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Abstract: The reconstruction or prediction of meteorological records through the Analog Ensemble
(AnEn) method is very efficient when the number of predictor time series is small. Thus, in order to
take advantage of the richness and diversity of information contained in a large number of predictors,
it is necessary to reduce their dimensions. This study presents methods to accomplish such reduction,
allowing the use of a high number of predictor variables. In particular, the techniques of Principal
Component Analysis (PCA) and Partial Least Squares (PLS) are used to reduce the dimension of
the predictor dataset without loss of essential information. The combination of the AnEn and PLS
techniques results in a very efficient hybrid method (PLSAnEn) for reconstructing or forecasting
unstable meteorological variables, such as wind speed. This hybrid method is computationally
demanding but its performance can be improved via parallelization or the introduction of variants in
which all possible analogs are previously clustered. The multivariate linear regression methods used
on the new variables resulting from the PCA or PLS techniques also proved to be efficient, especially
for the prediction of meteorological variables without local oscillations, such as the pressure.

Keywords: hindcasting; forecasting; analog ensemble; principal component analysis; partial least
square; multivariate regression

1. Introduction

Filling gaps in observed time series is an important problem in many areas of applied
sciences that depend on data analysis. Without this filling, data reconstruction is difficult
or even impossible. This assumption is particularly true in weather forecasting, where the
amount of stored information is growing four times faster than the world economy [1].
In view of this, big data analytics can help to improve predictions by uncovering patterns
and correlations in the data [2] and reconstructing missing data in areas where there is
limited information. Conversely, this growth in data also means that the amount of missing
data is increasing, which makes accurate reconstruction a crucial task. To handle this
challenge, forecasting methods must be able to handle large amounts of data, multiple data
sources and a wide variety of meteorological variables. This requires advanced methodolo-
gies that can adapt to the particular characteristics of big data in weather forecasting.

Despite the general abundance of weather data available, there are still many regions
without historical data records. These locations, which may be remote or under-developed,
have the potential to be significant generators of renewable energy. However, without his-
torical weather data, it is difficult to accurately predict the potential for energy generation
in such places. Therefore, there is a growing need for methods that can generate weather
data from limited inputs and locations, with the purpose of running simulations of en-
vironmentally driven systems that target these locations. This may greatly enhance our
understanding of the potential for renewable energy generation, and may facilitate the
development of sustainable energy systems in such regions [3].
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The field of weather prediction is often faced with two considerable challenges: (i)
missing or absent weather data, and (ii) handling large volumes of data. The first challenge
can be addressed through weather data reconstruction techniques known as hindcasting.
Hindcasting enables the reconstruction of missing historical data (non-recorded observations)
through the use of a generic prediction model to recreate past weather conditions. For this
reason, hindcasting is also used for the validation of forecast models by comparing their
output to past observations.

Besides the reconstruction of missing data, research in the field of hindcasting also
aims to improve various aspects of meteorology, such as downscaling and forecasting
methods. One of the key techniques employed in meteorological data reconstruction is
the Analog Ensemble (AnEn) method [4,5]. Although the original AnEn method was
first proposed for postprocessing Numerical Weather Predictions (NWPs), this technique
has been applied in several areas, as the production of renewable energies (wind and
solar) [6,7].

Overcoming the challenge of handling large volumes of data is essentially based on
improving the efficiency of the numerical and computational methods employed. In the
context of hindcasting, one possible approach is to use data reduction techniques. An-
other strategy involves improving the algorithms and their implementations. For instance,
the employment of clustering techniques (as recommended by [8]), which implies pre-
viously grouping the analogs data records, reduces the number of operations needed to
identify the analogs and compute the reconstructed value (c.f. [9,10]).

The AnEn method combined with K-means clustering (ClustAnEn) has been success-
fully implemented in the reconstruction of missing gaps in time series by means of the
values of one or two predictor time-series of correlated meteorological variables [9,11,12].
In the study [11], the clustering of analogs with the K-means was compared with other
metrics used to determine the analogs, showing that this method performs better in terms
of reconstruction accuracy. In another work [13], it was also verified that the ClustAnEn
combined approach is considerably faster than the classic AnEn method. Nevertheless,
the reconstruction with more than two predictor time series of meteorological variables
was not explored, mainly because it greatly increases the computational costs of clustering
all possible analogs and does not benefit the results’ accuracy.

The difficulty in using a large number of predictors is not only relevant in the domain
of hindcasting. It also exists in the field of forecasting, meaning that, until now, the number
of predictors used has been relatively small, not exceeding five [7,14]. As will be shown in
this paper, this difficulty can be overcome via dimension reduction techniques, in order to
reduce the dimension of the original dataset without loss of essential information.

