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Abstract: The paper is devoted to the problem of propagation of elastic waves in composites with
initial stresses. We suppose initial stresses are well within the elastic regime. We deal with the
long-wave case and use the asymptotic homogenization technique based on the two-scale asymptotic
approach. The main problem lies in solving the local (cell) problem, i.e., boundary value problem
on a periodically repeating fragment of a composite. In general, the local problem cannot be solved
explicitly. In our work, it is obtained for any initial stresses formulas, which is convenient for solving
by standard codes. An analytical solution is obtained for small initial stresses. Asymptotic expansions
used a small parameter characterizing the smallness of the initial stresses. In the zero approximation,
composites without initial stresses are considered; the first approximation takes into account their
influence on waves propagation. Two particular cases are considered in detail: laminated media and
frame (honeycomb cell) composites. The analyzed frame composite can be used for the modeling of
porous media. We select these two cases for the following reasons. First, the laminated and porous
material are widely used in practice. Second, for these materials, the homogenized coefficients may
be computed in the explicit form for an arbitrary value of the initial stresses. The dependence of
the velocity of elastic waves on the initial stresses in laminated and homogeneous bodies differs.
The initial tension increases the velocity of elastic waves in both cases, but the quantitative effect
of the increase can vary greatly. For frame composites modeling porous bodies, the initial tension
can increase or decrease the velocity of elastic waves (the initial tension decreases the velocity of
elastic waves in the porous body with an inverted honeycomb periodicity cell). The decrease of the
velocity of elastic waves is impossible in homogeneous media. The problem under consideration is
related, in particular, to the core sample analysis in the geophysics. This question is discussed in the
paper. We also analyzed some features of applications of asymptotic homogenization procedure for
the dynamical problem of stressed composite materials, i.e., the nonadditivity of homogenization of
sum of operators.

Keywords: inhomogeneous materials; periodic structure; elasticity theory; initial stresses; homogenization;
elastic waves

1. Homogenization in the Problem of the Elasticity Theory with Initial Stresses

Consider a linearly elastic body of periodic structure. The body occupies the domain G
in R3 with boundary ∂G. Denote εY (see Figure 1) the periodicity cell; ε is the characteristic
size of the periodicity cell. It follows that we assume that the size of the periodically
repeated cell εY is significantly smaller than the minimum wavelength; i.e., we solve the
problem in the long-wavelength approximation. Then, the quantity ε can be considered as
a small parameter, and asymptotic homogenization theory can be used.
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We assume that the body is pre-stressed and the initial stresses σ∗ij are self-balanced.
The linear dynamic problem of elasticity theory for a body subjected to body forces f and
fixed on ∂G has the form

∂σε
ij

∂xj
= ρε(x, x/ε)

∂2uε
i

∂t2 + fi(x/ε) in G,

σε
ij = hijkl(x, x/ε)

∂uε
k

∂xl
,

uε(x) = 0 on ∂G,

(1)

where

hijkl(x, x/ε) = cijkl(x/ε) + δikσ∗jl(x, x/ε). (2)

Hereafter, δik means Kronecker delta.
If the wavelength is much larger than the constitutive structural elements of the

composite, then the homogenization procedure should begin with the static problem [1,2].
In (1), uε(x) is the displacement, and ρε(x, x/ε) is the density. If the body is subjected

to the force of gravity, f(x/ε) = (0, 0, gρε(x)).

Figure 1. Body of periodic structure—left, and its periodicity cell—right.

1.1. Asymptotic Expansions for the Elasticity Problem

The asymptotic expansions proposed in [2,3] for the problem without initial stresses
can also be used for the analysis of the problem under consideration (for other homoge-
nization techniques, see [4–8]). The expansions are the following: for displacements

uε = u(0)(x) +
∞

∑
k=1

εku(k)(x, y), (3)

for stresses

σε
ij =

∞

∑
k=0

εkσ
(k)
ij (x, y). (4)

We use the homogenization technique, which is based on the two-scale asymptotic
approach [1,2,5]. In accordance with this approach, along with the initial variable x, we
introduce the variable y = x/ε, which we formally consider independent. In the two-scale
asymptotic approach, x is called a “slow” or “global” variable, and y is called a “fast” or
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“local” variable [1,3]. From a physical point of view, the first variable describes the behavior
of the composite as a whole, globally, and second-locally.

Functions on the right-hand side (3), (4) are taken to be periodic in y with periodicity
cell Y (εY is the periodicity cell in the “slow” variables x and Y is the periodicity cell in the
“fast” variables y).

Denote by 〈〉 the average value over the periodicity cell Y in “fast” variables y.
Furthermore, for the functions u(i)(x, y) that are fast correctors to the homogenized

solution u(0)(x), we use the ansatz [1], Ch. 2

u(i)(x, y) = Kpq
i (y)

∂u(0)
p (x)
∂xq

, i = 1, 2, 3, (5)

where Kpq
i (y) is periodic in y functions with the periodicity cell Y.

