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Abstract: This study presents a methodology that combines artificial multiple intelligence systems
(AMISs) and machine learning to forecast the ultimate tensile strength (UTS), maximum hardness
(MH), and heat input (HI) of AA-5083 and AA-6061 friction stir welding. The machine learning
model integrates two machine learning methods, Gaussian process regression (GPR) and a support
vector machine (SVM), into a single model, and then uses the AMIS as the decision fusion strategy to
merge SVM and GPR. The generated model was utilized to anticipate three objectives based on seven
controlled/input parameters. These parameters were: tool tilt angle, rotating speed, travel speed,
shoulder diameter, pin geometry, type of reinforcing particles, and tool pin movement mechanism.
The effectiveness of the model was evaluated using a two-experiment framework. In the first
experiment, we used two newly produced datasets, (1) the 7PI-V1 dataset and (2) the 7PI-V2 dataset,
and compared the results with state-of-the-art approaches. The second experiment used existing
datasets from the literature with varying base materials and parameters. The computational results
revealed that the proposed method produced more accurate prediction results than the previous
methods. For all datasets, the proposed strategy outperformed existing methods and state-of-the-art
processes by an average of 1.35% to 6.78%.

Keywords: artificial multiple intelligence system; friction stir welding; heat input; ultimate tensile
strength; maximum hardness; machine learning combination model

1. Introduction

Aluminum alloys are primary materials used for parts of products in many industries,
such as the aviation, automotive, railroad, and marine industries, because of their resistance
to chemical reaction corrosion, robustness to force, and formability [1–3]. In particular,
AA5XXX and AA6XXX alloys are utilized in various advanced commercial applications
because of their strength and good weldability [4,5]. These materials are not avoided for
welding complex dissimilar joints. However, in the fusion welding process for complex
joints, dissimilar aluminum alloys have low weldability because of differences in chemical
composition, mechanical properties, thermal expansion coefficient, and melting point which
manifest as metallurgical problems such as distortion, shrinkage, and porosity resulting
from the melting and solidification in the weld line [6–8]. Solid-state welding is a method
used for welding dissimilar materials which has effective weldability and reduces problems
in the weld seam because of the low melting point temperature [9–11]. The friction stir
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welding (FSW) process results in good weld quality, and the weld seam of the two materials
has good mechanical properties. However, it is difficult to generate the parameters for
dissimilar welding because of the variety of process parameter relationships and their
impact on the specification of the weld seam quality [12,13].

There has been much research carried out into FSW of dissimilar aluminum alloys,
including relative studies of process parameters and their effect on mechanical properties
and metallurgical structure, and these are essential considerations in the configuration
of the weld line [14]. The process parameters that influence weld seam quality are: tool
rotational speed (TRS), tool travel speed (TTS), shoulder diameter (SD), pin diameter (PD),
pin length (PL), penetration depth (PeD), tool tilt angle (TA), pin type (PT), tool travel-
ing method (TM), type of reinforcement particles (TP), and filled additives techniques
(TAD) [15–20]. Unsuitable process parameters result in insufficient heat generation and
mixing of material, which lead to metallurgical changes involving the grain size, microstruc-
ture, defects, and intermetallic compound phases, as well as precipitation in the nugget
(NZ), thermomechanically affected (TMAZ), and heat-affected zones (HAZ) [21–24]. As a
result, the mechanical properties are not as anticipated. For FSW, the related parameters
need to be controlled to achieve good metallurgical structure and mechanical strength.

Luesak et al. [25] reported optimal welding parameters using a modified differential
evolution approach in the dissimilar welding of AA5083–AA6061, and particles reinforced
the weld seam in the multiresponse process. The welding parameters that influence
the metallurgical structure and strength of the weld seam are: rotational speed, tool
travel speed, shoulder diameter, tilt angle, pin geometry, type of particles, and tool pin
movement. The significant desired responses defining the quality and strength of an
FSW weld line are: ultimate tensile strength (UTS), maximum hardness (MH), and heat
input (HI). Controlling the welding parameters is essential for the generation of sound
mechanical properties [26]. In [27], the author stated that multiobjective optimization of
UTS and MH could be predicted using the controllable parameter values as inputs in
a prediction model. Examples of multiobjective function prediction methods from the
literature include response surface methodology (RSM) [28,29] and grey relation analysis
(GRA) [30,31]. Furthermore, the authors of [32] applied an experimental design to develop
an artificial multiple intelligence system (AMIS) to solve both single and multiple objectives
in FSW and identify an optimal solution.

In recent years, friction stir welding processes have applied artificial intelligence (AI)
methods extensively, including in industrial development research [33,34]. To predict
mechanical properties, Senapati et al. [35] used an artificial neural network (ANN) sim-
ulation involving tensile and yield strength, elongation, bending stress, and grain size,
and taking tool rotational speed (TRS), tool travel speed (TTS), and penetration depth
(PeD) into consideration. In addition, [36] used a Mamdani-type fuzzy logic model in FSW
to predict tensile strength and weld seam hardness, and [37] applied the support vector
machine (SVM) method and ANN modeling. Furthermore, [38] simulated FSW parameters
and responses using an ANN approach with regard to the hardness in the heat-affected
zone (HAZ) and the peak temperature in the stir zone and the HAZ. The result was a
solution identical to that in the literature. In the past, machine learning (ML) was often
used to sciences and engineering [39] including noisy and sparse data [40]. Therefore,
machine learning was used to forecast the multiobjectives of weld seam properties and
remains important when combined with AI for high performance. In [41,42], the authors
demonstrated the application of AI using the “unlike entirety model” to categorize types
of drug resistance in tuberculosis patients and to identify and classify unsavory images.
Application of the unlike entirety AI model for forecasting mechanical properties should
provide higher-quality solutions. Furthermore, ensemble machine learning (EML) has been
developed for use in many forecasting models together with other approaches such as
ML to successfully optimize parameters [43]. In [44], the author set out an approach for
the categorization of types of drug resistance in tuberculosis patients, and [31] applied the
EDL approach to classify irregularities in medical images which were unnoticed when
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checked by radiologists. Our literature review found that the EDL and EML methods
provided effective prediction results when compared to the early deep learning (DL) and
ML versions of the models.

Therefore, our research used EML and AI for estimation of the UTS, MH, and HI for
high weld seam quality in the FSW process. The gaps in the research (see Table 1) are as
follows: (1) a gap concerning the methodology for the prediction of UTS, HM, and HI;
the EML approach was based on forecasting the multiobjective in the FSW process using
the predefined set of parameters; and (2) a gap regarding the types of joining material
that the unlike entirety machine learning architecture uses to predict the optimal values
of UTS, HM, and HI in the FSW process. In addition, this research makes the following
contributions: (1) the combination of AMIS and machine learning methods was used for
the first time to predict the multiple responses of dissimilar friction stir welding; and
(2) two novel datasets based on the seven controlled parameters were proposed. These
were utilized to construct successful algorithms for predicting multiple response friction
stir welding using the test data.