In view of the factors discussed above, it is clear that the AnEn method is highly
promising for addressing challenges in hindcasting, forecasting and downscaling. To pro-
vide further evidence, a number of studies have also been conducted to compare the
effectiveness of AnEn with other methods, namely convolutional neural networks (CNNs).
For example, studies such as [15,16] have found that the AnEn method can improve pre-
diction accuracy equally or even outperform CNNs when used to post-process results
of regional weather prediction models, such as the Weather Research and Forecasting
(WRF). Furthermore, the implementation of the AnEn method is relatively straightforward,
and its results are easy to understand and explain, when compared to machine learning
methods [17]. These findings provide a strong basis for the continued use of the AnEn
methodology in future research in the field of weather prediction and reconstruction.

In this study, we enrich the AnEn method with techniques that take advantage of a
high number of predictor variables through dimension reduction. We explore the reduction
in the original predictor dataset to a small number of new predictor variables, without loss
of essential information. This original approach improves the quality of the reconstructions
as well as their computational efficiency. We explore the dimension reduction through
two alternative methods, namely principal component analysis (PCA) and partial least
squares (PLSs).
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The PCA technique identifies the dimensions along which the data are most dispersed,
i.e., that have the largest variance (see for instance [18]). In this way, we can identify the
dimensions that best differentiate the dataset under analysis, i.e., its principal components
that, in turn, are used as the new predictor variables. The PLS technique extracts from the
set of predictor variables a set of latent (not directly observed or measured) variables which
have the best predictive power. These new predictor variables are obtained by maximizing
the covariance between the predictors and the predicted variable (see for instance [19]).

In this work, we combine the AnEn method with PCA (PCAnEn) and PLS (PLSAnEn),
in order to take advantage of the potentialities of the AnEn method and the dimension
reduction provided by the PCA and PLS techniques. Furthermore, PCA and PLS are
usually combined with multivariate linear regression, giving rise to the principal compo-
nents regression (PCR) and partial least square regression (PLSR) methods. We present
a comparative study of the performance of all these methods in a hindcasting problem,
corresponding to the reconstruction of missing data in a given meteorological station by
means of data coming from a set of predictor stations with different geographical locations.

The remaining of the paper is organized as follows. Section 2 presents the various
reconstruction methods employed in this study. Section 3 introduces the meteorological
datasets used. Sections 4 and 5 focus on the selection of principal components and latent
variables, respectively. In Section 6, the numerical results of the tests performed with
the various reconstruction methods are presented. Section 7 provides an analysis of the
computational performance of the same methods. Finally, Section 8 concludes the paper,
summarizing the main findings and their implications for the solving of hindcasting and
forecasting problems with a high number of predictors.

2. Reconstruction Methods

This section briefly describes all the reconstruction methods used in this work. It
begins by presenting the analog ensemble method, which is the foundation for the other
hindcasting methods. This is followed by an introduction to dimension reduction methods,
using PCA and PLS, and their use to reconstruct missing values.

2.1. Analog Ensemble Method

In this work, the AnEn method is used to reconstruct meteorological records missing
in a time series. Reconstruction of missing values in a time series is a problem equivalent
to hindcasting, i.e., to predict past events recurring to a forecast method and historical
data (e.g., measurements at some other location or from another variable). The data
are reconstructed based on one or more predictor time-series that present some type of
correlation with the incomplete series to be reconstructed/predicted.

A practical application scenario consists of reconstructing data from a meteorological
station using data from neighboring stations. In this context, several time-series are used as
predictors, being represented by the column vectors

xj ∈ IRn, with j = 1, 2, . . . , q, (1)

each one containing n records of the values of certain meteorological variables. For simplic-
ity, these vectors will often be referred to as predictor variables.

The predictor variables can be used in a dependent or independent way. In the depen-
dent variant, the analogs selected in different predictor variables must be concomitant
(overlapping) in time. In the independent version, such is not mandatory. In previous
work [11], it was verified that the dependent version of the AnEn method is more accurate
and therefore, from now on, that is the version assumed to be used, unless otherwise stated.

In Figure 1, the AnEn method is illustrated with q predictor variables. The historical
data is complete in the predictor variables and incomplete in the reconstructed/predicted
one (y ∈ IRm). The period of missing records is denoted as the reconstruction period, but,
often, it is also designated as prediction period. This designation originates from the applica-
tion of the AnEn method to the post-processing of meteorological forecasts, in which the



Computation 2023, 11, 98 4 of 23

predictor series contains the history of forecasts. In this work, the reconstruction period
corresponds to the part of the time-series in which the records are reconstructed (or, by anal-
ogy, predicted). The period for which all series contain full data is known as the training
period. The longer the training period (compared to the prediction period), the better the
AnEn method is expected to perform (the more comparison data, the more likely it will be
to find meteorological conditions similar to those sought).

Analogs

VectorVectorVector

PredictorStep 1

Value Value Value

Data
Reconstruction

PredictedObserved

Step 2 Step 3

Training Period Prediction Period

Figure 1. Reconstruction of missing meteorological records with the AnEn method.

