
Citation: Tamsaouete, K.; Alzalg, B.

An Algebraic-Based Primal–Dual

Interior-Point Algorithm for Rotated

Quadratic Cone Optimization.

Computation 2023, 11, 50.

https://doi.org/10.3390/

computation11030050

Academic Editor: Demos T. Tsahalis

Received: 21 January 2023

Revised: 18 February 2023

Accepted: 22 February 2023

Published: 2 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

An Algebraic-Based Primal–Dual Interior-Point Algorithm for
Rotated Quadratic Cone Optimization
Karima Tamsaouete † and Baha Alzalg *,†

Department of Mathematics, The University of Jordan, Amman 11942, Jordan
* Correspondence: b.alzalg@ju.edu.jo
† These authors contributed equally to this work.

Abstract: In rotated quadratic cone programming problems, we minimize a linear objective function
over the intersection of an affine linear manifold with the Cartesian product of rotated quadratic
cones. In this paper, we introduce the rotated quadratic cone programming problems as a “self-made”
class of optimization problems. Based on our own Euclidean Jordan algebra, we present a glimpse
of the duality theory associated with these problems and develop a special-purpose primal–dual
interior-point algorithm for solving them. The efficiency of the proposed algorithm is shown by
providing some numerical examples.

Keywords: rotated quadratic cone; Jordan algebras; interior-point methods; convex programming

1. Introduction

Rotated quadratic cone programming (RQCP) problems are convex conic optimization
problems [1–6] in which we minimize a linear objective function over the intersection of
an affine linear manifold with the Cartesian product of rotated quadratic cones, where the
nth-dimensional rotated quadratic cone is defined as

Rn
+ ,

{
x = (x1; x2; x̄) ∈ R+ ×R+ ×Rn−2 : x1/2

1 x1/2
2 ≥ ‖x̄‖

}
, (1)

where, R+ is the set of positive real numbers and ‖ · ‖ is the Euclidean norm.
Many optimization problems are formulated as RQCPs (see Section 2.3 in [7] and

Section 4 in [8], for example, but not limited to the problem of minimizing the harmonic
mean of positive affine functions, the problem of maximizing the geometric mean of non-
negative affine functions, the logarithmic Tchebychev approximation problem, problems
involving fractional quadratic functions, problems with inequalities involving rational
powers, problems with inequalities involving p-norms, and problems involving pairs of
quadratic forms (also called minimum-volume covering ellipsoid problems).

It is known that the rotated quadratic cone is converted into the second-order cone
under a linear transformation. In fact, the restricted hyperbolic constraint x1x2 ≥ ‖x̄‖2

is equivalent to the set of linear and second-order cone constraints: u = x1 + x2, v =
x1 − x2, w = (v; 2x̄), and u ≥ ‖w‖. Based on this observation, all earlier work on RQCP
problems has converted them to second-order cone programming problems, but while
doing this can be easier than developing special-purpose algorithms for solving RQCPs,
this approach may not always be the cheapest one in terms of computational cost.

Mathematical optimization together with evolutionary algorithms are today a state-of-
the-art methodology in solving hard problems in machine learning and artificial intelligence,
see for example [9–11]. Going back years in time, the introduction of the interior-point
methods (IPMs) during in the 1980s perhaps was one of the most notable developments
in the field of mathematical programming since its origination in the 1940s. Karmarker
[12] was the first to propose them for linear programming, where their work generated a
stir due to the superiority of their polynomial complexity results over that of the simplex

Computation 2023, 11, 50. https://doi.org/10.3390/computation11030050 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation11030050
https://doi.org/10.3390/computation11030050
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://doi.org/10.3390/computation11030050
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation11030050?type=check_update&version=1

Computation 2023, 11, 50 2 of 18

method. It then seemed natural to expand these methods created for linear programming
to solve nonlinear programs.

Nesterov and Nemirovskii [3] laid the groundwork for IPMs to solve convex pro-
gramming problems, where primal (and dual) IPMs based on the so-called self-concordant
barrier functions were taken into consideration. Nesterov and Todd [4] later presented sym-
metric primal–dual IPMs for problems over a specific class of cones termed as self-scaled
cones, allowing for a symmetric approach to the primal and dual problems.

We point out that Nesterov and Todd’s work [4] did not take a Jordan algebraic ap-
proach, but rather Güler’s work [13] is credited with being the first to link Jordan algebras
and optimization. Güler [13] noted that the family of self-scaled cones are the same as
the family of the so-called symmetric cones for which a thorough classification theory is
available [14]. The characteristics of these algebras act as a key toolkit for the analysis
of IPMs for optimization over symmetric cones. Due to their diverse applications, the
most important classes of symmetric cone optimization problems are linear programming,
second-order cone programming [7], and semi-definite programming [15] (see also Part
IV in [16] which gives a thorough presentation of these three classes of optimization prob-
lems). Several IPMs have been developed for these classes of conic optimization problems;
for example, [2,7,15,17–24].

There are two classes of IPMs for solving linear and non-linear convex optimization
problems. The first class solely uses dual or primal methods (see, for example, [25–27]).
The second class is based on primal–dual methods, which were developed by [23] and [24]
and are more useful and efficient than the first. These methods involve applying Newton’s
method to the Karush–Kuhn–Tucker (KKT) system up until a convergence condition
is satisfied.

In [28], the authors have set up the Euclidean Jordan algebra (EJA) associated with
the rotated quadratic cone and presented several spectral and algebraic characteristics
of this EJA, where the authors have found that the rotated quadratic cone is the cone of
squares of some EJAs (confirming that it is a symmetric cone). To our knowledge, no
specialized algorithms for RQCPs that make use of the EJA of the underlying rotated
quadratic cones. This paper is an attempt to introduce RQCPs as another self-contained
paradigm of symmetric cone optimization, where we introduce RQCP as a “self-made”
class of optimization problems and develop special purpose primal–dual interior-point
algorithms (second class of IPMs) for solving RQCP problems based on the EJA in [28],
which offers a useful set of tools for the analysis of IPMs related to RQCPs.

The so-called commutative class of primal–dual IPMs was designed by Monteiro and
Zhang [29] for semi-definite programming, and by Alizadeh and Goldfarb [7] for second-
order cone programming, and then extended by Schmieta and Alizadeh [30] for symmetric
cone programming. This paper uses the machinery of EJA built in [28] to carry out an ex-
tension of this commutative class to RQCP. We prove polynomial complexities for versions
of the short-, semi-long-, and long-step path-following IPMs using NT, HRVW/KSH/M, or
dual HRVW/KSH/M directions (equivalent to NT, XS, or SX directions in semi-definite
programming).

This paper is organized as follows: In Section 2, we calculate the derivatives of the
logarithmic barrier function associated with the rotated quadratic cone and prove the
corresponding self-concordance property. The formulation of the RQCP problems with the
optimality conditions are provided in Section 3. Section 4 applies Newton’s method and
discusses the commutative direction. The proposed path-following algorithm for RQCP
and its complexity are given in Section 5. Section 6 shows the efficiency of the proposed
algorithm by providing some numerical results. We close this paper with Section 7, which
contains some concluding remarks.

2. The Algebra and the Logarithmic Barrier of the Rotated Quadratic Cone

In Table 1, we summarize the Jordan algebraic notions associated with the coneRn
+.

Computation 2023, 11, 50 3 of 18

Table 1. The algebraic notions and concepts associated withRn
+ (for more details, refer to [28]).

Notion/Concept Definition

In single-setting
Space Rn , {x = (x1; x2; x̄) : x1, x2 ∈ R+, x̄ ∈ Rn−2}
Rotated quadratic cone Rn

+ , {x ∈ Rn : x1/2
1 x1/2

2 ≥ ‖x̄‖}

Half-identity matrix Hn ,

 1
2 0 0T

0 1
2 0T

0 0 In−2


Rotation–reflection matrix Rn ,

0 1 0T

1 0 0T

0 0 −In−2


Positive semi-definiteness x �Rn

+
0 (or simply x � 0), which means that x ∈ Rn

+, i.e., x1/2
1 x1/2

2 ≥ ‖x̄‖
Positive definiteness x �Rn

+
0 (or simply x � 0), which means that x ∈ Int(Rn

+), i.e., x1/2
1 x1/2

2 > ‖x̄‖
Eigenvalues λ1,2(x) , x1x2 ± ‖x̄‖2

Eigenvectors c1,2(x) ,
(

1
2 ±

x1−x2

2
√

(x1−x2)2+4x̄T x̄
; 1

2 ∓
x1−x2

2
√

(x1−x2)2+4x̄T x̄
; ±x̄√

(x1−x2)2+4x̄T x̄

)
Trace trace(x) , λ1(x) + λ2(x) = x1 + x2
Determinant det(x) , λ1(x)λ2(x) = x1x2 − ‖x̄‖2

Identity e , c1(x) + c2(x) = (1; 1; 0)
Spectral decomposition of f (x) f (x) , f (λ1(x))c1(x) + f (λ2(x))c2(x); f is any real valued continuous func.