Table 1. Literature review of materials, parameters, responses, and methods used in earlier literature
and this study.

Materials
Parameter Response Method Ref.

TRS
(rpm)

TTS
(mm/min)

SD
(mm)

PD
(mm)

PL
(mm)

PeD
(mm)

TA
(Degrees)

TM
-

PT
-

TP
-

TAD
-

Other
-

UTS
(MPa)

MH
(HV)

HI
(◦C) Other ML EML Other

AA6262 X X - - - X - - - - - - - X - - X - - [45]

A319 X X - - - - - - - - - No. of
Passes - X - wear

rates X - - [46]

AA6061-
T6 X X X X - - - - - - - X - - - X - - [47]

AA6061 X X - - - - - - - - - axial
forces X - - - - X - [48]

AA
2050-T8 X X X - - - X - - - - - X - - - - X - [49]

AA6061-
T6 X X X X - - X - - - -

tool
hard-
ness

X - - yield
strength X - - [50]

AA6082 X X - - - - - - - - - - X - - - X X [51]
AA6061 X X - - - - - - - - - - X - - - X - - [52]
AA7039 X X - - - - X - - - - - X - - - X - - [53]
ENAW-
6082-T6 X X - - - - - - - - - - X - - - X - - [54]

AA6061-
T6 X X - - - - - - - - - - X - - - X X - [55]

IS:65032 X X X - - - X - - - - - X - - - - X - [56]

AA6061 X X - - - - - - - - - axial
forces X - - - - X - [57]

AA5754/
C11000 X X X - - - - - - - - - X - - - X - - [58]

AA5083-
AA6061 X X X X X X X X X X X - X - - - - X - [59]

AA5083-
AA6061 X X X X X X X - - - - - X X X - - X - our

2. Research Methodology

This section presents the research method applied to the artificial multiple intelligence
system (AMIS)–machine learning combination model for the prediction of UTS, MH, and
HI for AA5083 and AA6061 from the determined parameters. The research outline is shown
in Figure 1.

2.1. Dataset Arrangement

The study dataset used in our experiment consisted of a training dataset (80%) and a
testing dataset (20%), divided into two groups: 7PI-V1 and 7PI-V2. For example, 7PI-V1
had 57 datasets, divided into 45 training datasets and 12 testing datasets, and this was
used to test the performance of the proposed model, as shown in Table 2. The dataset was
obtained via an initial demonstration using AA-5083 and AA-6061 materials. The UTS and
MH properties of the two materials were as shown in Table 3. The FSW experiment used
worksheet plates that were 75 mm wide, 200 mm long, and 6 mm thick.
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Table 2. Dataset details.

Dataset Type 7PI-V1 7PI-V2

Training dataset 45 43

Testing dataset 12 11

Total 57 54

Table 3. Mechanical properties of base materials.

Aluminum Alloys Ultimate Tensile Strength
(MPa)

Maximum Hardness
(HV)

AA5083 300 91
AA6061 310 107

2.1.1. Dataset 7PI-V1

The parameters used for FSW were as proposed by Luesak et al. [25]: four continuous
parameters (rotational speed, tool travel speed, tool shoulder diameter, and tool tilt angle)
and three categorical variables (pin geometry, particle types, and tool pin movement). The
four continuous variables were set at the variable levels shown in Table 4.

Table 4. Input parameters for friction stir welding.

Continuous Variable

Parameters
Levels

−1 1

Tool tilt angle (degrees) 0 3
Tool rotational speed (rpm) 150 1500

Tool travel speed (mm/min) 15 135
Shoulder diameter (mm) 18 25

Categorical Variable

Parameters Levels

Pin geometry Straight cylinder Hexagonal cylinder Threaded cylinder
Reinforcement particles type Silicon carbide Aluminum oxide -

Tool pin moving Straight Zigzag Circles
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2.1.2. Dataset 7PI-V2

This dataset was experimentally designed using the Taguchi method [30]. Commercial
AA-5083 and AA-6061 alloy cut from work piece plates to dimensions of 75 mm wide,
200 mm long, and 6 mm thick were used in the FSW experiment, and the parameters for the
welding experiment are given in Table 5. A CNC milling machine (HAAS, Model TM2) was
utilized in the FSW process. The moving direction of the tool was the rolling direction of the
specimen, and the tool geometry for the experiment was as shown in Figure 2. During FSW,
the heat input was measured using a thermal infrared imaging camera (FLUKE, Model
Ti480 Pro). After FSW, a waterjet machine (MAXIEM, Model 1530) was used to cut all the
specimens in a transverse direction following the ASTM E8M-04 standard for testing tensile
strength and maximum hardness, as shown in Figure 3. The tensile testing was carried out
at room temperature using a universal testing machine (LLOYD, Model LS100-Plus) at a
crosshead speed of 0.5 mm/min. Microhardness testing was conducted using a Vickers
hardness testing machine (Mitutoyo, Model MVK-H1) with a test load of 100 g and a
15 s holding time. The experimental and test procedures are shown in Figure 4. The results
of the 7PI-V1 experiment were compared with correlated work to test and confirm the
earlier predictions.

Table 5. Input parameters for friction stir welding.

Continuous Variable

Parameters
Levels

−1 1

Tilt angle (degrees) 0 3
Tool rotational speed (rpm) 800 1500

Tool travel speed (mm/min) 15 75
Shoulder diameter (mm) 18 24

Categorical Variable

Parameters Levels

Pin geometry Straight cylinder Threaded cylinder Hexagonal
cylinder

Reinforcement particles type Silicon carbide Aluminum oxide -
Tool pin moving Straight Zigzag Circles
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2.2. AMIS–Machine Learning Combination Model

The AMIS–machine learning combination model was designed to improve the fore-
casting of the UTS, MH, and HI in FSW of AA-5083 and AA-6061 aluminum alloys. The
input variables were all parameters [25] determined according to the method proposed by
Matitopanum et al. [59], with the addition of a new method, the AMIS–machine learning
combination model, which consists of the following parts.

2.2.1. Gaussian Process Regression

Gaussian process regression (GPR) involves the generation of machine learning com-
bination modeling and was used to improve the presented ensemble machine learning
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model. GPR was used to estimate feasibility, which generates data for the input (X) and
output (Y) in the process. These generated models provide a conditional distribution, as
shown in Figure 5.

Figure 5. Gaussian process regression [59].

Figure 5 shows GPR using square boxes, circles, and arrow symbols for associated
nodes across the monitored values, which require a random variable group.

