1, τ2, ..., τm}, ∀j, k : j ̸= k → τj ∩ τk = ∅, |τj| ≈ |τk| ≥ 3.

Agents belonging to different clusters are in a competitive relationship with each
other. The term “amensalism” is more correct in terms of the biological nature of the
proposed control strategy. This means that some agents have a negative effect on others,
without experiencing any positive or negative influence from the latter. This is expressed
in the fact that the group that is closer to the source repels other clusters, preventing them
from approaching.

The gradient force Fg
i (see Figure 2) guides robots along the calculated gradient

estimation to the expected extreme field value and is defined as

Fg
i = ∑

j∈τk

qij( f (t, qj(t))− f (t, qi(t)))
∥qij∥

, i ∈ τk, (10)

where ∥qij∥ is the Euclidean norm of the vector qij = qi − qj. Due to this force, self-
organization of cluster motion is achieved, with each robot moving in the same direction
and at the same speed as its neighbors, and an exploitation mechanism is realized.

Figure 2. Illustration of gradient force application.
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On the other hand, the cooperating force Fc
i (Figure 3) ensures the realization of

swarm behavior by agents, in particular, avoiding collisions and centering the swarm. It is
proposed to define this force as follows:

Fc
i = − ∑

j∈τk

∇qiUc
ij(∥qij∥), i ∈ τk, (11)

where Uc
ij(∥qij∥) is an artificial potential function that determines the interaction of agents,

and ∇qi denotes the gradient with respect to the components of the vector qi. The potential
function Uc

ij : R+ → R+ is defined as follows:

Uc
ij(∥qij∥) = α

(
1
2
(∥qij∥ − dA

ij )
2 + β ln ∥qij∥+ β

dA
ij

∥qij∥

)
, (12)

where α, β ∈ R+ are some control parameters, and dA
ij > 0 determines the desired distance

between agents. The function (12) is based on the potential function proposed in [41],
with the addition of a parameter β that allows for varying the size of the region where the
function is strictly convex. Thus, under the influence of this force, the agents of one cluster
tend to form a formation, which in the case of the minimum required number of agents has
the form of a regular triangle with faces of length dA

ij .

Figure 3. Illustration of cooperating force application.

Finally, the segregating force Fs
i is responsible for the above-described interaction

between different clusters and is specified as follows:

Fs
i = − ∑

j/∈τk

∇qiUs
ij(∥qij∥), i ∈ τk, (13)

Us
ij(∥qij∥) =


0 i f ∥qij∥ > dB

ij ∨ f (t, qj(t)) > f (t, qi(t))

α

(
1
2 (∥qij∥ − dB

ij)
2 + β ln ∥qij∥+ β

dB
ij

∥qij∥

)
otherwise

, (14)

where dB
ij ≫ dA

ij is the minimum desired distance between clusters. The application of this
force is shown in Figure 4. The main difference between Equations (12) and (14) is that the
latter does not affect the cluster that is closer to the source, and provides only repulsion
beyond the desired radius, rather than maintaining a preferred distance.



Computation 2023, 11, 254 8 of 13

Figure 4. Illustration of segregation force application.

Each agent of the G f ront set is oriented to the position of one of the search clusters τ
when searching for the level line. Initially, this relationship is set with the closest cluster,
but the agent can decide to change it under certain conditions. The force F f

i , called frontal
because of its original purpose of detecting the front (the 0+ level line) of the concentration
field, attracts an agent to the current location of the source or repels it (see Figure 5),
depending on whether its current measurement value is lower or higher relative to the
target level line. In this case, the coordinates of the source are taken as the averaged
coordinates of the agents in the bound cluster. In other words,

F f
i = ∑

j∈τ∗

(2gi( f (t, qi))− 1)qij

∥qi j∥
, (15)

gi( f (t, qi)) =


0 f (t, qi) ≤ fl

3
(

f (t,qi)− fl
fu− fl

)2
− 2
(

f (t,qi)− fl
fu− fl

)3
fu ≥ f (t, qi) ≥ fl ,

1 f (t, qi) ≥ fu

, (16)

where fl and fu are the lower and upper bounds of the target values, respectively, and
τ∗ is the current search cluster associated with the agent. The function gi( f (t, qi)) is a
so-called SmoothStep function that ensures smooth switching between attraction and
repulsion modes in the vicinity of the desired level line, due to which the control does not
tolerate discontinuities.