Using the two-scale expansion, we represent the differentiation operators as a sum
of operators with respect to x and y [1,2]. For functions Z(x, y) of the variables x and y,
as in (3), (4), this leads to the replacement of differentiation operators according to the
following rule:

∂Z
∂xi
→ Z,ix + ε−1Z,iy (i = 1, 2, 3), (6)

subscript “, ix” means ∂/∂xi, and subscript “, iy” means ∂/∂yi.
Following the general method developed in the homohenization theory [1,5], we have

to derive the periodicity cell problem. By using the asymptotic expansion technique, the
differentiation rule (6), and (5), we arrive at the following periodicity cell problem for a
composite with initial stresses (see for details [9]):{

(hijmn(x, y)Kpq
m,ny + hijpq(x, y)),jy = 0 in Y,

Kpq(y) periodic in y with the periodicity cell Y
(7)

and the following formula for the local stresses σ
(0)
ij in composite

σ
(0)
ij = (hijmn(x, y)Kpq

m,ny + hijpq(x, y))u(0)
p,qx(x). (8)

The function Kpq(y) is defined by (7). The periodicity cell problem also refers to the
“periodic cell problem” [1,5], “unit cell problem” [10] or “unit-cell problem” [11].

Averaging (8) over the periodicity cell Y, we obtain the homogenized constitutive equations

〈σ(0)
ij 〉 = Cijkl(σ)u

(0)
k,lx(x) (9)

for the body with initial stresses. In (9),

Cijkl(σ) = 〈hijmn(x, y)Kkl
m,ny + hijkl(x, y)〉 (10)

are the homogenized elastic characteristics of the body with initial stresses.
The homogenized static equilibrium equation is the following:

(Cijkl(σ)u
(0)
k,lx),jx = 〈 fi〉. (11)

From the boundary condition in (1) and expansion (3), we obtain the following bound-
ary condition:

u(0)(x) = 0 on ∂G. (12)
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The problem (11), (12) is the homogenized static problem for a body with initial
stresses. The homogenized dynamic problem has the form

(Cijkl(σ)u
(0)
k,lx),jx = 〈ρ〉

∂2u(0)
i

∂t2 + 〈 fi〉. (13)

Boundary conditions for Equation (13) have the form (12).
Equation (13) is valid under condition that the wavelength is significantly greater that

the characteristic size ε of the periodic cell of the structure.
Unlike the homogenization problem for unstressed materials, now, the cell problem (7)

depends on initial stresses. It leads to the dependence of the homogenized coefficients and
the velocities of the elastic waves on the initial stresses.

Below, we will consider the orthotropic homogenized media. The velocities of the
elastic waves in the direction of Ox1-axis are: for longitudinal (compression) wave

cl(σ) =

√
C1111(σ)

〈ρ〉 , (14)

for shear waves

csh(σ) =

√
C2121(σ)

〈ρ〉 , (15)

and

csh(σ) =

√
C3131(σ)

〈ρ〉 . (16)

The velocities of the elastic waves in the other directions are obtained by the proper
changing of the indices of the homogenized constants.

For the homogeneous bodies, the problems of elasticity theory as well as the velocities
of the elastic waves also depend on the initial stresses [9,12]. The following questions
appear:

- These dependencies are the same or different for the homogeneous and the compos-
ite bodies;

- If different, how large is the difference.

1.2. The Case of Small Initial Stresses

The initial stresses in the composite are limited by the strength limit of the components
of the composite; thus, they do not exceed a few percent of the Young’s modulus. As we
mention above, we suppose initial stresses are well within the elastic regime. Then, the
coefficients hijkl (2) can be represented as

hijkl(x, y) = cijkl(y) + Sbijkl(x, y), (17)

maxδik|σ∗jl(x, y)|/cijkl(y) ≤ S ≤ 0.01

for any x and y and i, j, k, l; where bijkl(x, y) are of the order of 1.
In (17), S is a small parameter. The meaning of S is the characteristic value of the initial

stresses, usually, S ≤ 0.01.
To solve the cell problem (7) with the coefficients (17), we represent the solution in the form

Kkl(y) = K0kl(y) + SK1kl(y). (18)
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Substituting (18) into (7) and collecting the terms of the same order, we obtain
(cijnm(y)K0kl

m,ny + cijkl(y)),jy = 0 in Y,
(cijnm(y)K1kl

m,ny + bijkl(x, y) + bijkl(x, y)K0kl
m,ny(y)),jy = 0 in Y,

K0kl(y), K1kl(y) periodic in y with the periodicity cell Y.

(19)

We note that

K0kl(x) = Nkl(x),

where Nkl is the solution to the cell problem for the body without initial stresses [1,2]:{
(cijnm(y)Nkl

m,ny + cijkl(y)),jy = 0 in Y,
Nkl(y) periodic in y with the periodicity cell Y.