Inverse x−1 , λ−1
1 (x)c1(x) + λ−1

2 (x)c2(x) =
1

det(x)
Rx

Linear representation L(x) ,

x1 0 x̄T

0 x2 x̄T

1
2 x̄ 1

2 x̄ 1
2 (x1 + x2)In−2


Quadratic representation Qx , 2L(x)2 − L(x2) =

 x2
1 ‖x̄‖2 2x1 x̄T

‖x̄‖2 x2
2 2x2 x̄T

x1 x̄ x2 x̄ 2x̄x̄T + det(x)In−2


Quadratic operator Qx,y : Rn −→ Rn Qx,y , L(x)L(y) + L(y)L(x)− L(x ◦ y)

=

 x1y1 x̄Tȳ x1ȳT + y1 x̄T

x̄Tȳ x2y2 x2ȳT + y2 x̄T

y1
2 x̄ + x1

2 ȳ y2
2 x̄ + x2

2 ȳ x̄ȳT + ȳx̄T +
(

x1y2+x2y1
2 − x̄Tȳ

)
In−2


Jordan product ◦ : Rn ×Rn −→ Rn x ◦ y , L(x)y =

(
x1y1 + x̄Tȳ; x2y2 + x̄Tȳ; 1

2 (y1 + y2)x̄ + 1
2 (x1 + x2)ȳ

)
Inner product • : Rn ×Rn −→ R x • y , 1

2 trace (x ◦ y) = xTHy = 1
2 (x1y1 + x2y2) + x̄Tȳ

Frobenius norm ‖x‖F ,
√

λ2
1(x) + λ2

2(x) =
√

x2
1 + x2

2 + 2||x̄||2 =
√

2 x • x

Rank rk(Rn) , 2

In block-setting (r blocks)
Space R , Rn1 ×Rn2 × · · · ×Rnr

Cone R+ , Rn1
+ ×R

n2
+ × · · · ×R

nr
+

Elements/vectors x = (x(1); x(2); . . . ; x(r)), with x(i) ∈ Rni
+ for each i = 1, 2, . . . , r

Half-identity matrix H , Hn1 ⊕ Hn2 ⊕ · · · ⊕ Hnr

Rotation–reflection matrix R , Rn1 ⊕ Rn2 ⊕ · · · ⊕ Rnr

Positive semi-definiteness x � 0, which means x ∈ Rn
+, i.e., x(i) ∈ Rni

+ for each i = 1, 2, . . . , r
Positive definiteness x � 0, which means x ∈ Int(Rn

+), i.e., x(i) ∈ Int(Rni
+) for each i = 1, 2, . . . , r

Trace trace(x) , ∑r
i=1 trace(x(i))

Determinant det (x) , ∏r
i=1 det (x(i))

Identity e , (e(1); e(2); . . . ; e(r)).
Vector function f (x) f (x) , (f (x(1)); f (x(2)); . . . ; f (x(r))); f is any real valued continuous func.
Jordan product x ◦ y , (x(1) ◦ y(1); x(2) ◦ y(2); . . . ; x(r) ◦ y(r))

Inner product x • y , x(1) • y(1) + x(2) • y(2) + · · ·+ x(nr) • y(nr)

Dot product xTy , x(1)Ty(1) + · · ·+ x(r)Ty(r)

Linear representation L(x) , L(x(1))⊕ L(x(2))⊕ · · · ⊕ L(x(r))
Quadratic representation Qx , Qx(1) ⊕Qx(2) ⊕ · · · ⊕Qx(r)

Quadratic operator Qx,y , Qx(1) ,y(1) ⊕Qx(2) ,y(2) ⊕ · · · ⊕Qx(r) ,y(r)

Frobenius norm ‖x‖F , ∑r
i=1 ‖x(i)‖F

Rank rk(R) , 2r

Computation 2023, 11, 50 4 of 18

In this section, we compute the derivatives of the logarithmic barrier associated with
our cone and use them to prove the self-concordance of this barrier. To obtain these results,
we do not use concepts outside of the EJA established in [28] and summarized in Table 1.

Associated with the cone Rn
+, the logarithmic barrier function b : Int(Rn

+) → R is
defined as

b(x) , − ln det(x) = − ln
(
x1x2 − ‖x̄‖2). (2)

We provide a proof the following lemma, which is a useful tool in order to prove some
fundamental properties of our barrier. The inner product •, inverse x−1, norm ‖ · ‖F, and
matrices L(·) and Q· used in Lemma 1 are defined in Table 1.

Lemma 1. Let x ∈ Rn
+ having x � 0 and h ∈ Rn

+ be a non-zero vector. Then,

(i) The gradient ∇xb(x) = −2Hx−1. Therefore, ∇xb(x)[h] = −2 h • x−1.
(ii) The Hessian ∇2

xxb(x) = 2HQx−1 . Therefore, ∇2
xxb(x) [h, h] = ‖Qx−1/2 h‖2

F.
(iii) The third derivative ∇3

xxxb(x)[h, h, h] = −4(Qx−1/2 h) • (Qx−1/2 h)2.

Proof of Lemma 1. For item (i), we have

∇xb(x) =
−1

det(x)

 x2
x1
−2x̄

 =
−1

det(x)
R

x1
x2
2x̄

 =
−2

det(x)
R

x1/2
x2/2

x̄

 =
−2

det(x)
RH

x1
x2
x̄

 = −2Hx−1.

Item (ii) follows by using item (i) and noting that the Jacobean of x−1 is

Jxx−1 = Jx


x2

x1x2 − ‖x̄‖2
x1

x1x2 − ‖x̄‖2
x̄

x1x2 − ‖x̄‖2

 =
−1

det(x)2

 −x2
2 −||x̄||2 2x2 x̄T

−||x̄||2 −x2
1 2x1 x̄T

x2 x̄ x1 x̄ −2x̄x̄T − det(x)In−2

 = −Qx−1 ,

and that

∇2
xxb(x) [h, h] = 2hT(HQx−1

)
h = 2

(
Qx−1/2 h

)TH
(
Qx−1/2 h

)
= 2

(
Qx−1/2 h

)
•
(
Qx−1/2 h

)
= ‖Qx−1/2 h‖2

F.

For item (iii), note that

∇xQx−1 [h, h] = ∇x
(
2L
(
x−1)2 − L

(
x−2))[h, h]

= −2
(
L(Qx−1 h)L

(
x−1)+ L

(
x−1)L(Qx−1 h)− L

(
Qx−1 h ◦ x−1))h

= −2QQx−1 h,x−1 h = − 2Qx−1/2 L(Qx−1/2 h)Qx−1/2 h.

It follows that

∇3
xxxb(x)[h, h, h] = ∇x

(
hT∇2

xxb(x)h
)
[h]

= 2∇x
(
hTHQx−1 h

)
[h]

= −4hTHQx−1/2 L(Qx−1/2 h)Qx−1/2 h
= −4(Qx−1/2 h)THL(Qx−1/2 h)Qx−1/2 h = − 4(Qx−1/2 h) • (Qx−1/2 h)2,

where we used the fact that L(Qx−1/2 h)Qx−1/2 h = (Qx−1/2 h)2 to obtain the last equality. The
proof is complete.

The notion of self-concordance introduced by Nesterov and Nemirovskii [3] is essential
to the existence of polynomial-time interior-point algorithms for convex conic programming
problems. We have the following definition.