The general process of GPR is given by the following formula:

y = f(x) + N
(

0,σ2
n

)
(1)

where f(x) is input value; N
(
0,σ2

n
)

is noise; and σ2
n is noise variance.

One observation is the covariance function (k(x, x′)), or radial basis function (RBF)
kernel, obtained via the following formula:

k
(
x, x′

)
= σ2

f exp

[
−(x− x′)2

2l2

]
(2)

k
(
x, x′

)
= σ2

f exp

[
−(x− x′)2

2l2

]
+ σ2

nδ
(
x, x′

)
(3)

where σ2
f is determined for the maximum covariance. If x ≈ x′, then k(x, x′) approaches

this maximum; f(x) is inseparably related with f( x′) in Equation (2).
Where δ(x, x′) is a function of the Kronecker delta in Equation (3). The covariance

function is likewise used to support the vector machine of the essence to generate the
covariance matrix.

2.2.2. Support Vector Machine

A support vector machine (SVM) is an algorithm-supervised learning method used for
regression problems. The purpose of SVM is to find the function that is an exact prediction
of the output value from a given input.

Operating in the SVM, which is called the margin, is a regression using the function of
distant maximizing to forecast genuine result values. It is expedient to work within the
relationship variables of the input and output because the data are complex and cannot
easily be modeled via a linear function.

Support vector machine regression is the prediction of the new input to the hyperplane
using the identified function for calculation of the result value of prediction. It is defined as
a radial basis function (RBF) kernel, using the following equation:

k (x, x′) = exp (−gamma × ||x − x′||ˆ2) (4)

where gamma is a scaling factor and x, x′ are the input vectors.
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2.2.3. Entirety strategy

The homogenous and heterogenous structures use a similar model to proceed with
the ensemble strategy. The heterogeneous structure uses the GPR method equal to 50% and
the support vector machine equal to 50% as proposed by [59] and shown in Figure 6.
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2.2.4. Decision Hybridization Strategy

The decision hybridization strategy is the last forecasting stage to report results in the
machine learning approach. In addition, it is a way of combining the results of many GPR
methods into one, superseding the solution of the presented model.

- Unweighted average ensemble Here, the research presents the learning output via an
analysis of the total outdistanced unweighted average to define the merging decision
of the model [60].

- Weighted ensemble optimization using artificial multiple intelligence systems (WEAMIS)

The EML method improves the predictive values for the UTS, MH, and HI by develop-
ing a cluster of learning techniques, called weighted ensemble optimization, using artificial
multiple intelligence systems (WEAMIS) to determine the appropriate fuse weighting ap-
proach. Then, WEAMIS is applied to the best weighting, considering the UAE, to improve
the quality of the final solution.

An optimal solution model aims to combine the base learner forecast, using an opti-
mized weighting that shows the result in its entirety, with the minimum total predicted root
mean square error (RMSE), as shown in Equation (5). The calculation of ŷi, the ensemble
learners, is given by Equation (6):

RMSE =
1
I

√√√√ I

∑
i=1

(
yi −

ˆ
yi
)2

(5)

ˆ
yi =

J

∑
j=1
ωj

ˆ
Yj (6)

where ωj ≥ 0 and ∑k
j=1ωj = 1

The RMSE calculation of a single learner as shown above is obtained using Equation (5),
where I represents a determined number of observations, yi is the actual value of the
observation i, ŷi is the observed prediction i, Ŷj is the prediction values set when using
model j as the learners, and j is the total number of learners to use in the model.

The artificial multiple intelligence systems (AMIS) method uses a system with many
artificial multiple intelligences to assist in the identification of optimal solutions [42,51]. The
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system is called an intelligence box (IB), and it has algorithms with unique properties. The
AMIS comprises four steps, which are (1) the generation of a set population member known
as a work package (WP), (2) performing the WP to select the specified IB, (3) updating track
information, and (4) repeating WP steps 2 to 3 until the dissolving condition is met.

Step 1. Initial generation of the work package
The step generating the initial work package is random and is set by the NP random

vector. The NP is set to the equitable number of SVMs and GPR on 1–100 positions, as
recommended by [42,51]. This research used track i = 2 random examples, as shown
in Table 6.

Table 6. The track i and the position.

Track i\Position 1 2 3 4 5 6 7 8 . . 99 100

1 0.39 0.56 0.24 0.97 0.82 0.33 0.06 . . . 0.14 0.29
2 0.67 0.51 0.19 0.72 0.21 0.48 0.80 . . . 0.32 0.45

Table 6 shows the initial work package with the value positions 1–100. Then, the initial
work package sets the randomized numbers from 0 to 1, and the next work package solution
set is selected using a roulette wheel method and entered into the process intelligence box
(IB) [61].

The different decisions initial work package selects an IB, individually performing
the IB to improve the current solution from each track i. The search probability function
process uses the following formula:

Pbt =
FNbt−1 + (1− F)Abt−1 + MJbt−1

∑B
bt=1 FNbt−1 + (1− F)Abt−1 + MJbt−1

(7)

where Pbt represents the probability of selecting the intelligence box in iteration t; Nbt−1 is
the number of positions that have selected intelligence box b in the previous t iterations;
Abt−1 is the average objective function of all positions that selected intelligence box b in
the previous iteration; and Jbt−1 is a value which is incremented by 1 if an intelligence box
finds the best result in the final iteration. Prasitpuriprecha et al. [42] has recommended that
a scaling factor F = 2 and improvement factor M = 1 are good initial choices.

Step 2. Performing the WP to select the specified IB
In this step, the WP selects the specified IB to improve the quality of the current

solution to obtain the optimal solution. Our research designed the following intelligence
by utilizing 8 boxes recommended by [32].

Yijq = ρYrjq + F1
(

Bgbest
j − Yrjq

)
+ F2

(
Ymjq − Yrjq

)
(8)

Yijq = Yrjq + F1
(

Bgbest
j − Yrjq

)
+ F2

(
Bpbest

hj − Yrjq

)
(9)

Yijq = Yrjq + F1
(
Ymjq − Ynjq

)
(10)

Yijq = Sij (11)

Yijq =

{
Yijq if Sij ≤ CRh

Sijq otherwise
(12)

Yijq =

{
Yijq if Sij ≤ CRh

Bgbest
j otherwise

(13)
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Yijq =

{
Yijq if Sij ≤ CRh

Ynjq otherwise
(14)

Yijq =

{
Yijq if Sij ≤ CRh

SijYijq otherwise
(15)

Time the operation in the IB to execute all WPs in iteration t, and each WP will select
its preferred IB result to design the method for finding the answer to each problem using
Equation (8) to Equation (15), where Yijq+1 is the value of WP track i in iteration t + 1, Yijq is
the new value generated in the position using IBs, r,n and m are the specific elements of the
WP set (1 to Q) that are not equal to q, Sij is a random number 0–1 of the WP track i element

j, and, according to the iteration t, Bgbest
j is the value of the global best WP, and Bpbest

hj is the

value of the personal best. A crossover rate (CRh) value of 0.8 is used, as recommended
by [32].