As depicted in Figure 1, firstly (step 1), a certain number of analogs are selected in the
training period of the predictor variables, due to being the past records most similar to
the predictor record at instant tP ∈ {tm, ..., tn}. To evaluate the analogs, a time window is
defined that encompasses the predictor record at time tP and its k consecutive neighbors
in the recent past (tP − ∆t, tP − 2∆t, ..., tP − k∆t) and immediate future (tP + ∆t, tP + 2∆t,
..., tP + k∆t); these 2k + 1 records make up a predictor vector. Next, the same kind of time
window is defined for each and every instant in the training period, tT ∈ {t0, ..., tm}, with a
corresponding training vector; the comparison of all the training vectors with the predictor
vector makes it possible to assess their similarity (see [11] for similarity metrics); the training
vectors most similar to the predictor vector form the analog ensemble. Note that comparing
vectors, instead of single values, accounts for the evolutionary trend of the meteorological
variable around the central instant of the time window, allowing for the selection of analogs
to take into consideration weather patterns (instead of single isolated values). A range of
5 ≤ k ≤ 10 was reported to enhance prediction accuracy [12]; thus, this study employed
k = 5 to reduce computational demands while still attaining optimized predictions. For the
datasets under analysis in this work, the resulting time window corresponded to one hour,
as the time series had a sampling period of 6 minutes.

In step 2, the analogs are mapped onto observations of the predicted station, by se-
lecting the simultaneous records in the observed time-series. This mapping is conducted
only for the central time of each analog time window, i.e., for each analog vector a single
observed value is selected in the training period.

Finally, in step 3, the observed values chosen are used to predict (reconstruct) the
missing values in the predicted variable y, through its average (weighted or not). When this
target value is actually available as real observational data (as it happens in this work), it
becomes possible to compute the error of the reconstruction/prediction and, consequently,
to validate the method.

2.2. ClustAnEn Method

The extension of the training period has an influence in the performance of the AnEn
method. The longer the training period, the more accurate the predictions/reconstructions
are expected to be. On the other hand, longer training periods imply greater computational



Computation 2023, 11, 98 5 of 23

effort to identify the analogs in each reconstruction. To alleviate this problem, an alternative
version of the AnEn method was developed in which all possible analogs (all of the
time windows that one can make from the predictor variables in the training period) are
previously classified into a predefined number of clusters [9,13], with the number of clusters
set to the square root of the total number of possible analogs. This heuristic is based in
the empirical results previously obtained [12]. In this way, a predictor vector is compared
only with the centroid (median of the analogs in that cluster) of each cluster in order to
identify the analog cluster that contains the analogs selected in step 1. This AnEn variant,
denoted ClustAnEn, is much faster than the classic AnEn method in identifying the analog
ensemble [13].

Another important issue in data reconstruction/prediction is the number of predictor
variables. It is expected that the more predictors there are, the more useful informa-
tion for the reconstruction is available. Hence, it is important to know how reconstruc-
tion/prediction methods can use all available predictive information. As the AnEn and
ClustAnEn methods lose computational efficiency with the increase in the number of pre-
dictor variables, the use of these methods is not suited for a large number (q) of predictor
variables. Therefore, the main objective of this work is to reduce the dimension of the
predictor dataset, while minimizing the loss of information, in order to be able to use
the AnEn and ClustAnEn methods in hindcasting and forecasting problems with a high
number of predictor variables.

2.3. Principal Components Analysis

The Principal Components Analysis (PCA) technique makes it possible to reduce the
dimensionality of a dataset consisting of a large number of interrelated variables, while
retaining as much of the information of variation present in the dataset as possible. This is
achieved by transforming to a new set of uncorrelated variables, called the principal compo-
nents (PCs), which are ordered so that the first few contain most of the variation information
present in original variables dataset [18]. We describe here, briefly, the application of PCA
to the dimension reduction in predictor variables.

Let the original dataset of predictor variables be represented by the matrix

X =
[
x1 x2 · · · xq

]
∈ IRn×q, (2)

where predictor variables are represented by the q column vectors xj, with j = 1, . . . , q, each
one with n records of the value of a given meteorological variable. The matrix X is assumed
to be centered, i.e., the mean of each column is equal to zero, and standardized such that its
variance equals unity. To identify the dimensions along which the data are most dispersed,
i.e., the dimensions that best differentiate the predictor dataset, it is necessary to compute
the principal component (PC) vectors. Such can be achieved by the thin singular value
decomposition of the predictor matrix X, given by

X = UΣVT , (3)

where the columns of the matrix U ∈ IRn×q contain the left singular vectors, the diagonal
matrix Σ ∈ IRq×q contains the singular values σi, with σ1 ≥ σ2 ≥ . . . ≥ σq ≥ 0 and the
matrix V ∈ IRq×q contains the right singular vectors vj, with j = 1, . . . , q, which are the
principal components directions of X (for details see [20]). The matrices of the left and right
singular vectors are orthonormal, i.e., UTU = VTV = I, where I is the identity matrix.