Definition 1 (Definition 2.1.1 in [3]). Let V be a finite-dimensional real vector space, G be an
open non-empty convex subset of V, and let f be a C3, convex mapping from G to R. Then, f is

Computation 2023, 11, 50 5 of 18

called α-self-concordant on G with the parameter α > 0 if for every x ∈ G and h ∈ V, the following
inequality holds ∣∣∣∣ ∇3

xxx f (x) [h, h, h]
∣∣∣∣ ≤ 2√

α

(
∇2

xx f (x) [h, h]
)3/2

. (3)

An α-self-concordant function f on G is called strongly α-self-concordant if f tends to infinity for
any sequence approaching a boundary point of G.

In the proof of the next theorem, we use the inequalities that

|x • y| ≤ 1
2
‖x‖F‖y‖F, and ‖x2‖F ≤ ‖x‖2

F,

for any x and y residing a Jordan algebra. These two inequalities can be seen by noting that

‖x2‖F =
√

λ4
1(x) + λ4

2(x) ≤ λ2
1(x) + λ2

2(x) = ‖x‖2
F,

and

|x • y| =
∣∣xTHy

∣∣ = ∣∣∣∣(H1/2x
)T

H1/2y
∣∣∣∣ ≤ ‖H1/2x‖2‖H1/2y‖2 =

√
xTHx

√
yTHy =

1
2
‖x‖F‖y‖F.

We are now ready to provide a proof for the following theorem.

Theorem 1. The logarithmic barrier function b(x) is a 1-strongly self-concordant barrier on
Int(Rn

+).

Proof of Theorem 1. Note that for any sequence approaching theRn
+ boundary point, b(·)

goes to infinity. Using items (ii) and (iii) in Lemma 1, we have∣∣∇3
xxxb(x)[h, h, h]

∣∣ = 4
∣∣(Qx−1/2 h) • (Qx−1/2 h)2

∣∣
≤ 2‖Qx−1/2 h‖F‖(Qx−1/2 h)2‖F
≤ 2‖Qx−1/2 h‖3

F

= 2
(
hT∇2

xxb(x)h
)3/2

= 2
(∣∣∇2

xxb(x)[h, h]
∣∣)3/2.

(4)

Thus, the inequality in (3) holds. Hence, the logarithmic barrier b(x) on Int(Rn
+) is 1-

strongly self-concordant.

3. Rotated Quadratic Cone Programming Problem and Duality

In this section, we introduce and define the RQCP problem along with a discussion of
the duality theory and the optimality conditions for these problems.

Let A ∈ Rm×n be a real matrix whose m rows reside in the Euclidean Jordan algebra
(Rn, ◦, •), and let AT be its transpose. Associated with A, we define the matrix–vector
product “A·” as

Ax , AHx = (a1 • x; a2 • x; . . . ; am • x),

where x ∈ Rn, ai ∈ Rn is the ith-row of A for i = 1, 2, . . . , m, and H is defined in Table 1.
The operator A is the half-identity matrix defined to map (Rn, ◦, •) into Rm, while the
transpose AT is defined to map Rm into (Rn, ◦, •). If x ∈ Rn and y ∈ Rm, one can easily
show that

(Ax)Ty = x • (ATy) (5)

An RQCP problem in the primal form is the problem

(P)


min c • x

s.t. Ax = b,

x � 0,

and its dual is (D)


max bTy

s.t. ATy � c, or (D)


max bTy

s.t. ATy + s = c,

s � 0,

Computation 2023, 11, 50 6 of 18

where x ∈ Rn is the primal variable, y ∈ Rm is the dual variable, and s ∈ Rn is the dual
slack variable.

Let F , FP ×FD and F ◦ , F ◦P ×F ◦D denote the feasible and strictly feasible primal-
dual sets for the pair (P, D), respectively, where

FP ,
{

x ∈ Rn : Ax = b, x � 0
}

(the primal feasibility set),
FD ,

{
(y, s) ∈ Rm ×Rn : ATy + s = c, s � 0

}
(the dual feasibility set),

F ◦P ,
{

x ∈ Rn : Ax = b, x � 0
}

(the strict primal feasibility set),
F ◦D ,

{
(y, s) ∈ Rm ×Rn : ATy + s = c, s � 0

}
(the strict dual feasibility set).

Problem (P) (respectively, Problem (D)) is said to be strictly feasible if F ◦P 6= ∅ (re-
spectively, F ◦D 6= ∅). Now, we make two assumptions about the pair (P, D): First, we
assume that the matrix A has a full row rank. This assumption is standard and is added
for convenience. Second, we assume that the strictly feasible set F 0 is non-empty. This
assumption guarantees that the strong duality holds for the RQCP problem and suggests
that both Problems (P) and (D) have a unique solution.

We give with a proof the following weak duality result.

Lemma 2 (Weak duality). If x ∈ FP and (y, s) ∈ FD, then the duality gap is c • x− bTy =
x • s ≥ 0.

Proof of Theorem 2. Let x ∈ FP and (y, s) ∈ FD, then ATy + s = c,Ax = b, and x, s � 0.
Then, using (5), it follows that

c • x− bTy = (ATy + s) • x− (Ax)Ty = (ATy) • x + x • s− (Ax)Ty = x • s.

Because x, s � 0, we have that

x1x2s1s2 ≥ ‖x̄‖2 ‖s̄‖2. (6)

Applying the arithmetic inequality to x1s1 and x2s2, we obtain

1
4
(x1s1 + x2s2)

2 ≥ x1x2s1s2. (7)

Combining (6) and (7), we have (x1s1 + x2s2)
2/4 ≥ ‖x̄‖2 ‖s̄‖2. Taking the square root of

both sides and applying the Cauchy–Schwartz inequality, we obtain

x • s =
1
2
(x1s1 + x2s2) + x̄Ts̄ ≥ ‖x̄‖ ‖s̄‖+ x̄Ts̄ ≥

∣∣x̄Ts̄
∣∣+ x̄Ts̄ ≥ 0.

The proof is complete.

It is known that the strong duality property can fail in general conic programming prob-
lems, but a slightly weaker property can be shown for them [3]. Using the Karush–Kuhn–
Tucker (KKT) conditions, we provide a proof of the following semi-strong duality result,
which provides conditions for such a slightly weaker property to hold in RQCP.

Lemma 3 (Semi-strong duality). Let Problems (P) and (D) be strictly feasible. If Problem (P) is
solvable, then so is its dual (D) and their optimal values are equal.

Computation 2023, 11, 50 7 of 18

Proof of Theorem 3. Since (P) is strictly feasible and solvable, then there is a solution
x ∈ FP to which the KKT conditions can be applied. According to this, there must be
Lagrange multiplier vectors y and s such that (x, y, s) satisfies the conditions

Ax = b,

ATy + s = c,

x • s = 0,

x, s � 0.

(8)

It follows that (D) can be solved using (y, s). Let us suppose that (u, v) is any feasible
solution to the dual problem (D); then,

bTu ≤ c • x = x • s + bTy = bTy,

where the inequality was obtained using weak duality (Lemma 2) and the last equality
was obtained using the last equation in (8). Since (u, v) was chosen arbitrarily, the optimal
solution to Problem (D) is (y, s) and c • x = bTy. The proof is complete.

The strong duality result in the following lemma can be obtained by applying the
duality relations to our problem formulation.

Theorem 2 (Strong duality). Let Problems (P) and (D) be strictly feasible; then, they must also
have optimal solutions, say x? and (y?, s?), respectively, and c • x? = bTy? (i.e., x? • s? = 0).

As one of the optimality conditions of RQCP, we describe the complementarity condi-
tion in the following lemma.

Lemma 4 (Complementarity condition). Let x, s ∈ Rn have x, s � 0. Then x • s = 0 if and
only if x ◦ s = 0.

Proof of Theorem 4. Let x, s ∈ Rn have x, s � 0. First, we prove the direction from left to
right. Assume that x • s = 0. To show that x ◦ s = 0, we must show that (see the definition
of the Jordan product “◦” used in Table 1)

(i) x1s1 + x̄Ts̄ = 0; (ii) x2s2 + x̄Ts̄ = 0; (iii)
1
2
(s1 + s2)x̄ +

1
2
(x1 + x2)s̄ = 0.