Step 3. Updating track information
Some track information requires updating before it can be used in iterations using the

formulae in Equations (16) and (17) as ref [42]:

Yijt+1 =

{
Zijt if f

(
Zijt
)
≤ f

(
Xijt
)

and update f
(
Xijt
)
= f
(
Zijt
)

Xijt+1 otherwise
(16)

Wi = Yijt for all i and t. (17)

where Yijt is the tracked value of i and iteration t + 1, f(Zijt) is the value of the objective
function of Zijt and f

(
Xijt
)

is the objective function value of Xijt. Then, the values of Wi are
connected to those of Xijt+1 by Xijt+1, which is the value of updating.

Step 4. Repeating WP in steps 2 to 3.
Repeat steps 2 to 4 until the termination condition is discovered. The stop criterion is

set to 100 iterations [62].

3. Results

The proposed model was simulated in Python using a PC with an Intel Core™ i3–
1.70 GHz CPU and 5 GB of RAM. The framework for the experiments is shown in Figure 7.

Computation 2023, 11, x FOR PEER REVIEW 11 of 21 
 

 

Wi =  Yijt    for all i and t. (17) 

Where Yijt is the tracked value of i and iteration t + 1, f(Zijt) is the value of the ob-

jective function of Zijt and f(Xijt) is the objective function value of Xijt. Then, the values 

of Wi are connected to those of Xijt+1 by Xijt+1, which is the value of updating. 

Step 4. Repeating WP in steps 2 to 3. 

Repeat steps 2 to 4 until the termination condition is discovered. The stop criterion is 

set to 100 iterations [62]. 

3. Results 

The proposed model was simulated in Python using a PC with an Intel Core™ i3–

1.70 GHz CPU and 5 GB of RAM. The framework for the experiments is shown in Figure 

7. 

 

Figure 7. Experimental framework. 

The GPR parameters, SVM, random forest (RF), ADA boosting (AB), gradient boost-

ing (GB), and presented models (WEAMIS), taken from [59], are set out in Table 7. 

Table 7. Parameter determination. 

Regressors User-defined Parameters 

GPR [63]  Kernel = ‘rbf’, gamma = 7, noise = 0.2 

RF [51]  Learner = 100, max leaf = 1 

SVM [63]  Kernel = ‘rbf’, gamma = 7, C = 0.2 

AB [57]  Learner = 100, max leaf = 5 

GB [48]  Learner = 100, max leaf = 5, learning rate = 0.001 

Ho-UWE, HE-UWE, Ho-WEDE, HE-UWE, 

GPR-HO-UWE, GPR-HO-WEDE, SVM-

HO-UWE and SVM-HO-WEDE [57] 

Our presented ensemble learning  

(Ho-WEAMIS, WEAMIS, SVM-HO-

WEAMIS and GPR-HO-WEAMIS)  

learner = 100 

 

 

learner = 100 

3.1. The Offered Model Testing on the Existing Dataset 

This experiment was performed using datasets 11P1-V1 and 11PI-V2 as recom-

mended by [59]. In addition to [59], the standard models used in this experiment were 

modified for use in [63,51,57], and [48], which relate to the GPR, SVM, RF, AB, and GB 

methods, respectively. The algorithm names GPR-HO-UWE, GPR-HO-WEDE, SVM-HO-

UWE, SVM-HO-WEDE, HE-UWE, and HE-WEDE were taken from [59]. The proposed 

model is named GPR-Ho-WEAMIS, SVM-Ho-WEAMIS, and HE-WEAMIS. The disparate 

ensemble structure models are attributed to HE-UWE and HE-WEAMIS, as UWE and 

Figure 7. Experimental framework.

The GPR parameters, SVM, random forest (RF), ADA boosting (AB), gradient boosting
(GB), and presented models (WEAMIS), taken from [59], are set out in Table 7.
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Table 7. Parameter determination.

Regressors User-Defined Parameters

GPR [63] Kernel = ‘rbf’, gamma = 7, noise = 0.2
RF [51] Learner = 100, max leaf = 1

SVM [63] Kernel = ‘rbf’, gamma = 7, C = 0.2
AB [57] Learner = 100, max leaf = 5
GB [48] Learner = 100, max leaf = 5, learning rate = 0.001

Ho-UWE, HE-UWE, Ho-WEDE, HE-UWE,
GPR-HO-UWE, GPR-HO-WEDE,

SVM-HO-UWE and SVM-HO-WEDE [57]
Our presented ensemble learning

(Ho-WEAMIS, WEAMIS, SVM-HO-WEAMIS
and GPR-HO-WEAMIS)

learner = 100

learner = 100

3.1. The Offered Model Testing on the Existing Dataset

This experiment was performed using datasets 11P1-V1 and 11PI-V2 as recommended
by [59]. In addition to [59], the standard models used in this experiment were modified
for use in [51,57,63], and [48], which relate to the GPR, SVM, RF, AB, and GB methods,
respectively. The algorithm names GPR-HO-UWE, GPR-HO-WEDE, SVM-HO-UWE, SVM-
HO-WEDE, HE-UWE, and HE-WEDE were taken from [59]. The proposed model is
named GPR-Ho-WEAMIS, SVM-Ho-WEAMIS, and HE-WEAMIS. The disparate ensemble
structure models are attributed to HE-UWE and HE-WEAMIS, as UWE and WEAMIS were
used in the decision fusion method. The results from the datasets 11PI-V1 and 11PI-V2 are
shown in Table 8.

Table 8. Performance of the various machine learning models on the FSW-11PI-V1 and FSW-11PI-
V2 datasets.