(20)

Formula (10) may be transformed into the following form [13]

Cijkl(σ) = Cijkl(0) + S〈σ∗qn(x, y)〉δik + SC1
ijkl(σ), (21)

where Cijkl(0) represents the homogenized elastic constants of the body without initial
stresses and

C1
ijkl(σ) = 〈σ

∗
qn(x, y)Nkl

p,ny(y)Nij
p,qy(y)〉, (22)

where Nkl(x) is the solution to the cell problem (20).
The sum of the first and the second terms in the right-hand part of Equation (21)

corresponds to the “intermediate” homogenization, when first, the homogenized constants
are calculated for the composite material without initial stresses, and then, the composite is
treated as a homogeneous material subjected to initial stresses. The first and the second
terms in the right-hand part of Equation (21) represent the elastic constant and average
value of the initial stresses. The last term in (21) arises as a result of the homogenization of
the composite material with the initial stresses. For homogeneous materials, Nkl(x) = 0
and the last term in (21) is zero. For inhomogeneous (composite) materials, the last term
in (21) is, generally speaking, not zero.

Formula (22) involves the partial derivatives of Nkl(y). Write the Formula (22) in
the terms of the strain tensor 2ekl

ij = Nkl
i,j + Nkl

j,i and the rotation tensor 2ωij = Nkl
i,j − Nkl

j,i .
We have

C1
ijkl(σ) = 〈σ

∗
qn(x, y)(ekl

pn(y) + ωkl
pn(y))(e

ij
pq(y) + ω

ij
pq(y))〉. (23)

Formula (23) is suitable for numerical computations with the commercial software. If
the initial stresses σ∗qn are determined from solutions to the elasticity theory problem (1), (2),
then [1]

σ
(0)
ij = (cijmn(x, y)Npq

m,ny + cijpq(x, y))u(0)
p,qx(x) =

(cijmn(x, y)epq
mn + cijpq(x, y))u(0)

p,qx(x).

2. Laminated Materials with Initial Stresses

In this section, we apply the method developed above to the laminated materials with
initial stresses. Let the layers be parallel to the plane Ox1x2, as shown in Figure 2. In this
case, all the functions of the variable y = (y1, y2, y3) become the functions of the variable
y3. In particular, the periodicity cell problem (7) takes the form
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{
(hi3k3(x,y3)K

pq′
k + hi3pq(x,y3))

′ = 0 in [0, 1],
Kpq(y3) periodic in y3 with period [0, 1].

(24)

In (24), prime means the derivative with respect to y3.

x

x

x

3

2

1

Figure 2. Laminated material.

Problem (24) is a periodic problem for a system of ordinary differential equations. It
may be solved in explicit form.

From the equation in (24), it follows that hi3k3(x,y3)K
pq′
k + hi3pq(x,y3) = Cpq

i . Thus,

Kpq′
i = −(hi3k3(x,y3))

−1hi3pq(x,y3) + (hi3k3(x,y3))
−1(Cpq

i ), (25)

where {Cpq
k } are constants, and symbol (. . .)−1 means the matrix inversion.

The constants Cpq
k in (25) are determinable from the periodicity condition for Kpq,

which may be written in the form

〈Kpq′〉 = 0. (26)

For the laminated materials, the average value is computed as

〈Z〉 =
∫ 1

0
Z(y3)dy3 =

m

∑
I=1

ZIλI , (27)

where λI is the volume fraction of the I-th material, and m is the total number of materials.
The period is assumed to be 1, which does not restrict the generality of the computations.
Substituting (25) into (26), we obtain

〈(hi3k3(x,y3))
−1hi3pq(x,y3)〉 = 〈(hi3k3(x,y3))

−1〉Cpq
i . (28)

By solving this system of linear algebraic Equation (28) with respect to Cpq
k , we obtain

Cpq
k =

〈
(hi3k3(x,y3))

−1〉−1
〈
(hj3k3(x,y3))

−1hj3pq(x,y3)
〉

. (29)

Substituting (29) into (25), we have

Kpq′
k = −(hi3k3(x,y3))

−1hi3pq(x,y3) +

(hi3k3(x,y3))
−1〈(hi3k3(x,y3))

−1〉−1
〈
(hj3k3(x,y3))

−1hj3pq(x,y3)
〉

. (30)

Since the initial stresses are relatively small, we have a matrix with prevailing diagonal
terms. It is easy to show that this matrix is well conditioned, so its inversion is a well-
posed problem.
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In the case under consideration, Formula (10) for the homogenized characteristics
takes the form

Cijkl(σ) = 〈hijp3(x,y3)Kkl′
p + hijkl(x,y3)〉. (31)

Substituting (30) into (31), we obtain

Cijkl(σ) = 〈hijkl(x,y3)〉 − (32)

〈hijm3(x,y3)(hm3n3(x,y3))
−1hn3kl(x,y3)〉+

〈hijm3(x,y3)(hm3n3(x,y3))
−1〉〈(hn3p3(x,y3))

−1〉−1 ×
〈(hp3q3(x,y3))

−1hq3kl(x,y3)〉.

Consider the material formed of the layers of homogeneous orthotropic materials. In
this case

hi3k3(x,y3) = ci3k3(y) + σ∗33(x,y3)δik.