If (x1 = 0 and x2 = 0) or (s1 = 0 and s2 = 0), then x = 0 in the first case and s = 0 in the
second one, indicating that (i), (ii), and (iii) trivially hold. As a result, we need to consider
x1, x2 > 0 and s1, s2 > 0. Then, by taking the square root of both sides in (7), using the fact
that x, s � 0, and applying the Cauchy–Schwartz inequality, we obtain

−1
2
(x1s1 + x2s2) ≤ −(x1x2s1s2)

1/2 ≤ −‖x̄‖ ‖s̄‖ ≤ x̄Ts̄. (9)

Therefore, x • s = 1
2 (x1s1 + x2s2) + x̄Ts̄ = 0 if and only if x̄Ts̄ = − 1

2 (x1s1 + x2s2). This is
true if and only if the inequalities in (9) are satisfied as equalities. This simply holds true if
and only if either x = 0 or s = 0, in which (i), (ii), and (iii) are trivially held, or

x 	 0, s 	 0, x̄ = −βs̄, x1 = ‖x̄‖ = β‖s̄‖ = βs2, and x2 = ‖x̄‖ = β‖s̄‖ = βs1, (10)

where β > 0.
Note that the first equation in (10), or equivalently x̄ + βs̄ = 0, implies that ‖x̄‖2 +

βx̄Ts̄ = 0. Using (10), this can be written as

βs2
2 + x̄Ts̄ = 0 and βs2

1 + x̄Ts̄ = 0, or as x1s2 + x̄Ts̄ = 0 and x2s1 + x̄Ts̄ = 0.

Computation 2023, 11, 50 8 of 18

From (10), we have that s1 = s2. Then, x1s1 + x̄Ts̄ = 0 and x2s2 + x̄Ts̄ = 0, as desired in (i)
and (ii). For (iii), using (10) again, we have

x̄ + βs̄ = x̄ +
x1

s2
s̄ = 0 and x̄ + βs̄ = x̄ +

x2

s1
s̄ = 0.

This implies that (x1 + x2)s̄ + (s1 + s2)x̄ = 0, or as desired in (iii).
Now, we prove the direction from right to left. Let us assume that x ◦ s = 0. From

(i) and (ii), we have that x1s1 + x2s2 + 2x̄Ts̄ = 0, or x • s = 1
2 (x1s1 + x2s2) + x̄Ts̄ = 0 as

desired. The proof is complete.

From the above results, the following corollary is now immediate.

Corollary 1 (Optimality conditions). Let us assume that both Problems (P) and (D) are strictly
feasible. Then, (x, (y, s)) ∈ Rn ×Rm ×Rn is an optimal solution to the pair (P, D) if and only if

Ax = b,

ATy + s = c,

x ◦ s = 0,

x, s � 0.

4. The Newton System and Commutative Directions

In this section, we present the logarithmic barrier problems for the pair (P, D) and the
Newton system corresponding to them, as well as a subclass of the MZ family of search
directions known as the commutative directions.

The logarithmic barrier problems associated with the pair (P, D) are the problems

(Pµ)


min c • x− µ ln det(x)

s.t. Ax = b,

x � 0,

(Dµ)


max bTy + µ ln det(s)

s.t. ATy + s = c,

s � 0,

where µ , 1
2 x • s is a small positive scalar and is typically referred to as the

barrier parameter.
The solutions of the pair (Pµ, Dµ) can be characterized by the following perturbed

KKT optimality conditions.

Ax = b,

ATy + s = c,

x ◦ s = δµe,

x, s � 0,

(11)

where e = (1; 1; 0) is the identity vector of Rn as defined in Table 1, and δ ∈ (0, 1) is a
centering parameter that reduces the barrier term µ. For any µ > 0, System (11) has a
unique solution, indicated by (xµ, yµ, sµ), where xµ is called the µ-center for (P) and the
pair (yµ, sµ) is called the µ-center for (D). The set of all µ-centers that solve the perturbed
KKT system (11) is called the central path of the pair (P, D), and is defined as

CP ,
{
(xµ, yµ, sµ) ∈ F 0 : x ◦ s = δµe, µ > 0

}
.

Due the assumption that F 0 6= 0, the central path is well defined. As µ gets closer to
zero, the µ-central point (xµ, yµ, sµ) converges toward an ε-approximate solution (x?, y?, s?)
of (P, D).

Now, we reformulate the complementary condition x ◦ s = δµe in (11), which is a
direct consequence of Lemma 28 in [30].

Computation 2023, 11, 50 9 of 18

Lemma 5. Let x, s, p ∈ (Rn, ◦, •) be such that x, s � 0, and p is invertible (i.e., det(p) 6= 0).
Then x ◦ s = δµe if and only if Qpx ◦Qp−1 s = δµe.

In order to solve System (11), we apply Newton’s method to this system and obtain

A∆x = b−Ax,

AT∆y + ∆s = c− ATy− s,

Qpx ◦Qp−1 ∆s + Qp∆x ◦Qp−1 s = δµe−Qpx ◦Qp−1 s,

(12)

where (∆x, ∆y, ∆s) ∈ (Rn, ◦, •)× Rm × (Rn, ◦, •) is called the Newton search direction.
In the theory of Jordan algebra, two elements of a Jordan algebra operator commute

if they share the same set of eigenvectors. In particular, two vectors u, vs. ∈ Rn operator
commute if ci = ci(u) = ci(v) for i = 1, 2, i.e., u = λ1(u)c1 + λ2(u)c2 and v = λ1(v)c1 +
λ2(v)c2. The vectors x and s in System (12) may not operator commute. We need now to
scale the underlying system so that the scaled vectors operator commute. In practice, this
scaling is needed to guarantee that we iterate in the interior of the quadratic rotated cone.

Let C(x, s) be the set of nonsingular elements so that the scaled vectors operator
commute, i.e.,

C(x, s) =
{

p ∈ Rn : p nonsingular and Qpx and Qp−1 s operator commute
}

.

We call the set of directions (∆x, ∆y, ∆s) arising by choosing p from C(x, s) the commutative
class of directions for RQCP, and call a direction in this class a commutative direction.

As mentioned earlier, the commutative class of primal-dual IPMs was designed by
Monteiro and Zhang [29] for semidefinite programming, and by Alizadeh and Goldfarb [7]
for second-order cone programming, and then extended by Schmieta and Alizadeh [30] for
symmetric cone programming. We concentrate on three prominent choices of p, and each
choice leads to a different direction in the commutative class of search directions: First, the
choice p = s1/2 is referred to as the HRVW/KSH/M direction, and is equivalent to the XS
direction in semidefinite programming (introduced by Helmberg, Rendl, Vanderbei, and
Wolkowicz [31], and Kojima, Shindoh, and Hara [32] independently, and then rediscovered
by Monteiro [29]). Second, the choice p = x−1/2 is referred to as the dual HRVW/KSH/M
direction, and is equivalent to the SX direction in semidefinite programming. Third, the
choice p = (Qx1/2(Qx1/2 s)−1/2)−1/2 = (Qs−1/2(Qs1/2 x)1/2)−1/2 is equivalent to the NT
direction in semidefinite programming (introduced by Nesterov and Todd [4]).

Now, associated with p ∈ C(x, s), we make the following change of variables:

x→ x , Qpx, s→ s , Qp−1 s, c→ c , Qp−1 c, A→ A , AQp−1 , A → A , AHQp−1 .

Because Qp−1 = Q−1
p (see [28, Theorem 4.3]), System (12) is equivalent to

A∆x = rp,
AT∆y + ∆s = rd,

x ◦ ∆s + ∆x ◦ s = rc,
or equivalently

 A O O
O AT I

L(s) O L(x)

∆x
∆y
∆s

 =

rp
rd
rc

, (13)

where rp, rd, and rc are given by

rp , b−Ax, rd , c− ATy− s, rc , δµe− x ◦ s.

Applying block Gaussian elimination to (13), we obtained the Newton search direc-
tions (∆x, ∆y, ∆s):

∆x = L−1(s)
(
rc − L(x)∆s

)
,

∆y =
(
AL−1(s)L(x)AT)−1(rp +AL−1(s)(L(x)rd − rc)

)
,

∆s = rd − AT∆y.