Machine Learning and
Ensemble Machine
Learning Method

11PI-V1 11PI-V2

Training Dataset Testing Dataset Testing Dataset

CC RMSE CC RMSE CC RMSE

UTS MH HI UTS MH HI UTS MH HI UTS MH HI UTS MH HI UTS MH HI

GPR [63] 0.983 0.965 0.968 3.73 3.16 6.58 0.990 0.971 0.987 3.73 3.16 6.58 0.995 0.967 0.968 6.69 3.21 7.35
SVM 0.981 0.986 0.971 4.52 2.06 5.69 0.989 0.987 0.991 4.52 2.06 5.69 0.983 0.971 0.976 6.63 3.17 7.09
RF 0.975 0.982 0.979 4.23 2.27 5.75 0.990 0.980 0.990 4.23 2.27 5.75 0.996 0.973 0.985 4.89 2.87 6.21
AB 0.981 0.968 0.978 4.63 2.58 5.77 0.989 0.977 0.990 4.63 2.58 5.77 0.976 0.977 0.983 4.06 2.51 6.11
GB 0.984 0.976 0.981 4.67 2.76 5.83 0.988 0.979 0.991 4.67 2.76 5.83 0.974 0.971 0.976 6.67 3.15 7.12

GPR-HO-UWE 0.989 0.979 0.988 3.62 1.92 4.27 0.993 0.987 0.96 3.62 1.92 4.27 0.989 0.967 0.971 5.72 3.24 7.32
GPR-HO-WEDE 0.990 0.978 0.989 3.67 1.91 4.29 0.992 0.987 0.996 3.67 1.91 4.29 0.994 0.976 0.986 4.09 2.44 6.02
SVM-HO-UWE 0.985 0.973 0.977 4.23 2.27 5.45 0.990 0.980 0.992 4.23 2.27 5.45 0.994 0.980 0.989 4.00 2.31 5.92

SVM-HO-WEDE 0.991 0.982 0.991 4.02 2.11 4.98 0.994 0.982 0.993 4.02 2.11 4.98 0.989 0.979 0.989 3.90 2.34 5.93
HE-UWE 0.992 0.985 0.992 3.53 1.89 4.15 0.993 0.988 0.997 3.53 1.89 4.15 0.994 0.981 0.990 3.78 2.27 5.89

HE-WEDE 0.992 0.990 0.993 3.46 1.88 4.16 0.995 0.989 0.997 3.46 1.88 4.16 0.996 0.987 0.990 3.39 2.07 5.88
HE-WEAMIS 0.994 0.988 0.997 3.32 1.88 4.02 0.996 0.989 0.998 3.32 1.88 4.02 0.998 0.988 0.990 3.22 2.03 5.87

SVM-HO-WEAMIS 0.993 0.987 0.993 3.89 1.89 4.32 0.991 0.988 0.996 3.89 1.89 4.32 0.990 0.982 0.989 3.96 2.21 5.91
GPR-HO-WEAMIS 0.993 0.980 0.996 3.67 1.91 4.28 0.995 0.987 0.996 3.67 1.91 4.28 0.989 0.979 0.989 3.87 2.35 5.92

Table 8 shows the best obtainable method for the evaluation of the UTS, MH, and
HI with the 11 enforced parameters for the 11PI-V1 dataset, providing UTS, MH, and
HI values of 10.99%, 40.51%, and 38.91%, respectively. The 11PI-V2 dataset produced a
solution with UTS, MH, and HI values of 51.87%, 36.76%, and 20.14%, respectively. These
solutions display less precision than the best one obtained using the HE-WEAMIS model,
in which the RMSE of 11PI-V1 for the UTS reduced from 3.73 to 3.32, the MH reduced
from 3.16 to 1.88, and the HI reduced from 6.58 to 4.02. Furthermore, the RMSE of 11PI-V2
for the UTS reduced from 6.69 to 3.22, the MH from 3.21 to 2.03, and the HI from 7.35 to
5.87. This showed that using WEAMIS as the decision approach provided greater accuracy.
K-fold cross-validation was executed using 2-cv-, 3-cv-, and 5-cv-fold cross-validation of
the model; the results of the experiment are shown in Table 9.
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Table 9. K-fold cross-validation of the models with the training dataset.

Machine Learning and
Ensemble Machine Learning

Method

RMSE

UTS MH HI

2-cv 3-cv 5-cv 2-cv 3-cv 5-cv 2-cv 3-cv 5-cv

GPR 6.70 ± 0.12 6.70 ± 0.12 5.33 ± 0.11 7.38 ± 0.41 6.07 ± 0.41 4.93 ± 0.36 11.78 ±
0.56 10.06 ±0.56 8.51 ± 0.56

SVM 7.02 ± 0.42 7.02 ± 0.42 5.72 ± 0.37 4.41 ± 0.25 4.13 ± 0.25 3.43 ± 0.22 10.55 ±0.28 10.08 ±0.28 7.71 ± 0.28
RF 7.11 ± 0.21 7.11 ± 0.20 5.69 ± 0.18 5.23 ± 0.38 4.71 ± 0.38 3.92 ± 0.34 11.38 ±0.75 8.89 ± 0.75 7.56 ± 0.75

AB [57] 6.18 ± 0.38 6.18 ± 0.38 5.05 ± 0.34 6.63 ± 0.31 5.64 ± 0.31 4.59 ± 0.27 9.47 ± 0.51 10.51 ±0.51 7.85 ± 0.51
GB [48] 5.06 ± 0.23 5.06 ± 0.23 4.09 ± 0.20 6.7 ± 0.26 6.07 ± 0.26 5.01 ± 0.23 10.41 ±0.89 8.98 ± 0.89 7.91 ± 0.89

GPR-HO-UWE 4.66 ± 0.17 4.66 ± 0.17 3.91 ± 0.15 4.08 ± 0.40 4.05 ± 0.40 3.26 ± 0.35 7.55 ± 0.22 7.25 ± 0.22 5.50 ± 0.22
GPR-HO-WEDE 4.6 ± 0.18 4.6 ± 0.18 3.81 ± 0.16 4.03 ± 0.31 4.11 ± 0.31 3.29 ± 0.28 8.52 ± 0.74 7.21 ± 0.74 5.53 ± 0.74
SVM-HO-UWE 5.53 ± 0.21 5.53 ± 0.21 4.67 ± 0.18 5.75 ± 0.31 4.70 ± 0.31 3.84 ± 0.28 9.21 ± 0.8 8.48 ± 0.80 7.25 ± 0.80

SVM-HO-WEDE 5.42 ± 0.34 5.42 ± 0.34 4.21 ± 0.30 5.71 ± 0.33 4.84 ± 0.33 3.79 ± 0.29 8.45 ± 0.41 7.32 ± 0.41 6.33 ± 0.41
HE-UWE 4.36 ± 0.17 4.36 ± 0.17 3.73 ± 0.15 4.39 ± 0.28 3.86 ± 0.28 3.12 ± 0.25 6.92 ± 0.62 6.39 ± 0.62 5.43 ± 0.62

HE-WEDE [59] 4.65 ± 0.18 4.65 ± 0.18 3.74 ± 0.16 4.43 ± 0.39 4.01 ± 0.39 3.34 ± 0.35 8.03 ± 0.34 6.29 ± 0.34 5.35 ± 0.34
HE-WEAMIS 4.56 ± 0.30 4.56 ± 0.31 3.62 ± 0.28 4.84 ± 0.37 3.91 ± 0.37 3.21 ± 0.32 6.19 ± 0.52 5.47 ± 0.52 4.89 ± 0.52

SVM-HO-WEAMIS 4.57 ± 0.28 4.57 ± 0.28 3.66 ± 0.25 4.25 ± 0.28 4.02 ± 0.28 3.26 ± 0.25 7.84 ± 0.75 7.18 ± 0.75 5.43 ± 0.75
GPR-HO-WEAMIS 4.63 ± 0.16 4.63 ± 0.16 3.79 ± 0.14 4.78 ± 0.39 3.72 ± 0.39 3.24 ± 0.34 6.71 ± 0.46 7.13 ± 0.46 5.39 ± 0.46

Table 9 provides the computational results in which HE-WEAMIS obtains the best
solution of all the proposed methods, as evidenced by its lower variance and RMSE.