The vectors
zj = Xvj, with j = 1, . . . , q, (4)

are the principal components (PCs) of the original dataset and define new variables that
will be used instead of the original predictor variables. The first principal component, z1,
has the largest sample variance, equal to σ2

1 /n, among all normalized linear combinations
of the columns of X [20]. The second principal component, given by z2 = Xv2, is the
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new variable with the second largest variance (σ2
2 /n). Likewise, the remaining principal

components define new variables with decreasing variances.
The new variables zj are linear combinations of the columns of X, i.e., the original

predictor variables x1, x2, . . . , xq, being given by

zj = v1jx1 + v2jx2 + . . . + vqjxq, with j = 1, . . . , q, (5)

where the coefficients vij, with i = 1, 2, . . . , q, designated as loadings, are the elements of
the vector vj. The magnitude of a coefficient is related to the relative importance of the
corresponding original variable in the principal component.

The substitution criterion of the original predictor variables, x1, x2, · · · , xq, by p PCs,
z1, · · · , zp, with p < q, in the AnEn or ClustAnEn methods, must take into account the
influence of the new variables in the original dataset. This influence is directly proportional
to the respective variances, which are given by σ2

i /n, with i = 1, 2, . . . , q. It is expected that
the first few principal components, corresponding to the largest singular values, account
for a large proportion of the total variance, being all that is needed do describe the original
dataset [21]. Therefore, one of the possible criteria that can be used to choose how many PCs
should be used, is the magnitude of the respective singular values. If the original variables
are previously scaled, by dividing each variable by the respective standard deviation, each
of them will have a standard deviation equal to one. If a PC has a standard deviation greater
than one, it means that it contains more information than any of the original variables and,
as such, should be chosen to represent the original dataset.

In an exploratory study on the use of the AnEn method based on the principal compo-
nents of a meteorological dataset [22], it was verified that the efficiency of this combination
strongly depends on the correlation between the predictor variables. If they are poorly
correlated, it is not possible to reduce them to a small number of components without
losing significant information. On the contrary, if the predictor variables are correlated,
then it is possible to reduce their dimension to a small number of components and improve
the quality of the prediction with the AnEn method.

The combination of the AnEn and ClustAnEn methods with PCA gives rise to two
new methods that are designated in this work by PCAnEn and PCClustAnEn, respectively.

2.4. Principal Component Regression

As an alternative to the reduction in the size of the predictor dataset, the reconstruction
of missing data can be accomplished using multivariate linear regression. This method,
unlike the AnEn method, allows for the direct use of all the original predictor variables.

The goal of the multivariate regression is to predict y from X, where X ∈ IRm×q contains
in the columns the values of all the predictor variables recorded during the training period,
and y ∈ IRm the corresponding values of the predicted variable. This problem involves the
determination of the vector b ∈ IRq, that is, the approximated solution of the linear system
of equations

Xb ≈ y. (6)

Such is equivalent to solve the linear least squares problem

min
b
‖y− Xb‖, (7)

where ‖.‖ is the usual 2-norm (see [20] for details). If X is a full rank column matrix, then
the solution of the problem (7) is given by

b =
(

XTX
)−1

XTy. (8)
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The expectation is that the solution vector b can be used to predict values in the
reconstruction period based on the predictor variables for that same period, that is:

ỹ = X̃b, (9)

where ỹ ∈ IR(n−m) represents the reconstructed/predicted variable during the reconstruc-
tion/prediction period and X̃ ∈ IR(n−m)×q contain the values of the predictor variables
along the same period.

The multivariate regression model given by Equation (9) can be implemented only if
the matrix X has full column rank (its column vectors are linearly independent). The near-
collinearity of columns can occur if there are highly correlated predictor variables. In this
case, the least squares problem (7) becomes ill-conditioned and difficult to solve.

The principal component regression (PCR) [23] method circumvents the rank defi-
ciency by replacing the original predictor variables X by its principal components (PCs) in
the regression model. Once the principal components, Z = XV, are obtained from matrix X
in the same way as described in Section 2.3, a few of them (p) are used in the regression
model to estimate y.

Therefore, the PCR method consists of regressing y not on X itself but on the principal
components matrix Z ∈ IRm×p, assuming that p PCs have been previously selected. This
implies to solve by linear least squares the system

Zc ≈ y, (10)

whose solution is the parameter vector

c =
(

ZTZ
)−1

ZTy. (11)

The PCR regression model on Z is then given by

ỹ = Z̃c, (12)

were ỹ ∈ IR(n−m) is, as before, the vector of the reconstructed/predicted values of y during
the reconstruction/prediction period, Z̃ = X̃V ∈ IR(n−m)×p contains the values of the p
selected PCs along the reconstruction/prediction period and c ∈ IRp is the parameter vector
of the PCR.