Note that hi3k3 = 0 if i 6= k (ci3k3 = 0 if i 6= k for orthotropic materials [14]), i.e., hi3k3 is a
diagonal matrix, and its inverse matrix is

(hm3m3(x,y3))
−1 =

1
hm3m3(x,y3)

, (hm3k3(x,y3))
−1 = 0 if m 6= k, (33)

By virtue of (33), Equation (32) takes the form

Cijkl(σ) =
〈

hijkl

〉
−
〈 hijm3hn3kl

hm3n3

〉
+

〈 hijm3

hm3n3

〉〈 hq3kl

hp3q3

〉
〈

1
hn3p3

〉 . (34)

By using the definition of the constants hijkl (2) and equality (33), we write the homog-
enized constants (34), which depend on σ∗ij, in the form

C3333(σ) =
1〈
1

c3333 + σ∗33

〉 ; C3322(σ) =

〈
c3322

c3333 + σ∗33

〉
〈

1
c3333 + σ∗33

〉 ; (35)

C1313(σ) = C2323(σ) =
1〈
1

c2323 + σ∗33

〉 ;

C3232(σ) = 〈c3232 + σ∗22〉 −
〈

c2
2323

c3333 + σ∗33

〉
+

〈
c2323

c3333 + σ∗33

〉2

〈
1

c3333 + σ∗33

〉 ;

C1111(σ) = 〈c1111 + σ∗11〉 −
〈

c2
1133

c3333 + σ∗33

〉
+

〈
c1133

c3333 + σ∗33

〉2

〈
1

c3333 + σ∗33

〉 ;
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C1122(σ) = 〈c1122〉 −
〈

c1133c2233

c3333 + σ∗33

〉
+

〈
c3322

c3333 + σ∗33

〉〈
c3322

c3333 + σ∗33

〉
〈

1
c3333 + σ∗33

〉 .

In (35), cijkl = cijkl(y3) and σ∗ij = σ∗ij(x,y3).
The first formula in (35) coincides with the corresponding formula from [12]. Never-

theless, most of the formulas in (35) do not coincide with the formulas from [12].

2.1. One Special Case

Consider the initial stresses of the form

σ∗ii = σ∗ii(y3) (36)

with condition

〈σ∗ij〉 = σij = const. (37)

The stresses (36) satisfy Equation (1) with f = f(y3). Such a kind of stress-strain state
arises in a laminated rock massif, for example, under the action of the force of gravity.

Substituting (36) into (35), we obtain Cijkl(σ) as a function of macroscopis stress σij.
Let us consider a body formed by layers of isotropic materials. In this case, the local

elastic constants have the form

cijkl =
Eν

(1 + ν)(1− 2ν)
δijδkl +

E
1 + ν

δikδik, (38)

where E = E(y3) is the local Young’s modulus and ν = ν(y3) is the local Poisson’s
coefficient.

Substituting (36) and (38) into (35), we obtain

C3333(σ) =
1〈

(1 + ν)(1− 2ν)

(1− ν)E + σ33(1 + ν)(1− 2ν)

〉 ;

C3232(σ) =

〈
E

1 + ν

〉
−
〈

E2

(1 + ν)E + (1 + ν)2σ33

〉
+〈

E
E + (1 + ν)σ33

〉2

〈
1 + ν

E + (1 + ν)σ33

〉 + σ22;

C1313(σ) = C2323(σ) =
1〈

1 + ν

E + σ33(1 + ν)

〉 ;
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C1111(σ) =

〈
(1− ν)E

(1 + ν)(1− 2ν)

〉
−〈

E2ν2

(1− ν2)(1− 2ν)E + (1 + ν)2(1− 2ν)2σ33

〉
+〈

Eν

(1− ν)E + (1 + ν)(1− 2ν)σ33

〉2

〈
(1 + ν)(1− 2ν)

E + (1− ν)σ33

〉 + σ11;

C1122(σ) =

〈
Eν

(1 + ν)(1− 2ν)

〉
−〈

E2ν2

(1− ν2)(1− 2ν)E + (1 + ν)2(1− 2ν)2σ33

〉
+〈

Eν

(1− ν)E + (1 + ν)(1− 2ν)σ33

〉
〈
(1 + ν)(1− 2ν)

E + (1− ν)σ33

〉 . (39)

As can be seen from Formula (39), the dependence of Cijkl(σ) on σij is rather compli-
cated even in the considered simplest case of laminated material.

Figure 3 shows the graph of the function

z(σ33) =

√
C3333(σ33)

C3333 + σ33
(40)

in dependence on σ33 for the case when all overall stresses, except for σ33, are zero. The
function z(σ33) is computed for a two-layer composite. The Young’s moduli of the layers
are E = 1 MPa and E = 2 MPa, and Poisson’s ratio is ν = 1/3 for both the layers.

Formula (40) gives the ratio of the velocities of elastic waves calculated by Formula (39)
and by the “intermediate” homogenization. The value y(−1.5) = 0 means that the velocities
of elastic waves predicted by Formula (39) decrease faster than the one predicted by the
“intermediate” homogenization.