3.2. Testing of the Proposed Model with the Seven Parameters of the Existing Dataset (7PI-V1)

The values of the seven parameters were obtained randomly, as recommended by [25].
This dataset was tested using the methods set out in Section 3.1. The models used were
machine learning and ensemble machine learning, and these provided results for UTS, MH,
and HI values. These results were compared with the results from the various methods, as
shown in Table 10.

Table 10. Performance of dissimilar machine learning models on the 7PI-V1 dataset.

Machine Learning and
Ensemble Machine
Learning Method

7PI-V1

Training Dataset Testing Dataset

CC RMSE CC RMSE

UTS MH HI UTS MH HI UTS MH HI UTS MH HI

GPR 0.961 0.930 0.971 9.48 7.80 6.22 0.987 0.967 0.978 6.73 7.40 5.10
SVM 0.959 0.959 0.969 9.62 6.24 6.07 0.982 0.979 0.971 6.22 5.02 5.87
RF 0.983 0.983 0.997 5.03 3.76 2.79 0.971 0.668 0.962 8.47 7.31 6.31
AB 0.983 0.967 0.986 6.14 4.73 4.26 0.980 0.985 0.969 7.02 4.55 5.70
GB 0.984 0.973 0.991 6.08 3.99 3.39 0.966 0.971 0.959 9.66 6.71 6.57

GPR-HO-UWE 0.993 0.929 0.968 5.04 3.74 3.03 0.993 0.980 0.979 5.03 4.97 5.03
GPR-HO-WEDE 0.988 0.953 0.971 4.61 3.67 3.01 0.991 0.986 0.980 5.35 4.42 4.97
SVM-HO-UWE 0.992 0.981 0.991 4.82 3.75 2.81 0.990 0.985 0.975 5.66 4.50 5.51

SVM-HO-WEDE 0.989 0.965 0.985 4.71 3.63 2.98 0.992 0.987 0.977 5.25 4.18 5.36
HE-UWE 0.988 0.982 0.995 4.56 3.69 2.79 0.993 0.988 0.977 5.09 4.08 5.20

HE-WEDE 0.997 0.983 0.992 4.31 3.56 2.73 0.996 0.984 0.982 4.91 4.34 4.85
HE-WEAMIS 0.999 0.991 0.994 4.12 3.33 2.78 0.996 0.990 0.983 4.89 4.00 4.74

SVM-HO-WEAMIS 0.998 0.991 0.992 4.23 3.37 2.75 0.996 0.988 0.981 4.90 4.07 4.93
GPR-HO-WEAMIS 0.997 0.990 0.995 4.17 3.31 2.76 0.997 0.988 0.982 4.87 4.08 4.87

Table 10 reveals that HE-WEAMIS is the best prediction method given the seven
parameters of 7PI-V1, providing UTS, MH, and HI values of 49.38%, 45.95%, and 24.88%,
respectively. The RMSE of 7PI-V1 for UTS reduced from 9.66 to 4.89, MH reduced from
7.40 to 4.00, and HI reduced from 6.31 to 4.74.

Table 11 shows the percentage difference of the results found. HE-WEAMIS was
the best method because it provided better solutions than the other methods described
in [34]. The HE-WEAMIS results increase the quality of the prediction when compared
with the GPR [63], SVM [63], RF [51], AB [57], GB [48], GPR-HO-UWE, GPR-HO-WEDE,
SVM-HO-UWE, SVM-HO-WEDE, HE-UWE, HE-WEDE [59], SVM-HO-WEAMIS, and
GPR-HO-WEAMIS approaches. The results showed much higher percentages of 27.34%,
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45.95%, and 19.25% for UTS, MH, and HI, respectively, when compared with the approach
used by [34]. Furthermore, these results outperform the RF, AB, and GB methods on the
UTS, MH, and HI values by 49.38%, 45.28%, and 27.85%, respectively. Then, using the AMIS
(HE-WEAMIS) method, the optimum weights can improve the answer quality compared
with the UWE (HE-UWE) method for UTS, MH, and HI values by 3.93%, 1.96%, and
8.85%, respectively.

Table 11. The different ratios (%diff) of 7PI-V1 dataset.

Machine Learning and
Ensemble Machine
Learning Method

%diff

UTS MH HI

GPR 27.34 45.95 7.06
SVM 21.38 20.32 19.25
RF 42.27 45.28 24.88
AB 30.34 12.09 16.84
GB 49.38 40.39 27.85

GPR-HO-UWE 2.78 19.52 5.77
GPR-HO-WEDE 8.60 9.50 4.63
SVM-HO-UWE 13.60 11.11 13.97

SVM-HO-WEDE 6.86 4.31 11.57
HE-UWE 3.93 1.96 8.85

HE-WEDE 0.41 7.83 2.27
HE-WEAMIS 0.00 0.00 0.00

SVM-HO-WEAMIS 0.20 1.72 3.85
GPR-HO-WEAMIS −0.41 1.96 2.67

3.3. The Offered Model Testing with the Unseen Dataset 7 Parameters by Using the Taguchi
Method (7PI-V2)

This proposed dataset consisted of seven parameters. The dataset comprises
54 datasets, and the details and results are shown in Table 12. This dataset was analyzed
by machine learning methods to compare the models’ accuracy; the results are displayed
in Table 13.

Table 12. The results of the experiment.