The regression model (12) can be expressed in function of X̃ instead of Z̃ by replacing
Z̃ by X̃V, thus originating

ỹ = X̃Vc. (13)

PCR is an alternative to the AnEn-based methods that combines the size reduction
provided by PCA with linear regression. This combination prevents collinearity problems
between vectors of predictor variables. Another advantage of PCR is the reduction in the
number q of original predictor variables to a lower number p of principal components,
but which contain most of the original information. Thus, the good performance of this
method depends strongly on the choice of the PCs.

It is expected that a few of the PCs, which have a higher variance, are enough to
describe the evolution of the original predictor dataset. However, these components were
chosen to explain the evolution of the original predictor variables, contained in the matrix
X and, as such, there is no guarantee that these PCs will be relevant for the prediction of y.

2.5. Partial Least Squares Regression

In contrast with the PCR method, the partial least squares regression (PLSR) method
uses the components from X that best predict y. These components, also called the latent
variables (because they are not directly observed or measured), are coming from the joint
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decomposition of X and y, taking into account the obligation of the components to explain
the covariance between X and y as best as possible [24,25].

PLSR computes the latent variables that model X and y and best predict y, resulting in
the variable decompositions

X = TPT + E and y = RqT + f, (14)

where T ∈ IRm×p and R ∈ IRm×p are the matrix with p latent vectors (also known as
scores) extracted from X and y, respectively; P ∈ IRq×p and q ∈ IRp represent the loading
vectors; the matrix E ∈ IRm×q and vector f ∈ IRm represent the residuals, whose norms
are minimized. Additionally, the scores matrix T is orthogonal, that is, TTT = TTT = I.
The decompositions (14) can be achieved by different procedures, such as the nonlinear iter-
ative partial least squares (NIPALSs) algorithm [26] or the statistically inspired modification
of PLS (SIMPLS) algorithm [27].

The decompositions (14) are performed in order to minimize the norm of the residual
matrices, E and f, and to maximize the covariance between the latent vectors, columns of T
and R. Consequentially, there is a linear relation between T and R, expressed as

R = TD + H, (15)

where D ∈ IRp×p is a diagonal matrix with the regression weights and H denotes the matrix
of the residuals. Combining (15) with the decomposition of y, given by (14), leads to

y = TDqT +
(

HqT + f
)

, (16)

or simply
y = TcT + f∗, (17)

where cT = DqT ∈ IRp denotes the regression vector and f∗ = HqT + f is the residual
vector, so that y can be estimated as

ŷ = TcT . (18)

The regression model (18) makes it possible to estimate y based on the latent variables
T, but it is useful regressing y on the original predictor variables X. To accomplish this,
the matrix W = XTU, of the PLS weights, computed such that EW = 0, is post-multiplied
by the decomposition of X in (14):

XW = TPTW + EW

⇔T = XW
(

PTW
)−1

. (19)

Replacing (19) by (18) returns an expression that can be applied to the training data:

ŷ = XW
(

PTW
)−1

cT

= XXTR
(

TTXXTR
)−1

cT

= Xd (20)

where
d = XTR

(
TTXXTR

)−1
cT (21)

is the parameter vector of the PLSR regression model. Since the solution of (17) by lin-
ear least squares, with orthogonal latent predictors T, leads to c = yTT, the parameter
vector (21) can be written as

d = XTR
(

TTXXTR
)−1

TTy = TTTy. (22)
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For the reconstruction/prediction period, the PLS regression model will be given by

ỹ = X̃d = T̃cT = T̃TTy, (23)

where X̃ ∈ IR(n−m)×q is the matrix of the predictor variables along the reconstructions/pred-
iction period and

T̃ = X̃XTR
(

TTXXTR
)−1
∈ IR(n−m)×p (24)

represents the matrix of latent variables in the same period. Other formulations of the PLSR
model can be derived based on the properties and identities between the vectors resulting
from the algorithm used to obtain the decompositions (14) (see, for instance, [19,25,28]).

As Equation (24) makes it possible to extend the latent variables along the prediction
period (T̃ =

[
t̃1 t̃2 . . . t̃p

]
), it is possible to use them as predictors in the AnEn-based method.

In this work, we also explore the combination of the AnEn and ClustAnEn methods with the
PLS decomposition, in order to use the latent variables as predictors instead of the original
variables. The resulting methods are denoted PLSAnEn and PLSClustAnEn, respectively.

The PLS regression method is also, by itself, an alternative method to PCR and AnEn-
based methods for the reconstruction/prediction of the missing records, by estimating
them via the regression model (23) and, therefore, is also included in the present study.

3. Meteorological Datasets

The US National Data Buoy Center (NDBC) [29] is the source for the data used in this
study. NDBC manages a network of coastal stations and buoys for data collection. Part of
the National Oceanic and Atmospheric Administration (NOAA), the most representative
weather center in America [30], NDBC provides open-source, credible and updated data.