Computation 2023, 11, 50 10 of 18

To obtain the search directions ∆x and ∆s for (12), we apply inverse scaling to ∆x and
∆s as follows:

∆x , Qp−1 ∆x and ∆s , Qp∆s.

Finally, we take a step size α so that the new point (x+, y+, s+) , (x, y, s) + α(∆x, ∆y, ∆s)
is generated in the neighborhood of the central path; see Figure 1.

Version February 18, 2023 submitted to Journal Not Specified 10 of 18

Applying block Gaussian elimination to (13), we obtained the Newton search directions
(∆x, ∆y, ∆s):

∆x = L−1(s)
(
rc − L(x)∆s

)
,

∆y =
(
AL−1(s)L(x)AT

)−1(
rp +AL−1(s)(L(x)rd − rc)

)
,

∆s = rd −AT∆y.

To get the search directions ∆x and ∆s for (12), we apply inverse scaling to ∆x and ∆s
as follows:

∆x ≜ Qp−1 ∆x and ∆s ≜ Qp∆s.

Finally, we take a step size α so that the new point (x+, y+, s+) ≜ (x, y, s) + α(∆x, ∆y, ∆s) 215

is generated in the neighborhood of the central path; see Figure 5.1. 216

5. Path-following interior-point algorithms 217

Primal-dual path-following IPMs for solving the pair (P, D) are introduced in this 218

section in three different lengths: short, semi-long, and long-step. 219

The generation of each iteration (x(k)µ , y(k)
µ , s(k)µ) in the neighborhood of the central path 220

CP is one of the main issues in the path-following IPMs, and we use proximity measure 221

functions to handle this. With our adherence to the central path, the duality gap sequence 222

{µk} will converge, and a bound on the number of iterations needed to get the optimal 223

solution of the pair problem (P, D) will be polynomial. 224

The standard way to classify the proximity measures is to measure the distance to a 225

specific point on the central path CP. More specifically, the proximity measures for x, s ≻ 0 226

are given as 227

dF(x, s) ≜ ∥Qx1/2s− µe}∥F =
√
λ1(Qx1/2s− µ)2 + λ2(Qx1/2s− µ)2,

d2(x, s) ≜ ∥Qx1/2s− µe}∥2 = max
{∣∣∣λ1(Qx1/2s) − µ

∣∣∣,
∣∣∣λ2(Qx1/2s) − µ

∣∣∣
}
,

d−∞(x, s) ≜ µ− λmin(Qx1/2s) = µ−min
{
λ1(Qx1/2s),λ2(Qx1/2s)

}
.

(14)

Central path

NeighborhoodNρ

Search direction

µ-centers

New solutions

ϵ-approximate solution

Figure 5.1. Alternating between steps to follow the central path.Figure 1. The alteration between steps to follow the central path.

5. Path-Following Interior-Point Algorithms

Primal–dual path-following IPMs for solving the pair (P, D) are introduced in this
section in three different lengths: short, semi-long, and long-step.

The generation of each iteration (x(k)µ , y(k)
µ , s(k)µ) in the neighborhood of the central path

CP is one of the main issues in the path-following IPMs, and we use proximity measure
functions to handle this. With our adherence to the central path, the duality gap sequence
{µk} will converge, and a bound on the number of iterations needed to obtain the optimal
solution of the pair problem (P, D) will be polynomial.

The standard way to classify the proximity measures is to measure the distance to a
specific point on the central path CP . More specifically, the proximity measures for x, s � 0
are given as

dF(x, s) , ‖Qx1/2 s− µe}‖F =
√

λ1(Qx1/2 s− µ)2 + λ2(Qx1/2 s− µ)2,

d2(x, s) , ‖Qx1/2 s− µe}‖2 = max
{∣∣λ1(Qx1/2 s)− µ

∣∣, ∣∣λ2(Qx1/2 s)− µ
∣∣},

d−∞(x, s) , µ− λmin(Qx1/2 s) = µ−min
{

λ1(Qx1/2 s), λ2(Qx1/2 s)
}

.

(14)

The three different distances in (14) lead to the following three neighborhoods along
the central path:

NF(γ) , {(x, y, s) ∈ F ◦ : dF(x, s) ≤ γµ},
N2(γ) , {(x, y, s) ∈ F ◦ : d2(x, s) ≤ γµ},
N−∞(γ) , {(x, y, s) ∈ F ◦ : d−∞(x, s) ≤ γµ},

(15)

where γ ∈ (0, 1) is a constant known as the neighborhood parameter.
By Proposition 21 in [30] , both Qx1/2 s and Qx1/2 s have the same eigenvalues, and

since all neighborhoods Nρ(γ) may be described in terms of the eigenvalue of Qx1/2 s,
one can see that the neighborhoods defined in (15) are scaling-invariant, i.e., (x, s) ∈

Computation 2023, 11, 50 11 of 18

Nρ(γ) if and only if
(x, s) ∈ Nρ(γ), where ρ can be selected as F, 2, or −∞.

Furthermore, given the eigenvalue characterization of dρ(x, s), we can find that
d−∞(x, s) ≤ d2(x, s) ≤ dF(x, s), and hence NF(γ) ⊆ N2(γ) ⊆ N−∞(γ).

The performance of the path-following IPMs for RQCP problems greatly depends
on the neighborhood Nρ(γ) of the central path and the centering parameter δ that we
select. These options allow us to divide the path-following IPMs for our problem into three
categories: Short, semi-long, and long-step. More specifically:

• Selecting NF(γ) as the neighborhood yields the short-step algorithm;
• Selecting N2(γ) as the neighborhood yields the semi-long-step algorithm;
• Selecting N−∞(γ) as the neighborhood yields the long-step algorithm.

We indicate that the long-step version of the algorithm seems to outperform the short-
step version of the algorithm in practical performance. In Table 2, we compare some of
the categorized versions of this algorithm. The proposed path-following interior-point
algorithm for solving the pair of problems (P, D) is described in Algorithm 1 and Figure 2.

Table 2. Contrasting some features of path-following IPMs in short, semi-long, and long-step versions.

Features Short-Step Algorithm Semi-Long-Step Algorithm Long-Step Algorithm

Neighborhood Nρ(γ) NF(γ) N−∞(γ) N2(γ)
Factor σ (0, 1) (0, 1) (0, 1)
Centering parameter δ 1− σ/

√
2r (0, 1) (0, 1)

No. of iter. in NT direction O(
√

2r log(1/ε)) O(2r log(1/ε)) O(2r log(1/ε))

No. of iter. in HRVW/KSH/M O(
√

2r log(1/ε)) O(2r log(1/ε)) O((2r)3/2 log(1/ε))
direction or its dual

Algorithm 1: A path-following interior algorithm for solving RQCP problem.
Initialize: a tolerance ε, a neighborhood parameter γ, a centering parameter δ;
Ensure: ε > 0, γ ∈ (0, 1), δ ∈ (0, 1);
choose an initial feasible solution (x(0), y(0), s(0)) ∈ Nρ(γ);
set µ0 = 1

2 x(0) • s(0);
set i = 0;

1 while µi ≥ εµ0 do
2 choose a scaling vector p ∈ C(x(i), s(i)) ;

3 find the Newton direction (∆x(i), ∆y(i), ∆s(i)) by solving System (13) ;

4 compute (∆x(i), ∆s(i)) by applying inverse scaling to (∆x(i), ∆s(i));
5 choose a step length αi;
6 obtain a new step from the previous step

(x(i+1), y(i+1), s(i+1)) = (x(i), y(i), s(i)) + αi(∆x(i), ∆y(i), ∆s(i)) ∈ Nρ(γ);
7 reduce barrier parameter µi+1 = 1

2 x(i+1) • s(i+1);
8 increment i← i + 1;
9 end while

Computation 2023, 11, 50 12 of 18

Begin
i = 0

Is µi ≤ εµ0? ε-optimal
solution

Choose a scal-
ing vector p

Compute
(∆x(i), ∆y(i), ∆s(i))

to find the
search direction
(∆x(i), ∆y(i), ∆s(i))

Update the solution,
reduce the bar-
rier parameter,

and set i = i + 1

No

Yes

Initialization
Initial solution (x(0), y(0), s(0)) ∈ Nρ(γ)

Initial barrier parameter µ0 = x(0) • s(0)/2
Ensure ε > 0, δ ∈ (0, 1), γ ∈ (0, 1)

Commutative class
C(x; s) = {p invertible : &x & s operator commute}
p = s1/2 XS direction
p = x−1/2 SX direction
p =

(
Qx1/2 (Qx1/2 s)−1/2)−1/2 NT direction

Newton direction
∆x = L−1(s)

(
rc − L(x)∆s

)
∆y =

(
AL−1(s)L(x)AT)−1(rp +AL−1(s)(L(x)rd − rc)

)
∆s = rd − AT∆y

Inverse scaling
∆x(i) = Qp−1 ∆x(i)

∆s(i) = Qp∆s(i)

Updating solution
x(i+1) ← x(i) + αi∆x(i)

y(i+1) ← y(i) + αi∆y(i)

s(i+1) ← s(i) + αi∆s(i)

µi+1 ← 1
2 x(i+1) • s(i+1)

Figure 2. A pseudocode for Algorithm 1.