Figure 3. Plot of the function (40).
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2.2. Small Initial Stresses

As noted, the initial stresses are small. By using this remark, one can expand For-
mula (39) in series with respect to the small dimensionaless parameter σ33/E. Keeping only
the linear terms, we obtain:

C3333(σ) = C3333(0) + σ33 +


〈
(1 + ν)2(1− 2ν)2

(1− ν)2E2

〉
〈
(1 + ν)(1− 2ν)

(1− ν)E

〉2 − 1

σ33; (41)

C3322(σ) = C3322(0) +−
〈

ν(1 + ν)(1− 2ν)

(1− ν2)E

〉
〈
(1 + ν)(1− 2ν)

(1− ν)E

〉 +

〈
ν

1 + ν

〉〈 (1 + ν)2(1− 2ν)2

(1− ν)2E2

〉
〈
(1 + ν)(1− 2ν)

(1− ν)E

〉2

σ33;

C2323(σ) = C2323(0) + σ33 +


〈
(1 + ν)2

E2

〉
〈

1 + ν

E

〉2 − 1

σ33;

C3232(σ) = C3232(0) + σ22 +


〈
(1 + ν)2

E2

〉
〈

1 + ν

E

〉2 − 1

σ33;

C1111(σ) = C1111(0) + σ11 +

[〈
ν2

(1− ν)2

〉
−

2

〈
ν(1 + ν)(1− 2ν)

(1− ν)2E

〉〈
ν

1− ν

〉
〈
(1 + ν)(1− 2ν)

(1− ν)E

〉 +

〈
ν

1− ν

〉〈
(1 + ν)2(1− 2ν)2

(1− v)2E2

〉
〈
(1 + ν)(1− 2ν)

(1− ν)E

〉2

]
σ33;

C1122(σ) = C1122(0) +

[〈
ν2

(1− ν)2

〉
−

2

〈
ν(1 + ν)(1− 2ν)

(1− ν)2E

〉〈
ν

1− ν

〉
〈
(1 + ν)(1− 2ν)

(1− ν)E

〉 +

〈
ν

1− ν

〉〈
(1 + ν)2(1− 2ν)2

(1− ν)2E2

〉
〈
(1 + ν)(1− 2ν)

(1− ν)E

〉2

]
σ33.

Formula (41) has the form

Cijkl(σ) = [Cijkl(0) + σjlδik] + C1
ijklσ33. (42)
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The bracketed expression in (42) corresponds to the “intermediate” homogenization.
The last term in (42) arises as a result of the homogenization of the original composite
material with the initial stresses.

In the case ν = const, Formula (42) is significantly simplified and takes the form

C3333(σ) = C3333(0) + (1 + L)σ33,

C3322(σ) = C3322(0) +
ν

1− ν
Lσ33,

C2323(σ) = C2323(0) + (1 + L)σ33,

C3232(σ) = C2323(0) + σ22 + Lσ33,

C1111(σ) = C1111(0) + σ11 +
ν2

1− ν2 Lσ33,

C1122(σ) = C1122(0) +
ν2

1− ν2 Lσ33,

C1212(σ) = C1212(0), (43)

where

L =

〈
1

E2

〉/〈
1
E

〉2
− 1. (44)

It is seen that all coefficients C1
ijkl in (43) depend on the only parameter L (44). By using

the method of convex combinations [15,16], we conclude that the pair (〈1/E2〉, 〈1/E〉) may
take any values (X, Y) satisfying the condition X > Y2. Then, L can take an arbitrary
positive value. As a result, for σ33 > 0

Cijkl(σ) > Cijkl + σjlδik,

and the difference between Cijkl(σ) and Cijkl + σjlδik can take an arbitrary positive value.

Example. Consider a layered composite made of materials with E1 = 1 × 1010,
E2 = 0.01 × 1010, and ν = 0.3 for both λ1 = 0.9 and λ2 = 0.1. For this composite,
L ≈ 102 and C3333 = 0.136× 1010 (C3333 is computaed in accordance with the homoge-
nization theory). Substituting these values to the first formula in (43), we arrive at the
following:

C3333(σ) = C3333(0) + (1 + L)σ33 = 0.136× 1010 + σ33 + 10σ33.

In this formula

- 0.136 × 1010—the homogenized elastic constant of the composite without initial
stresses;

- σ33—the term corresponding to the “intermediate” homogenization;
- 10σ33—the term C1

3333σ33.

The value of the last term significantly exceeds the term corresponding to the “inter-
mediate” homogenization.

2.3. The Homogenized Velocity of the Elastic Waves

Using Formula (43), write the formulas for the velocities of the elastic waves: the
velocity of the longitudinal (compression) wave in the direction of the Ox1-axis

cl(σ) =

√√√√√C1111(0) + σ11 +
ν2

1− ν2 Lσ33

〈ρ〉 , (45)
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the velocity of the shear waves

csh(σ) =

√
C2121(0)
〈ρ〉 , (46)

and

csh(σ) =

√
C2323(0) + (1 + L)σ33

〈ρ〉 . (47)

3. The Non-Trivial Dependence of Speed of Elastic Waves on the Initial Stress in the
“Inverted Honeycomb” Frame Structure

The previous section provides us with an example of the quantitative defference of
the dependence of elastic waves velocity on initial stress in the homogeneous and inho-
mogeneous media. In this section, we present an example of the qualitative difference
of the dependence of elastic waves velocity on initial stress in the homogeneous and
inhomogeneous media. For this reason, we conside special high-porous materials “hon-
eycomb” framework materials. The “honeycomb” materials are widely used in paractice.
The geometry of the honeycomb essentially influences the homogenized properties of the
“honeycomb” material. The “honeycomb” materials are widely used as models of the foams
and high-porous materials, see, e.g., [17,18]. The analyzed frame composite can be used for
the modeling of porous media.