The NDBC database covers regions from almost the entire US coast, as well as some
across the globe. For this work we focused on a region with a stations density as large
as possible. The choice fell on a region centered on the north of the San Francisco Bay
(California, USA), for which there are records produced by 16 meteorological stations
relatively close to each other. Figure 2 shows the selected region and its 16 NDBC stations.
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Figure 2. Geolocation of the selected NDBC meteorological stations.

Records of various meteorological variables are available for each station, with a
sampling period of 6 min. The variables used in this study are atmospheric pressure (PRES)
(mbar), air temperature (ATMP) (◦C), wind speed (WSPD) (m/s) and peak gust speed
(GST) (m/s). WSPD and GST can vary significantly over short time intervals, and sporadic
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data gathering incompletely describes their real behavior. NDBC solved this problem by
sampling the wind speed (WSPD) every 6/8 s and averaging the readings across 6 min;
additionally, it considers the maximum wind speed on the same interval as the peak gust
speed (GST). In turn, the collection of ATMP and PRES is straightforward: the instantaneous
value every 6 min is the one recorded in the NDBC database.

The records start in 1 January 2016 and end in 31 December 2021. Due to sensor
failures and maintenance operations in the stations, variables often present time-series with
incomplete data. Table 1 presents the mean, standard deviation (SD) and availability (in
percentage), for the considered variables (WSPD, GST, ATMP and PRES), in the 16 stations.

To maximize the amount of training data, only variables with more than 85% of avail-
ability (in bold in Table 1) were chosen for this study. The presence of NA in Table 1 means
that the corresponding variable is not available at the corresponding station. Consequently,
the working dataset consists of a total of 41 time series: 10 series with records of the WSPD
variable, 10 of the GST variable, 12 of the ATMP variable and 9 of the PRES variable.

Table 1. Characterization of the dataset.

Station
WSPD GST ATMP PRES

Mean SD Avail. Mean SD Avail. Mean SD Avail. Mean SD Avail.

AAM 2.2 1.6 93.9 3.1 2.1 93.7 12.7 2.9 98.8 1016.9 4.8 98.9
DPX 3.6 2.1 97.6 4.9 2.7 97.6 12.9 3.3 98.7 1016.1 5.1 98.7
FTP 2.5 1.6 97.8 4.2 2.2 97.8 14.3 2.5 98.9 1016.8 4.8 99
LND 2.1 1.4 92.5 3 1.9 92.5 12.8 2.9 93.6 1016.6 4.8 93.6
OBX NA NA NA NA NA NA 12.8 2.6 95.7 NA NA NA
OKX 2.6 1.6 81.7 3.6 2.1 81.7 NA NA NA NA NA NA
OMH 3.0 2.0 85.5 4.0 2.5 85.5 NA NA NA NA NA NA
PCO 4.3 2.4 88.5 5.6 2.8 88.5 12.3 4.0 93.3 1016.2 5.1 93.4
PPX 3.8 2.2 95.2 5.1 2.8 95.2 13.1 2.9 96.6 1016.8 4.9 96.6
PSB 3.9 2.4 95.1 5.4 3.2 95.1 13.7 4.4 96.2 1015.8 5.3 96.2
PXO 2.2 1.5 84.7 3.4 2.0 84.7 12.6 2.6 87.8 1015.6 4.9 76.1
PXS NA NA NA NA NA NA 13.2 2.5 96.9 NA NA NA

RCM 2.6 1.6 93.9 3.9 2.1 93.9 12.8 2.7 98 1016.4 4.9 98
RTY 1.7 1.5 96.1 2.5 1.9 95.7 12.5 3.6 97.6 1017.0 4.9 97.7
TIB 1.7 1.5 3.3 2.7 2.2 3.3 NA NA NA 1016.3 3.5 3.3
UPB 4.2 2.3 41.2 5.6 2.9 41.2 NA NA NA NA NA NA

Figures 3–6 show the correlations between the stations with more records for each
variable (10 stations for the WSPD, GST and ATPM variables, and 9 stations for the PRES
variable). In each figure, a heat map is shown for each station; the polygonal format of this
map matches (approximately) a four-side polygon that includes the 16 stations, preserving
their geographical positions and distances, considering the layout of Figure 2. In each heat
map, only 10 (9) points represent station correlations—the points corresponding to their
locations; the correlations for the other points were produced by interpolation.

PCO PPX PSB RCM RTY

AAM DPX FTP LND OMH

0.25

0.50

0.75

1.00
Correlation

Figure 3. Correlation between stations for the WSPD variable. Note: the horizontal and vertical axes
refers to longitude and latitude, respectively (labels removed for display purposes).
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Figure 4. Correlation between stations for the GST variable. For further details refer to Figure 3.

PPX PSB PXO PXS RCM RTY

AAM DPX FTP LND OBX PCO
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Figure 5. Correlation between stations for the ATMP variable. For further details refer to Figure 3.

PPX PSB RCM RTY

AAM DPX FTP LND PCO

0.25

0.50

0.75

1.00
Correlation

Figure 6. Correlation between stations for the PRES variable. For further details refer to Figure 3.