The convergence and time complexity for Algorithm 1 is given in the following theorem.
This theorem is a consequence of Theorem 1 that we verified in Section 2 and Theorem 37
in [30] after taking the rotated quadratic coneRn

+ as our underlying symmetric cone.

Theorem 3. If each iteration in Algorithm 1 follows the NT direction, then the short-step al-
gorithm terminates in O((2r)1/2 log(1/ε)) iterations, and the semi-long and long-step algo-
rithms terminate in O(2r log(1/ε)) iterations. If each iteration in Algorithm 1 follows the
HRVW/KSH/M direction or dual HRVW/KSH/M direction, then the short-step algorithm termi-
nates inO((2r)1/2 log(1/ε)) iterations, the semi-long-step algorithm terminates inO(2r log(1/ε))
iterations, and the long-step algorithm terminates in O((2r)3/2 log(1/ε)) iterations.

Before closing this section and moving forward to our numerical results below, we
indicate that the above analysis can be carried out and extended word-by-word if Problem
(P, D) is given in multiple block-setting by using the notations introduced in Table 1.

6. Numerical Results

In this section, we will assess how well the proposed method performs when im-
plemented to some RQCP problems: The problem of minimizing the harmonic mean of
positive affine function, and some randomly generating problems. We also contrast the
numerical results of the proposed algorithm for the randomly generated problems with
those of the two symmetric cone programming software package systems: CVX [33] and
MOSEK [34].

Computation 2023, 11, 50 13 of 18

We produced our numerical results using MATLAB version R2021a on a PC with
an Intel (R) Core (TM) i3-1005G1 processor operating at 1.20 GHz and 4 GB of physical
memory. In the first numerical example, we consider a problem in multiple block setting.
The dimensions of our test problems are denoted by the letters m and n, and the number of
block splittings is denoted by r. “Iter” stands for the typical number of iterations needed to
obtain ε-optimal solutions, while “CPU” stands for the typical CPU time needed to reach
an ε-optimal solution to the underlying problem.

In all of our tests, we use the long-step path-following version of Algorithm 1, and
choose the dual HRVW/KSH/M direction (i.e., our scaling vector is p = x−1/2). Further-
more, when the condition of convergence is not satisfied at an iteration step, it will generate
a new solution that must be in the neighborhood of the central path. We choose the step
size of α that was proposed in [30].

Example 1 (Minimizing the harmonic mean of affine functions). We consider the problem of
minimizing the harmonic mean of (positive) affine functions of x ∈ Rn [7]:

min
r

∑
i=1

1
aT

i x + βi
min

r

∑
i=1

ui

s.t. aT
i x + βi > 0, i = 1, 2, . . . , r, which can be cast as s.t. ui(aT

i x + βi) ≥ 1, i = 1, 2, . . . , r,
dT

j x + hj ≥ 0, j = 1, 2, . . . , m; the RQCP problem ui ≥ 0, i = 1, 2, . . . , r,
dT

j x + hj ≥ 0, j = 1, 2, . . . , m.

We implement this problem for sizes n = 6, 12, 24, 30, 36, m = 3, 9, 15, and the number of blocks
r = 5, 10, 15, 20. We generate the coefficients ai, βi, dj and hj randomly from a list of numbers
uniformly distributed between −1 and 1 for all i = 1, 2, . . . , r and j = 1, 2, . . . , m. We take the
parameters ε = 10−6, σ = 0.55, and γ = 0.8. The initial solutions of x(0), s(0) are also chosen
randomly from a list of uniformly distributed numbers between −1 and 1, while y(0) is chosen as
the zero vector, and ui, i = 1, 2, · · · , r, are all set to take values between 0 and 1. We display the
numerical results obtained for this example in Table 3, and visualize them graphically in Figure 3.

Example 2 (Randomly generated problems). In this example, the coefficients A and b are
generated at random from a list of uniformly distributed numbers between −1 and 1. We set
b = Ax(0) and c = ATy(0) + s(0), and choose the parameters ε = 10−4, σ = 0.33 and γ = 0.9.
The size of the problem is given so that n = 2m, where m is ranging from 5 to 1000. The initial
solutions are chosen as follows: x(0) = e, s(0) = e and y(0) = 0. We display our numerical results
in Table 4, and visualize them graphically in Figure 4. The results from the CVX and MOSEK
solvers are also presented in Table 4 and Figure 4 for comparison purposes.

Table 3. The numerical results obtained for minimizing harmonic mean of affine functions in
Example 1.

m n r Iter. CPU(s) m n r Iter. CPU(s) m n r Iter. CPU(s)

3 6 5 2 0.0156 9 6 5 8 0.1562 15 6 5 32 0.4062
3 6 10 4 0.0781 9 6 10 16 0.0781 15 6 10 42 0.3125
3 6 15 5 0.1094 9 6 15 20 0.4844 15 6 15 44 0.5781
3 6 20 5 0.1562 9 6 20 15 0.5938 15 6 20 57 0.4844

3 12 5 5 0.0312 9 12 5 24 0.1094 15 12 5 27 0.5406
3 12 10 7 0.1094 9 12 10 27 0.2188 15 12 10 32 0.5546
3 12 15 8 0.2031 9 12 15 27 0.4804 15 12 15 24 0.7679
3 12 20 11 0.2931 9 12 20 32 0.5000 15 12 20 31 0.5932

3 24 5 11 0.1719 9 24 5 22 0.1875 15 24 5 36 0.5381
3 24 10 15 0.2500 9 24 10 25 0.2969 15 24 10 31 0.8344
3 24 15 16 0.1562 9 24 15 29 0.3750 15 24 15 52 0.9306
3 24 20 19 0.3901 9 24 20 33 0.5156 15 24 20 49 0.8656

Computation 2023, 11, 50 14 of 18

Table 3. Cont.

m n r Iter. CPU(s) m n r Iter. CPU(s) m n r Iter. CPU(s)

3 30 5 16 0.1904 9 30 5 23 0.1875 15 30 5 40 0.6265
3 30 10 20 0.1406 9 30 10 39 0.2969 15 30 10 44 0.9018
3 30 15 23 0.2812 9 30 15 23 0.2344 15 30 15 49 0.8031
3 30 20 26 0.3112 9 30 20 41 0.5469 15 30 20 54 0.8750

3 36 5 32 0.3938 9 36 5 28 0.1719 15 36 5 52 0.6925
3 36 10 19 0.2998 9 36 10 35 0.3906 15 36 10 54 0.7562
3 36 15 34 0.3438 9 36 15 39 0.3438 15 36 15 69 0.7906
3 36 20 26 0.5469 9 36 20 47 0.3125 15 36 20 72 0.9789

Table 4. The numerical results obtained for the randomly generated problems in Example 2.