If the periodicity cell of a composite is formed by beams and/or plates (lattices,
openwork ceilings, etc.), then the methods of the beam and/or plate theories can be applied
to solve the cell problem. In some cases, the problem may be solved in explicit form.

Let us consider a periodic structure formed by rods. This is a special case of frame
structures. In this case, Equations (17) and (7) can be replaced [19] by the cell problem
for the corresponding cell structure formed from a system of beams and/or plates (see
also [15,20]).

The velocity ch
22(σ) of the longitudinal elastic waves along the axis Ox2 in the homoge-

neous elastic material with initial stress σ22 is

ch
22(σ) =

√
ch

2222 + σ22

ρh , (48)

where ch
2222 is the elastic constant, and ρh is the density of the homogeneous material.

The dependence of the velocity of the longitudinal long elastic waves for the homoge-
neous material is monotone: for σ22 < 0

ch
22(σ) < ch

22(0) (49)

and for σ22 > 0
ch

22(σ) > ch
22(0). (50)

The velocity of the longitudinal long elastic waves along the axis Ox2 in the elastic
composite material is equal to

c22(σ) =

√
C2222(σ)

〈ρ〉 ,

where C2222(σ) is the homogenized elastic constant, and 〈ρ〉 is the homogenized density of
the composite material.

This section presents an example demonstrating that the dependence of the velocity of
the elastic waves on the initial stress may be not monotonic for composite materials. Such a
phenomenon never occurs in homogeneous bodies.
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Consider the composite whose periodicity cell is shown in Figure 4a. It is the so-
called inverted honeycomb. The inverted honeycomb was introduced in [19] to construct a
composite with a negative Poisson’s ratio. It was modified in [21] to construct an isotropic
three-dimensional structure with Poisson’s ratio equal to −1. Following [19], the composite
with a negative Poisson’s ratio was investigated by numerous authors, see, e.g., [22–32]
(the list is not completed; see current references in [33–38]).

When applying an overall compressive stress

σij = σ22δi2δj2,

in the elements of the standard honeycomb cell, see Figure 4b, only compressive stresses
arise. In the elements of the inverted honeycomb cell, see Figure 4a, both compressive and
tensile stresses arise.

Figure 4. Honeycomb-like periodicity cells: (a) inverted honeycomb-like cell and (b) standard
honeycomb cell and the corresponding composites.

Let us calculate Cijkl(σ) in the case when the overall stresses have the form σ22 = σ < 0
(the coordinate axes are displayed in Figure 4) and σij = 0 for ij 6= 22. Let us calculate
C2222(σ). The other homogenized constants are calculated in the same way.

Compute the local initial stresses in the elements of the structure. We assume that
the elements are rods and act only in the tension–compression mode (we can neglect the
bending stresses in the rods). Denote by E1, E2, E3 the axial stiffness of rods and by h1, h2, h3
the thickness of rods. The element numbering is shown in Figure 4. The local stresses in
periodicity cell elements σ1, σ2, σ3 are the following:

σ∗1 = σ, h3σ∗3 = h1σ1, h2σ∗2 cosα = −h1σ∗1 . (51)

The solution to (51) is

σ∗1 = σ, σ∗3 =
h1

h3
σ, σ∗2 = −h1

h2

1
cos(α)

σ. (52)

In order to calculate C2222(σ), one has to solve the cell problem for the structure shown
in Figure 4, replacing the Young’s moduli Ep to Ep + σ∗p (p = 1, 2, 3), where σ∗p are the initial
stresses given by (52). Here, p is the number of the rod in the cell structure; see Figure 4.
Denoting by e1, e2, e3 the strains in the pre-stressed rods, we arrive at the equations (the
total strain of the cell along the Oy2 axis is assumed to be 1)

(E1 + σ∗1 )e1h1 = (E3 + σ∗3 )e3h3,

(E2 + σ∗2 )e2h2cosα = −(E1 + σ∗1 )e1h1,

e1 − e2cosα + e3 = 1. (53)



Computation 2023, 11, 15 14 of 19

From (53), we have

e3 =
E1 + σ∗1
E3 + σ∗3

h1

h3
e1, e2 = −

E1 + σ∗1
E2 + σ∗2

h1

h2

1
cos(α)

e1, (54)

e1 − e2cosα + e3 = 1.