As may be observed in Figures 3 and 4, for the WSPD and GST variables only the
closest stations present a strong correlation. Furthermore, the GST variable presents corre-
lations between stations slightly higher than those observed for the WSPD variable. These
observations confirm that the wind-dependent variables have a local (and not regional)
variation, significantly depending on the morphology of the terrain where the station
is implemented.

Figures 5 and 6 show that the ATMP and PRES variables have a different behavior
from that of the WSPD and GST variables (Figures 3 and 4), as ATMP and PRES present a
very high correlation between stations, even among the most distant ones. This shows that
the ATMP and PRES variables have a regional character, varying little or not at all locally.

4. Selecting the Principal Components

In this section, we show how the selection of the principal components (PCs) that
are used in the PCAnEn, PCClustAnEn and PCR methods is conducted. The number of
PCs to be included in these methods is of great importance. An insufficient number of
PCs translates into the loss of information necessary for data reconstruction, whilst a high
number translates into redundant information and increased computational costs.

The identification of the dimensions with most data dispersion makes it possible to
identify the principal components zj, with j = 1, . . . , p, that best distinguish the dataset
under study. The dataset corresponding to the multiple predictor time-series, from the
various meteorological stations described in Section 3, is represented by the data matrix
X =

[
x1 x2 . . . xq

]
, where each column vector xj, with j = 1, . . . , q, includes the centered

and scaled records of a single variable. The thin singular value decomposition of X makes
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it possible to obtain the principal components zj, j = 1, . . . , q, each one corresponding to a
singular value σj, j = 1, . . . , q, where σ1 ≥ σ2 ≥ . . . ≥ σq (see Section 2.3). The PC vector z1

has the largest sample variance (σ2
1 /m), z2 has the second largest variance (σ2

2 /m) and so
on. On the other hand, as the original predictor time-series are previously scaled by the
respective standard deviation, if a PC has a standard deviation greater than 1 it means that
this PC defines a dimension with more dispersion, i.e., it contains more information than
the original variables. This will be the criteria used to select the PCs, as employed in [31].

Figure 7 shows the standard deviations of the first 10 PCs obtained from 37 predictor
variables of the dataset used. These predictor variables do not include the time-series from
the PPX station because these series are used only as predicted/reconstructed variables.

Based on the same figure, the principal component analysis is performed from different
predictor matrices X: in the first case (blue bars), the PCs are obtained from all predictor
variables (q = 37); in the second case (orange bars), the PCs are obtained by means of the
predictor variables WSPD and GST (q = 18); in the third case (green bars), only the ATMP
time-series were used (q = 11); finally, in the fourth case (gray bars), only the PRES series
where considered as predictors (q = 8). The idea behind this analysis is to verify whether
there is any advantage in using predictor variables different from the predicted ones.
Following [22], the variables WSPD and GST were merged as they are highly correlated
with each other; hence, it makes no sense to use them separately.
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Figure 7. Standard deviation of the first PCs for different predictor variables.

As can be seen in Figure 7, where the PC choice threshold is indicated by a dashed
horizontal line, if all variables are used as predictors then the first six PCs (p = 6) must be
selected to represent the predictor dataset. In the case of wind-related predictor variables
(WSPD and GST), the first four PCs (p = 4) must be used. Finally, for a single predictor
variable (ATMP or PRES), only the first PC (p = 1) should be chosen.

Table 2 shows the errors for the prediction/reconstruction of the variables WSPD,
ATMP and PRES, of the PPX station, using the PCR, PCClustAnEn and PCAnEn methods,
with the number of PCs previously defined (6, 4 or 1). The reconstruction period was
the year of 2021 (the last one of the dataset) and the training period spanned from 2016
to 2020. Due to computing resource constraints, the daily records were reconstructed
only from 10 am to 4 pm; moreover, the analogs were searched only in the same period.
The reconstruction errors shown are the bias (BIAS), which is an indicator of the systematic
error, the standard deviation of the error (SDE), an indicator of the random error and the
root mean square error (RMSE), including both the systematic and the random error (for
details see [32]). The smallest errors are highlighted in bold.
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Table 2. Errors of the prediction of PPX station for different principal components.