Sets SD TA TRS TTS PT TP TM UTS MH HI

1 18 0 800 15 TC SiC Zigzag 182.66 85.71 412.66
2 21 1.5 800 15 TC SiC Zigzag 180.16 85.35 417.50
3 24 3 800 15 TC SiC Zigzag 183.40 87.16 409.73
4 18 0 1200 50 StC SiC Zigzag 208.71 88.46 442.69
5 21 1.5 1200 50 StC SiC Zigzag 209.85 89.71 438.01
6 24 3 1200 50 StC SiC Zigzag 207.59 88.64 444.58
7 18 0 1500 75 HC SiC Zigzag 239.06 101.87 439.67
8 21 1.5 1500 75 HC SiC Zigzag 241.90 100.28 440.63
9 24 3 1500 75 HC SiC Zigzag 236.89 102.29 436.69

10 18 0 1200 75 TC SiC Straight 240.57 102.71 440.93
11 21 1.5 1200 75 TC SiC Straight 241.55 100.47 436.56
12 24 3 1200 75 TC SiC Straight 237.73 52.99 434.88
13 18 0 1500 15 StC SiC Straight 245.41 101.74 450.34
14 21 1.5 1500 15 StC SiC Straight 246.24 101.18 449.26
15 24 3 1500 15 StC SiC Straight 242.86 102.18 452.78
16 18 0 800 50 HC SiC Straight 157.81 66.98 399.37
17 21 1.5 800 50 HC SiC Straight 156.48 65.85 395.32
18 24 3 800 50 HC SiC Straight 158.85 64.82 400.29
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Table 12. Cont.

Sets SD TA TRS TTS PT TP TM UTS MH HI

19 18 0 1500 50 TC SiC circles 241.59 102.97 435.56
20 21 1.5 1500 50 TC SiC circles 238.71 100.61 433.33
21 24 3 1500 50 TC SiC circles 243.06 101.67 437.35
22 18 0 800 75 StC SiC circles 165.00 70.13 406.41
23 21 1.5 800 75 StC SiC circles 163.27 68.23 403.09
24 24 3 800 75 StC SiC circles 166.03 71.19 410.81
25 18 0 1200 15 HC SiC circles 234.79 100.85 448.10
26 21 1.5 1200 15 HC SiC circles 239.18 101.13 453.24
27 24 3 1200 15 HC SiC circles 232.82 98.69 445.69
28 18 0 1200 50 TC AO Zigzag 218.72 95.81 428.15
29 21 1.5 1200 50 TC AO Zigzag 216.19 96.36 421.99
30 24 3 1200 50 TC AO Zigzag 219.79 97.58 432.49
31 18 0 1500 75 StC AO Zigzag 241.04 104.83 444.76
32 21 1.5 1500 75 StC AO Zigzag 238.78 103.25 434.49
33 24 3 1500 75 StC AO Zigzag 242.32 106.27 446.87
34 18 0 800 15 HC AO Zigzag 181.35 81.96 418.53
35 21 1.5 800 15 HC AO Zigzag 182.14 82.84 421.95
36 24 3 800 15 HC AO Zigzag 179.52 79.79 412.45
37 18 0 800 75 TC AO Straight 160.05 68.26 406.64
38 21 1.5 800 75 TC AO Straight 158.08 67.19 398.61
39 24 3 800 75 TC AO Straight 157.68 66.19 399.71
40 18 0 1200 15 StC AO Straight 224.48 96.08 435.96
41 21 1.5 1200 15 StC AO Straight 221.19 95.27 428.16
42 24 3 1200 15 StC AO Straight 226.44 96.99 438.16
43 18 0 1500 50 HC AO Straight 240.99 103.9 434.62
44 21 1.5 1500 50 HC AO Straight 245.25 104.64 439.87
45 24 3 1500 50 HC AO Straight 243.04 104.17 435.95
46 18 0 1500 15 TC AO circles 237.02 102.17 438.54
47 21 1.5 1500 15 TC AO circles 236.89 102.52 434.77
48 24 3 1500 15 TC AO circles 241.69 104.12 440.27
49 18 0 800 50 StC AO circles 142.92 61.31 399.77
50 21 1.5 800 50 StC AO circles 141.14 60.41 396.66
51 24 3 800 50 StC AO circles 141.92 60.71 398.73
52 18 0 1200 75 HC AO circles 222.02 90.94 432.71
53 21 1.5 1200 75 HC AO circles 223.06 91.63 429.62
54 24 3 1200 75 HC AO circles 225.36 93.02 436.71

Table 13. Compared performance of machine learning methods with the 7PI-V2 dataset.

Machine Learning and
Ensemble Machine
Learning Method

7PI-V2

Training Dataset Testing Dataset

CC RMSE CC RMSE

UTS MH HI UTS MH HI UTS MH HI UTS MH HI

GPR 0.922 0.805 0.927 9.22 7.85 6.77 0.891 0.850 0.933 13.15 6.54 8.18
SVM 0.966 0.781 0.985 6.22 7.06 4.82 0.920 0.898 0.979 11.31 5.39 6.23
RF 0.995 0.826 0.996 2.74 6.19 3.28 0.968 0.977 0.989 7.19 2.53 4.14
AB 0.975 0.801 0.989 5.19 6.80 4.25 0.945 0.938 0.982 9.35 4.22 5.69
GB 0.974 0.806 0.991 4.60 6.45 4.27 0.943 0.946 0.978 9.09 4.05 6.64

GPR-HO-UWE 0.987 0.808 0.993 3.37 6.36 3.68 0.972 0.957 0.983 6.59 3.45 5.03
GPR-HO-WEDE 0.994 0.803 0.995 3.12 6.41 3.43 0.978 0.961 0.986 5.84 3.33 4.71
SVM-HO-UWE 0.989 0.809 0.993 3.26 6.42 3.59 0.981 0.959 0.984 5.45 3.50 4.89

SVM-HO-WEDE 0.987 0.807 0.993 3.11 6.49 3.69 0.979 0.962 0.986 5.74 3.27 4.71
HE-UWE 0.992 0.821 0.989 2.83 6.25 3.29 0.977 0.978 0.989 6.02 2.53 4.23

HE-WEDE 0.993 0.824 0.990 2.51 6.15 3.28 0.977 0.979 0.990 6.07 2.46 4.08
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Table 13. Cont.

Machine Learning and
Ensemble Machine
Learning Method

7PI-V2

Training Dataset Testing Dataset

CC RMSE CC RMSE

UTS MH HI UTS MH HI UTS MH HI UTS MH HI

HE-WEAMIS 0.994 0.831 0.993 2.38 5.94 3.25 0.981 0.980 0.988 5.44 2.40 4.49
SVM-HO-WEAMIS 0.991 0.811 0.991 3.02 6.41 3.43 0.979 0.962 0.985 5.66 2.78 4.65
GPR-HO-WEAMIS 0.991 0.824 0.995 2.66 6.29 3.25 0.978 0.979 0.987 5.86 2.45 4.56

Table 13 reveals that HE-WEAMIS is the best method for predicting the UTS, MH, and
HI based on the seven parameters of 7PI-V2, providing a better RMSE solution for UTS,
MH, and HI than the 7PI-V1 dataset. The predictive solution errors reduced from 13.15 to
5.44, 6.54 to 2.40, and 8.18 to 4.49 for UTS, MH, and HI, respectively.