The last equation in (54) leads to

[1 +
E1 + σ∗1
E2 + σ∗2

h1

h2
+

E1 + σ∗1
E3 + σ∗3

h1

h3
]e1 = 1. (55)

The effective elastic constant is

C2222(σ) = h1E1e1, (56)

where e1 is determined from (55).
Substituting σ∗1 , σ∗2 , σ∗3 according to (52) into (55), we obtain from (56) that

C2222(σ) = h1E1 ·
1

1 +
E1 + σ∗1
E2 + σ∗2

h1

h2
+

E1 + σ∗1
E3 + σ∗3

h1

h3

. (57)

Formula (57) is valid for any (arbitrary) stress σ22. Now, consider Formula (57) for
small initial stresses, namely, for |σ22| � E1. Let us rewrite (57) as follows:

C2222(σ) = h1E1 ·
1

1 +
1 +

σ

E1
E2

E1
− h1

h2

1
cos(α)

σ

E1

h1

h2
+

1 +
σ

E1
E3

E1
+

h1

h3

σ

E1

h1

h3

. (58)

and consider the denominator in (58)

1 +
1 + s

e2 −
h1

h2

1
cos(α)

s

h1

h2
+

1 + s

e3 +
h1

h3
s

h1

h3
. (59)

Denoted: s =
σ

E1
, r2 =

E2

E1
, r3 =

E3

E1
. Using expansion

1
ri + Θ

≈ 1
ri
− Θ

r2
i

for small Θ,

extract the linear term in σ in (59)

1 +
[

1
r2

+
σ

r2
− 1

r2
2

h1

h2

1
cosα

s
]

h1

h2
+

[
1
r3

+ r3 −
1
r2

3

h1

h3
s
]

h1

h3
=

1 +
1
r2

h1

h2
+

1
r3

h1

h3
+

σ

r2

h1

h2
− 1

r2
2

h1

h2

1
cosα

s
h1

h2
+

σ

r3

h1

h3
− 1

r2
3

h1

h3
s

h1

h3
=[

1 +
1
r2

h1

h2
+

1
r3

h1

h3

]
+[

1
r2

h1

h2
− 1

r2
2

(
h1

h2

)2 1
cosα

+
1
r3

h1

h3
− 1

r2
3

(
h1

h3

)2]
. (60)

The sum in the first square brackets in the right-hand part of Equation (60) is the
effective elastic constants C2222(0) of the frame structure without initial stresses. The sum
in the second square brackets in the right-hand part of Equation (60) accounts for the initial
stresses. In (60), we put h1 = 1. It does not restrict the generality of the consideration but
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simplifies the formulas below. For h1 = 1, the sum in the second square brackets in the
right-hand part of Equation (60) can be written as follows:

1
r2h2

− 1
r2

2h2
2cosα

+
1

r3h3
− 1

r2
3h2

3
. (61)

Formula (61) has the form

1
u
− 1

u2cosα
+

1
v
− 1

v2 , (62)

where u = r2h2 and v = r3h3.
The plot of the function (62) is displayed in Figure 5 for α = π/12, 0.5 ≤ u ≤ 1.5,

1.1 ≤ v ≤ 3.6. It is seen that the function (62) can take both positive and negative values.
Thus, the effective elastic constant C2222(σ) of the frame composite with initial stresses may
be both less and greater than the effective elastic constant C2222(0) of the frame composite
without initial stresses.

Figure 5. Plot of the function (62).

In particular, if σ22 = σ < 0, it is possible to satisfy the inequality

c22(σ) < c22(0)

as well as the inequality
c22(σ) > c22(0),

where

c22(0) =

√
C2222(0)
〈ρ〉

is the velocity of the longitudinal elastic waves along the axis Ox2 in the composite without
initial stresses. Thus, in the cellular materials, the compressed stress may both increase and
decrease the velocity of the elastic waves.

For the standard honeycomb cell, Figure 4b, the sign of the axial stress in the structural
elements coincides with the sign of the overall stress σ22. The standard honeycomb cell
structure qualitatively demonstrates the behavior similar to the behavior of a homogeneous
body.

4. The Problem of “Intermediate” Homogenization

The “intermediate” homogenization has been mentioned several times above. Let us
discuss this concept in more detail. The “intermediate” homogenization method arises
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from the phenomenological approach to inhomogeneous bodies. If one investigates the
properties of the bowels of a rock massif, one usually drills a well and extracts a core sample
from the massif (Figure 6); see [39–42] for detail. When extracting the core sample from the
massif, one determines the overall characteristics of the sample. The overall characteristics
determined in such a way are exactly the homogenized elastic constants Cijkl(0). When the
homogenized elastic constants Cijkl(0) are determined, one solves the problem (11), (12) to
determine the stresses σij in the rock massif. Then, Cijkl(0) and σij are used for subsequent
computations in accordance with the classical theory of the homogeneous elastic bodies
with initial stresses [12,43].

Since the scheme presented in Figure 6 is widely used, we would like to discuss
the potential problems related to this scheme as applied to the computation of stong
inhomogeneous materials with initial stresses.

Figure 6. Extraction of a core sample from a stressed massif for investigation.