Problem Size Algorithm 1 CVX MOSEK

(m, n) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s)

(5, 10) 3 0.0156 4 0.28 5 0.22
(10, 20) 5 0.0313 6 0.30 8 0.18
(20, 40) 5 0.0625 6 0.39 9 0.20
(30, 60) 6 0.1406 6 0.20 9 0.19
(40, 80) 6 0.1250 5 0.33 8 0.38
(50, 60) 9 0.0781 6 0.25 8 0.62
(60, 120) 12 0.2086 7 0.30 10 0.41
(70, 140) 11 0.2188 12 0.52 11 0.79
(80,160) 14 0.3100 21 0.38 17 0.60
(90, 180) 15 0.3343 13 0.49 15 0.79
(100, 200) 10 0.4531 14 0.66 19 0.74
(200, 400) 12 1.0900 15 0.44 8 1.85
(300,600) 7 4.0313 9 0.53 9 5.41
(400, 800) 10 9.804 14 1.02 19 11.97
(500, 1000) 22 18.6406 29 11.78 31 16.90
(600, 1200) 25 27.5938 30 41.03 37 31.67
(700, 1400) 39 48.2500 43 51.97 50 65.36
(800, 1600) 61 61.2813 73 72.77 86 94.64
(900, 1800) 53 65.4651 34 70.50 71 83.45
(1000, 2000) 66 74.7968 69 79.32 76 91.54

We can see overall that the computational results show that Algorithm 1 performs
well in practice. We can see from the numerical results shown in Tables 3 and 4 and
represented in Figures 3 and 4 that the number of iterations and CPU time required by
Algorithm 1 increase as the dimension of the underlying problem increases, indicating that
the dimension of the problem and the dimension of rotated quadratic cones have an impact
on the number of iterations and the amount of time required by the proposed algorithm.
Furthermore, when the randomly generated problems are solved using the CVX and Mosek
solvers, we can see that most of the solutions exhibited a slight bias toward Algorithm 1
in terms of both the number of iterations and CPU time. This is most likely because these
solvers begin at infeasible points or because the stopping condition of the algorithm used
in these solvers differs from that of Algorithm 1.

Computation 2023, 11, 50 15 of 18Version February 18, 2023 submitted to Journal Not Specified 15 of 18

5 10 15 20 25 30 35

0

10

20

30

n

It
er

w
he

n
m

=
3

5

10

15

20

k

5 10 15 20 25 30 35

0

0.2

0.4

0.6

n

C
PU

(s
)w

he
n

m
=

3

5

10

15

20

k

5 10 15 20 25 30 35

10

20

30

40

50

n

It
er

w
he

n
m

=
9

5

10

15

20

k

5 10 15 20 25 30 35

0.2

0.4

0.6

n

C
PU

(s
)w

he
n

m
=

9

5

10

15

20

k

5 10 15 20 25 30 35
20

30

40

50

60

70

n

It
er

w
he

n
m

=
15

5

10

15

20

k

5 10 15 20 25 30 35

0.4

0.6

0.8

1

n

C
PU

(s
)w

he
n

m
=

15

5

10

15

20

k

Figure 6.1. Dot plots of the numerical results obtained in Example 6.1.

We can see overall that the computational results show that Algorithm 1 performs 297

well in practice. We can see from the numerical results shown in Tables 6.1 and 6.2 and 298

represented in Figures 6.1 and 6.2 that the number of iterations and CPU time required by 299

Algorithm 1 increase as the dimension of the underlying problem increases, indicating that 300

the dimension of the problem and the dimension of rotated quadratic cones have an impact 301

on the number of iterations and the amount of time required by the proposed algorithm. 302

Furthermore, when the randomly-generated problems are solved using the CVX and Mosek 303

solvers, we can see that most of the solutions showed a slight bias toward Algorithm 1 in 304

terms of both the number of iterations and CPU time. This is most likely because these 305

solvers begin at infeasible points or because the stopping condition of the algorithm used 306

in these solvers differs from that of Algorithm 1. 307

Figure 3. Dot plots of the numerical results obtained in Example 1.

Computation 2023, 11, 50 16 of 18Version February 18, 2023 submitted to Journal Not Specified 16 of 18

5 10 20 30 40 50 60 70 80 90

5

10

15

20

m

N
um

be
r

of
it

er
at

io
ns

Results from Algorithm 1 Results from CVX
Results from MOSEK

10 20 30 40 50 60 70 80 90
0

0.25

0.5

0.75

m
C

PU
(s

)

Results from Algorithm 1
Results from CVX

Results from MOSEK

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

m

N
um

be
r

of
it

er
at

io
ns

0

50

100

100 200 300 400 500 600 700 800 900 1000
m

C
PU

(s
)

Figure 6.2. Two-dimensional plots for the numerical results in Example 6.2.

7. Concluding remarks 308

All earlier work on optimization problems over the rotated quadratic cones has 309

formulated these problems as second-order cone programming problems. While doing 310

this can be easier than developing special purpose algorithms for solving this class of 311

optimization problems, this approach may not always be the cheapest one in terms 312

of computational cost. In this paper, we have introduced the rotated quadratic cone 313

programming problems as a "self-made" class of optimization problems. We have proved 314

that the barrier function associated with our cone is strongly self-concordant. We have 315

discussed the duality theory associated to these problems, along with and development of 316

the commutative class of search directions, and have developed a primal-dual interior-point 317

algorithm rotated quadratic cone optimization problems based their own Euclidean Jordan 318

algebra. The efficiency of the proposed algorithm is shown by providing some numerical 319

examples and comparing some of them with results from MOSEK and CVX solvers. 320

The proposed algorithm is attractive from an algebraic point of view. Most of this 321

attractiveness comes from exploiting the algebraic structure of the quadratic rotated 322

cone which allowed us to explicitly give expressions for the inverse operator, the linear 323

representation, and the quadratic operator, and use these operators to compute the 324

derivatives of the barrier function explicitly. In spite of its attractiveness, the algorithm has 325

several limitations such as producing a good starting point, developing a practical step 326

length selection procedure in the primal space, and reducing a barrier parameter with a 327

practical strategy in our setting. These limitations, however, could be addressed in a future 328

research paper developing practical implementations. Future work can be performed 329

on developing algorithms for solving mixed-integer rotated quadratic cone optimization 330

problems. 331

Figure 4. Two-dimensional plots for the numerical results in Example 2.

7. Concluding Remarks

All earlier work on optimization problems over the rotated quadratic cones has formu-
lated these problems as second-order cone programming problems, and while doing this
can be easier than developing special-purpose algorithms for solving this class of optimiza-
tion problems, this approach may not always be the cheapest one in terms of computational
cost. In this paper, we have introduced the rotated quadratic cone programming problems
as a “self-made” class of optimization problems. We have proved that the barrier func-
tion associated with our cone is strongly self-concordant. We have discussed the duality
theory associated with these problems, along with the development of the commutative
class of search directions, and have developed a primal–dual interior-point algorithm
rotated quadratic cone optimization problems based on our own Euclidean Jordan algebra.
The efficiency of the proposed algorithm is shown by providing some numerical examples
and comparing some of them with results from MOSEK and CVX solvers.

The proposed algorithm is attractive from an algebraic point of view. Most of this
attractiveness comes from exploiting the algebraic structure of the quadratic rotated cone
which allowed us to explicitly give expressions for the inverse operator, the linear repre-
sentation, and the quadratic operator, and use these operators to compute the derivatives
of the barrier function explicitly. In spite of its attractiveness, the algorithm has several
limitations such as producing a good starting point, developing a practical step length
selection procedure in the primal space, and reducing the barrier parameter with a practical

Computation 2023, 11, 50 17 of 18

strategy in our setting. These limitations, however, could be addressed in a future research
paper developing practical implementations. Future work can be performed on developing
algorithms for solving mixed-integer rotated quadratic cone optimization problems.

Author Contributions: K.T. and B.A. conceived the idea, set up the analysis, wrote the proofs,
designed and performed the experiments, analyzed the results, drafted the initial manuscript, and
revised the final manuscript. All authors have read and agreed to this version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors thank Blake Whitman from The Ohio State University for reading
the manuscript and pointing out some printing errors. The authors also thank the two anonymous
referees for their constructive comments and suggestions for improvements.

Conflicts of Interest: The authors have no competing interests to declare.

Abbreviations

The following abbreviations are used in this manuscript:
RQCP Rotated quadratic cone programming
EJA Euclidean Jordan algebra
IPM Interior-point method
KKT Karush–Kuhn–Tucker
Iter Number of iterations
CPU Central processing unit

References
1. Montoya, O.; Gil-González, W.; Garcés, A. On the conic convex approximation to locate and size fixed-step capacitor banks in

distribution networks. Computation 2022, 10, 32. [CrossRef]
2. Alzalg, B. A primal-dual interior-point method based on various selections of displacement step for symmetric optimization.