Table 14 presents the percentage differences in the results, showing that HE-WEAMIS
is the best model, similar to the 7PI-V1 dataset in Table 11. The UTS, MH, and HI responses
provide high performance values of 58.63%, 63.30%, and 45.11%, respectively, and are
higher than those of the RF, AB, and GB methods, which were 41.82%, 43.13%, and 32.38%,
respectively. Therefore, using optimum weightings improved the quality of the results
with the AMIS (HE-WEAMIS) approach when compared with the values for UTS, MH, and
HI from the UWE (HE-UWE) method, with percentage differences in the results of 9.63%,
5.14%, and −6.15%, respectively.

Table 14. The different ratios (percentage difference) for the 7PI-V2 dataset.

Machine Learning and
Ensemble Machine
Learning Method

%diff

UTS MH HI

GPR 58.63 63.30 45.11
SVM 51.90 55.47 27.93
RF 24.34 5.14 −8.45
AB 41.82 43.13 21.09
GB 40.15 40.74 32.38

GPR-HO-UWE 17.45 30.43 10.74
GPR-HO-WEDE 6.85 27.93 4.67
SVM-HO-UWE 0.18 31.43 8.18

SVM-HO-WEDE 5.23 26.61 4.67
HE-UWE 9.63 5.14 −6.15

HE-WEDE 10.38 2.44 −10.05
HE-WEAMIS 0.00 0.00 0.00

SVM-HO-WEAMIS 3.89 13.67 3.44
GPR-HO-WEAMIS 7.17 2.04 1.54

Figure 8a to d shows a comparison of the errors obtained from the dissimilar fore-
casting models. The GPR-HO-UWE and HE-UWE methods were selected for comparison
with the HE-WEAMIS approach. The RMSE values are plotted on the graph with a solid
line, an error line, and a plotted error line at a 45◦ angle. The plotted error line shows the
ranges of ±3%. All the graphs make it clear that the forecasting solutions obtained using
the suggested model are close to the experimentally obtained UTS, MH, and HI values. The
graph displays the forecasted and actual values of UTS, MH, and HI. The values are similar
to those obtained using the suggested model together with the ensemble learning model.
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4. Discussion

We presented an AMIS–machine learning combination model for multiple response
prediction of AA-5083/AA-6061 friction stir welding, using the model parameters set out in
Table 2, for prediction of the UTS, MH, and HI, including (1) tilt angle, (2) tool travel speed,
(3) shoulder diameter, and (4) tool rotation speed. Our research executed and analyzed
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comparisons with the results obtained by [34,64]. The calculation results from testing the
proposed approach (HE-WEAMIS) showed that it was superior to the GPR [63], SVM [63],
RF [51], AB [57], and GB [48] methods in the literature. These existing methods did not
perform as well as the heterogeneous ensemble network model. The resulting findings
were consistent with the conclusions of [41,43]. These two studies obtained homogenous
and heterogenous ensemble networks and also explained how the practical decision fusion
strategy is more effective than UWA methods. The decision fusion strategy is the reason
for the significantly higher performance of our proposed model. Our methodology and its
results are supported by [43,45,65,66].

In summary, it can clearly be seen from the error percentages for the UTS, MH, and HI
that the WEAMIS method outperformed the existing dataset. These error percentages were
15.75%, 16.75%, and 41.35%, respectively, for the 7PI-V1 training and testing datasets, and
56.25%, 59.20%, and 27.62%, respectively, for the 7PI-V2 dataset. However, this method
used the difference in the dataset error rate for the training and testing and showed
good execution in obtaining a slight difference between the training and testing datasets.
The training and testing indicated that our method (WEAMIS) can be tolerant of dataset
permutations and outperform them even if the dataset is altered; although the parameter
numbers increased for prediction of the UTS, MH, and HI, our model remained effective
and outperformed several methods such as SVM, GPR, RF, AB, and GB.

Table 13 shows how the calculated solutions use the controlled parameters at the
different levels. Furthermore, Table 2, shows that the proposed model is the most accurate
in predicting the UTS, MH, and HI values, according to the results from [62]. Using the
ML approach and the cognitive learning method could reduce the RMSE and increase
prediction accuracy. Table 13 presents the prediction results using the model for the UTS,
MH, and HI of the parameter set, confirming that the results from this method provide the
highest accuracy. The respective CC and RMSE results were 0.981 and 5.44 for the UTS,
0.980 and 2.40 for the MH, and 0.988 and 4.49 for the HI. These results are more accurate
than those in [34,64].

This article shows how the values of the UTS, MH, and HI can be accurately predicted
using a model with an increased number of input parameters. The model presented pro-
vides more accurate prediction of the UTS, MH, and HI values with fewer input parameters
than the models proposed in [24,34,35,37]. The results of the proposed model are more
accurate and can be successfully applied to predict the UTS, MH, and HI for friction stir
welding with all input parameters and can identify a solution without sample destruction.

5. Conclusions

Our research studied the characteristics of seven parameters in the FSW process using a
machine learning entirety model developed to predict the UTS, MH, and HI. The aluminum
alloys AA-5083 and AA-6061 were joined using friction stir welding performed for the
experiment. The presented approach gathers the GPR and advocates the use of vector
machine models. Two unlike decision fusion methods were applied for this research: the
unweighted average model (UAM) and the artificial multiple intelligence system, which
was obtained from GPR and SVM. The testing of the proposed model used two datasets to
predict the multiple responses of the weld seam. The WEAMIS method provided higher
performance than all current methods. The ensemble structures were homogeneous and
heterogeneous. When tested using the 7PI-V1 and 7PI-V2 datasets, the averages of the UTS,
MH, and HI values were 5.27%, 3.30%, and 4.71%, respectively. Weighting optimization
using the AMIS method improved the average solution quality compared with the UWA
model. The average values for the UTS, MH, and HI were 6.78%, 3.55%, and 1.35%,
respectively. The experimental results from the datasets confirmed that the proposed model
outperformed existing methods. Therefore, we conclude that the heterogeneous entirety
structure and AMIS improve the fusion weight of the earlier methods.

We conclude that the machine learning combination model should also be able to
estimate nonform data by avoiding a full factorial design when conducting the experiment
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and generating the research dataset. However, the experiment also shows that the predic-
tion results from the model remain highly accurate when using increased datasets. Future
research should progress the research in the following two directions to obtain high-quality
results: (1) application-based or online applications using the proposed model for welding,
enabling the selection of appropriate parameters to obtain the desired UTS, MH, and HI
values; and (2) the exploration of other parameters to obtain new results that could enable
the model to be applied to different materials, parameters, and outputs using a progressive
function system.
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