The “intermediate” homogenization, generally, leads to a wrong result. Let us start
with the mathematical aspects of the problem. From the mathematical point of view, we
deal with the homogenization problem for the sum of the operators

Lεu = [cijkl(x/”)uk,l)],j (63)

and

Mεu = (δikσ∗jl(x, x/”)uk,l),j. (64)

The problem of homogenization [44,45] for a sum of operators of the same order (this
is our case) is not solved until now. The suggestion, which seems reasonable from the
common point of view, is to follow the theory developed for homogeneous materials and
calculate the homogenized constant as follows (compare with (2))

Cijkl(σ) = Cijkl(0) + δik〈σ∗jl(x, y)〉,

or, which is the same, write the homogenized problem in the form

L(0)u + Mu = u, (65)

where

L(0)u = [Cijkl(0)uk,l)],j, Mu = (δik〈σ∗jl〉uk,l),j. (66)
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Here, Cijkl(0) represents the homogenized constants of the body without initial stresses.
Problem (65) is equivalent to the problem of minimization of the functional [43]

J0(u) + I0(u)− (〈f〉, u)L2 , (67)

where

J0(u) =
1
2

∫
G

Cijkl(0)eijekldx, I0(u) =
1
2

∫
G
〈σ∗jl〉eijeildx. (68)

In accordance with the homogenization theory [1] 〈σ∗ij〉 = σij, where σij are the homog-
enized stresses computed from the problem (11), (12).

As was mentioned above, determining the effective elastic constant Cijkl(σ) is equiva-
lent to calculating the G-limit of the sum Lε + Mε; see (63), (64). In doing so, it is necessary
to express the G-limit through limits (of any kind) of operator Lε (63) with the coefficients
Cijkl(x/ε) and operator Mε (64) with the coefficients σ∗ij(x, x/ε). The equivalent problem is
the computation of the limit limε→0(Iε + Jε)∗(v∗) (the asterisk means the dual functional),
where Iε and Jε are potentials of the operators Lε and Mε, (63) and (64). Little is known
about the mentioned problems. However, it is known [45] that no rule like “the limit of
the sum is equal to the sum of the limits” (or another similar simple rule) exists for the
discussed problems.

This is the reason for the appearance of the difference between the dependence of
the elastic properties of inhomogeneous solids and the same dependence for homoge-
neous solids.

From the mechanical viewpoint, the inapplicability of the “intermediate” homogeniza-
tion is the result of the occurrence of a general stress–strain state at the microlevel when the
uniform homogenized stresses are applied at the macrolevel. There are other methods of
micromechanics and simulations which may be potentially applied to the analysis of the
pre-stressed composites, see, e.g., [46–48].

5. Conclusions

In the paper, the general approach to the homogenization of composites with initial
stresses is presented.

We discuss an interesting question from the point of view of mechanics—how an
inhomogeneous structure changes the dependence of the wave velocity on the initial
stresses in comparison with the corresponding dependence for a homogeneous material.
The question of the dependence of the velocity of elastic waves on the initial stresses is
traditional for the theory of elasticity. The main result of our article can be formulated
as follows: the microstructure can change the dependence of the wave velocity in the
composite on the initial stresses both qualitatively and quantitatively. This result seems to
us to be new, interesting, and confirmed by the above results.

In order not to overload the article with mathematical calculations, we considered
several particular problems that are directly related to practice: the velocity of elastic waves
in layered media with initial stresses and frame-like composites with initial stresses.

The analyzed frame composite can be used for the modeling of porous media.
Explicit formulas are obtained for the homogenized coefficients of the laminated and

honeycomb composites. We investigated the dependencies of the homogenized coefficients
and velocity of the elastic waves on the macroscopic initial stresses. It is found that the
dependencies for composite bodies differ from the dependencies for homogeneous bodies.
For the laminated bodies, the difference from homogeneous bodies is quantitative; see
Section 2. The initial tension increases the velocity of elastic waves in both cases, but
the quantitative effect of the increase can vary greatly. For frame composites modeling
porous bodies, the initial tension can increase or decrease the velocity of elastic waves (the
initial tension decreases the velocity of elastic waves in the porous body with inverted
honeycomb periodicity cells). The decrease of the velocity of elastic waves is impossible
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in homogeneous media. Note that layered and porous structures with initial stresses are
widely encountered in practice [39–42].

In Section 4, we pay the attention to the methodology of measuring and calculating
core properties. For composite materials, it is a non-trivial problem. The solution to the
problem, evident from the common point of view, is the “intermediate” homogenization. It
is the case when the “evident” method is not valid.

The homogenization of the elasticity theory problem with initial stresses may be
completed by obtaining special cases in explicit form. There is no explicit, or even simple,
solution to the problem in the general case. In the general case, as follows from Section 1,
the homogenization problem may be solved for specific material numerically by using the
appropriate mathematical methods. Note that the commercial numerical sofware (ANSYS
and similar FEM software) is not adopted for the solution of such kinds of problems.

The evident way to verify the results obtained in this manuscript is the numerical
solution of the dynamical elasticity problem for a laminated media with initial stresses.
The authors do not have information about such types of published papers. So, the authors
cannot conclude for sure whether such a problem may be solved with commercial software.
If it can be completed, the solution will require a separate paper.
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