Comput. Optim. Appl. 2019, 72, 363–390. [CrossRef]
3. Nesterov, Y.; Nemirovskii, A. Interior-Point Polynomial Algorithms in Convex Programming; SIAM: Philadelphia, PA, USA, 1994.
4. Nesterov, Y.E.; Todd, M.J. Self-scaled barriers and interior-point methods for convex programming. Math. Oper. Res. 1997, 22,

1–42. [CrossRef]
5. Manshadi, S.D.; Liu, G.; Khodayar, M.E.; Wang, J.; Dai, R. A convex relaxation approach for power flow problem. J. Mod. Power

Syst. Clean Energy 2019, 7, 1399–1410. [CrossRef]
6. Manshadi, S.D.; Liu, G.; Khodayar, M.E.; Wang, J.; Dai, R. A distributed convex relaxation approach to solve the power flow

problem. IEEE Syst. J. 2019, 14, 803–812. [CrossRef]
7. Alizadeh, F.; Goldfarb, D. Second-order cone programming. Math. Program. 2003, 95, 3–51. [CrossRef]
8. Alzalg, B.; Pirhaji, M. Elliptic cone optimization and primal–dual path-following algorithms. Optimization 2017, 66, 2245–2274.

[CrossRef]
9. Malakar, S.; Ghosh, M.; Bhowmik, S.; Sarkar, R.; Nasipuri, M. A GA based hierarchical feature selection approach for handwritten

word recognition. Neural. Comput. Appl. 2020, 32, 2533–2552. [CrossRef]
10. Bacanin, N.; Stoean, R.; Zivkovic, M.; Petrovic, A.; Rashid, T.A.; Bezdan, T. Performance of a novel chaotic firefly algorithm with

enhanced exploration for tackling global optimization problems: Application for dropout regularization. Mathematics 2021, 9,
2705. [CrossRef]

11. Tuba, E.; Bacanin, N. An algorithm for handwritten digit recognition using projection histograms and SVM classifier. In
Proceedings of the 2015 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 24–26 November 2015; pp. 464–467.

12. Karmarkar, N. A new polynomial-time algorithm for linear programming. In Proceedings of the Sixteenth Annual ACM
Symposium on Theory of Computing, Washington, DC, USA, 30 April–2 May 1984; pp. 302–311.

13. Güler, O. Barrier functions in interior point methods. Math. Oper. Res. 1996, 21, 860–885. [CrossRef]
14. Faraut, J. Analysis on Symmetric Cones; Oxford Mathematical Monographs: Oxford, UK, 1994.
15. Todd, M. Semidefinite optimization. Acta Numer. 2001, 10, 515–560. [CrossRef]
16. Alzalg, B. Combinatorial and Algorithmic Mathematics: From Foundation to Optimization; Kindle Direct Publishing: Seattle, WA, USA,

2022.

http://doi.org/10.3390/computation10020032
http://dx.doi.org/10.1007/s10589-018-0045-8
http://dx.doi.org/10.1287/moor.22.1.1
http://dx.doi.org/10.1007/s40565-019-0525-6
http://dx.doi.org/10.1109/JSYST.2019.2913133
http://dx.doi.org/10.1007/s10107-002-0339-5
http://dx.doi.org/10.1080/02331934.2017.1360888
http://dx.doi.org/10.1007/s00521-018-3937-8
http://dx.doi.org/10.3390/math9212705
http://dx.doi.org/10.1287/moor.21.4.860
http://dx.doi.org/10.1017/S0962492901000071

Computation 2023, 11, 50 18 of 18

17. Alzalg, B. Homogeneous self-dual algorithms for stochastic second-order cone programming. J. Optim. Theory Appl. 2014, 163,
148–164. [CrossRef]

18. Alzalg, B. Volumetric barrier decomposition algorithms for stochastic quadratic second-order cone programming. Appl. Math.
Comput. 2015, 265, 494–508. [CrossRef]

19. Alzalg, B. A logarithmic barrier interior-point method based on majorant functions for second-order cone programming. Optim.
Lett. 2020, 14, 729–746. [CrossRef]

20. Alzalg, B.; Badarneh, K.; Ababneh, A. An infeasible interior-point algorithm for stochastic second-order cone optimization. J.
Optim. Theory Appl. 2019, 181, 324–346. [CrossRef]

21. Alzalg, B.; Gafour, A.; Alzaleq, L. Volumetric barrier cutting plane algorithms for stochastic linear semi-infinite optimization.
IEEE Access 2019, 8, 4995–5008. [CrossRef]

22. Alzalg, B.; Pirhaji, M. Primal-dual path-following algorithms for circular programming. Commun. Comb. Optim. 2017, 2, 65–85.
23. Kojima, M.; Mizuno, S.; Yoshise, A. A primal-dual interior point algorithm for linear programming. In Progress in Math. Program;

Springer: New York, NY, USA, 1989; pp. 29–47.
24. Monteiro, R.D.; Adler, I. Interior Path Following Primal-Dual Algorithms. Part I: Linear Programming. Math. Program. 1989, 44,

27–41. [CrossRef]
25. Alzalg, B. Primal interior-point decomposition algorithms for two-stage stochastic extended second-order cone programming.

Optimization 2018, 67, 2291–2323. [CrossRef]
26. Goldfarb, D.; Liu, S. An O(n3L) Primal interior point algorithm for convex quadratic programming. Math. Program. 1991, 49,

325–340. [CrossRef]
27. Tiande, G.; Shiquan, W. Properties of primal interior point methods for QP. Optimization 1996, 37, 227–238. [CrossRef]
28. Alzalg, B.; Tamsaouete, K.; Benakkouche, L.; Ababneh, A. The Jordan Algebraic Structure of the Rotated Quadratic Cone.

Submitted for Publication. 2017. Available online: https://optimization-online.org/wp-content/uploads/2023/01/RQC.pdf
(accessed on 31 January 2023).

29. Monteiro, R.D.C.; Zhang, Y. A unified analysis for a class of path-following primal-dual interior-point algorithms for semidefinite
programming. Math. Program. 1998, 81, 281–299. [CrossRef]

30. Schmieta, S.H.; Alizadeh, F. Extension of primal-dual interior point algorithms to symmetric cones. Math. Program. 2003, 96,
409–438. [CrossRef]

31. Helmberg, C.; Rendl, F.; Vanderbei, R.J.; Wolkowicz, H. An interior-point method for semidefinite programming. SIAM J. Optim.
1996, 6, 342–361. [CrossRef]

32. Kojima, M.; Shindoh, S.; Hara, S. Interior-point methods for the monotone semidefinite linear complementarity problem in
symmetric matrices. SIAM J. Optim. 1997, 7, 86–125. [CrossRef]

33. Grant, M.; Boyd, S.; Ye, Y. CVX: Matlab Software for Disciplined Convex Programming (Webpage and Software); CVX Research, Inc.:
Austin, TX, USA, 2009.

34. Mosek ApS. Mosek Optimization Toolbox for Matlab. In User’s Guide and Reference Manual; Version 4; Mosek ApS: Copenhagen,
Denmark, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10957-013-0428-z
http://dx.doi.org/10.1016/j.amc.2015.05.014
http://dx.doi.org/10.1007/s11590-019-01404-1
http://dx.doi.org/10.1007/s10957-018-1445-8
http://dx.doi.org/10.1109/ACCESS.2019.2962840
http://dx.doi.org/10.1007/BF01587075
http://dx.doi.org/10.1080/02331934.2018.1533553
http://dx.doi.org/10.1007/BF01588795
http://dx.doi.org/10.1080/02331939608844216
https://optimization-online.org/wp-content/uploads/2023/01/RQC.pdf
http://dx.doi.org/10.1007/BF01580085
http://dx.doi.org/10.1007/s10107-003-0380-z
http://dx.doi.org/10.1137/0806020
http://dx.doi.org/10.1137/S1052623494269035

	Introduction
	The Algebra and the Logarithmic Barrier of the Rotated Quadratic Cone
	Rotated Quadratic Cone Programming Problem and Duality
	The Newton System and Commutative Directions
	Path-Following Interior-Point Algorithms
	Numerical Results
	Concluding Remarks
	References