Figure 5. Illustration of frontal force application.
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The relaxation force Fr
i , depicted in Figure 6, is applied to distribute the agents uni-

formly along the perimeter of the level line and has the following form:

Fr
i = ∑

i,j∈τ∗

qij

∥qij∥

(
edC

ij−∥qij∥ + a
)

, (17)

where dC
ij is a desired distance between agents, and a is a positive coefficient determining

the rate of agents’ distribution along the perimeter. When solving the problem, there
may be situations in which too many agents are engaged in the delineation of one level
line, while others suffer from agents’ shortage. In this case, the following condition will
be satisfied: (

∥c4F f
i ∥ <

∣∣∣∣∣ c4F f
i · c5Fr

i
∥c5Fr

i ∥

∣∣∣∣∣
)
∧ (c4F f

i · c5Fr
i < 0), (18)

where · is the scalar product operator. If this condition is detected (Figure 7), the agent
decides to change the bound cluster to the next one in the looping list. Thus, a self-
organization mechanism is implemented, allowing agents of the G f ront set to migrate
from areas with their surplus. In this case, no additional information about the spatial
distribution of agents is required. A side effect of the influence of these two forces is that
the agents maintain a certain formation when moving through areas with a field function
value below the target one.

Figure 6. Illustration of relaxation force application.

Figure 7. Example of the migration condition occurrence.
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Finally, the boundary force (Figure 8) is applied to all agents. Its main purpose is to
keep agents inside the surveyed area. It is set as follows:

Fb
i = [ f b

1 , ..., f b
p ],

f b
k = exmin

k +w−xk − exk−xmax
k +w,

(19)

where xmin
k and xmax

k are components of the vectors bounding the surveyed area, xk are
components of the vector qi, and w is the dumping zone size along the perimeter of the
surveyed area.

Figure 8. Illustration of bordering force application.

4. Conclusions

Several series of computer experiments were conducted using the concentration field
models described above to evaluate the proposed approach. Figure 9 shows graphs of
changes in the efficiency criteria (6) and (7) for the most representative variants of agents’
behavior when solving the problem. The conditions of the experiments are given in Table 1.

Table 1. Simulation parameters.

Parameter Growing Population Model Swarm Population Model

Area size 1000 × 1000 m 1000 × 1000 m
Simulation time 3000 model seconds 3000 model seconds

|τ| 1 3
|G f ront| 50 50

vmax 3 m
s 3 m

s
umax 0.5 m

s2 0.5 m
s2

Target level line 45 45

In these graphs, we can conventionally distinguish three segments describing different
stages of the problem solution. The first stage is the formation of search clusters and their
search for sources. It should be noted that for the first model, this stage takes considerably
more time (t ∈ [0, 800]). This is caused by the fact that due to the peculiarities of this model
at the early stages, the concentration field function takes zero values practically at all points
of the surveyed area. Because of this, the gradient force has no effect on the agents that
carry out drift under the influence of the other forces. However, if at least one nonzero
measurement is detected, the source is quickly localized.
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(a) (b)

Figure 9. Simulation results for the growing population model (a) and swarm population model (b).

The next stage involves monitoring the sources and bringing the agents of the G f ront
set to the target level line, as well as their uniform distribution along it. Tests have shown
that, on average, the deviation of the Me(t) metric at this stage does not exceed 20 m,
which, given the size of the surveyed area and the distance between the agents (25 m), is
acceptable. However, due to the hardly predictable movement of sources in the swarm
population model, short interruptions of monitoring can be observed.

Finally, the third stage is typical only for the growing population model. Considering
the exponential growth of the level line velocity, it is guaranteed that a situation occurs
when the agent’s velocity constraint makes it impossible to further solve the problem.
The last important fact revealed at the stage of testing the strategy is the limitation of
the level line classes that can be tracked. This approach can be used if the area bounded
by a level line is convex (Figure 10a) or is a star domain (Figure 10b) [42] with respect
to the source coordinates. In the case of a nonconvex region (Figure 10c), there may be
extended perimeter areas that agents are unable to detect. However, there can potentially
be situations (Figure 10d) in which the correct boundaries can be recovered through the
collective action of several agent subgroups.

(a) (b) (c) (d)

Figure 10. Source localization and level line reconstruction for different concentration field types:
(a) convex, (b) nonconvex (star domain), (c) nonconvex (general case), and (d) nonconvex with
several sources.

The results demonstrate the applicability of the strategy for a wide range of concen-
tration field survey problem formulations. However, the testing revealed limitations of
the approach, which will be partially or fully eliminated in further stages of the study.
The first direction is to develop the ideas of the described self-organization mechanism.
As noted earlier, currently, the G f ront and Gbase sets, as well as the search clusters τ, are
formed before the start of the mission and do not change during its execution. This can
negatively impact the survey process if there is a possibility of robot malfunction. In ad-
dition, the tests using the swarm population model have shown that there might be rare
situations in which the number of simultaneously existing sources exceeds the number of
search clusters at a certain time interval. The ability of agents to adaptively switch between
clusters should eliminate these disadvantages. The second area of research development
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is the development and software implementation of additional nonstationary models of
concentration fields with a different nature of origin. In addition, the developed control
strategy will be compared with existing sampling problem solutions under uniform and
controlled conditions.
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