Predicted Predictor # PCs (p)
PCR PCClustAnEn PCAnEn

BIAS RMSE SDE BIAS RMSE SDE BIAS RMSE SDE

WSPD
All 6 0.47 1.99 1.93 0.55 1.91 1.83 0.55 1.8 1.71

WSPD/GST 4 0.39 1.85 1.81 0.38 1.79 1.75 0.42 1.75 1.7

ATMP
All 6 −0.01 0.54 0.54 −0.05 1.00 1.00 −0.07 0.8 0.8

ATMP 1 −0.04 0.64 0.64 −0.03 0.66 0.66 −0.03 0.66 0.66

PRES
All 6 0.04 0.29 0.29 0.08 1.59 1.58 0.05 0.97 0.97

PRES 1 0.04 0.20 0.19 0.04 0.32 0.31 0.04 0.32 0.32

As may be observed in Table 2, with the exception of the ATMP variable, there seems to
be no advantage in using all available predictor variables and, in most cases, it is preferable
to use as predictor the same variable to be predicted/reconstructed. This is an indication
according to which the proposed methods are not adequate to use all available information
without scrutiny. Some signals (time-series) are uncorrelated with others and if these
are used, they will introduce noise. Hence, the tests with limited variables, based on
signals that share the same physical significance, have better results. Moreover, comparing
the results obtained by the three methods, they result in errors very close to each other.
At most, errors are in the order of tenths of a unit. Noteworthy, the consistent spatial
correlation of ATMP and PRES, as seen in Figures 5 and 6, gives PCRs a slight advantage
in their reconstruction, which suggests that a regression model uses this correlation more
effectively. In contrast, WSPD has lower spatial correlation and more frequent temporal
variations, making PCAnEn the best method for its reconstruction. Finally, PCClusAnEn
yields comparable or nearly identical results to PCAnEn, for all the three variables.

5. Selecting the Latent Variables

Choosing the number of components (latent variables) is an important step in the
application of the PLSR method or variants. As a latent variable is relevant only if it
improves the prediction of y, it is firstly necessary to solve the problem of which and how
many latent variables should be kept in the PLSR model to achieve optimal predictions.

In this section, we propose two approaches that can be used to determine the num-
ber of latent variables (p). To achieve this, the variables of the PPX station were pre-
dicted/reconstructed by means of the variables of the neighboring stations. Thus, there are
q = 37 original predictor variables that can be used to obtain latent variables.

The performance of a PLSR model can be evaluated with computer-based re-sampling
techniques, such as cross-validation (c.f. [33]). In this technique, the data of the training
period (see Figure 1) are split into a learning set (used to build a PLSR model) and a testing
set (used to test the model). In particular, in the Leave-One-Out Cross-Validation (LOOCV)
approach, the initial training dataset is partitioned into exactly k subsets (k-fold). Each
subset is then used to test the PLSR model built by means of the data included in the k− 1
learning subsets (for details, refer to [25,34]). The predicted observations for each testing
set are stored in the vector ŷ[p], which is used to determine the overall quality of the PLSR
model using p latent variables. The quality of the PLSR model is evaluated by measuring
the discrepancy between y and ŷ[p], using the root mean-squared error predicted (RMSEP):

RMSEP =

√
m

m

∥∥∥y− ŷ[p]
∥∥∥. (25)

Figure 8a shows the values of the normalized RMSEP in function of the number of
latent variables (p), originated by the predictions of the four meteorological variables
(WSPD, GST, ATMP and PRES), from the PPX stations, by means of the 10-fold LOOCV
technique. Each variable was predicted only by the time-series corresponding to the same
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meteorological variable (X and y contain data from the same meteorological variable),
except for WSPD and GST, which are used together to predict WSPD, based on the analysis
in Section 3. It can be observed, in the case of WSPD, that the first four components are
responsible for the highest decrease in RMSEP. For a number of latent variables greater
than four, the decrease in RMSEP is not significant. For the ATMP and PRES meteorological
variables, the largest reduction in RMSEP happens for the first three components.
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(a) The same variable as predictor
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(b) All variables as predictor

Figure 8. Normalized RMSEP values for different latent variables on a logarithmic scale. The normal-
ization factor used was the difference between the maximum and minimum values [35].

Figure 8b shows the values of the RMSEP generated in the same conditions as in Figure 8a,
with the exception that each variable was predicted by all meteorological variables in the
neighboring stations. In the case of WSPD, the first two or three latent variables are responsible
for the highest decrease in RMSEP. For the case of ATMP and PRES, the largest reduction in
RMSEP occurs for the first three or four components.

An alternative approach to determine the optimal number of latent variables is based
on the metric

Q2
p = 1−

PRESSp

RESSp−1
, (26)

where PRESSp is the predicted residual sum of squares originated by the LOOCV technique,
with the p latent variable, being computed through

PRESSp =
∥∥∥y− ỹ[p]

∥∥∥2
, (27)

and
RESSp−1 =

∥∥∥y− ŷ[p−1]
∥∥∥2

(28)

is the residual sum of squares originated by the PLSR model, obtained with the p− 1 latent
variable and built with all data from the training period. The idea of this criteria, proposed
in [36], is that a latent variable is kept if the value of the metric (26) is larger than a certain
threshold (ε) generally set to ε = 0.0975, i.e.,

Q2
p ≥ 0.0975. (29)

Figure 9a shows the values of Q2 in function of the number of latent variables, in the
case of predictions with the same meteorological variables. It can be observed that the
number of latent variables that verify the criterion (29) is two for the WSPD meteorological
variable, three for the ATMP variable and four for the PRESS variable.
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Figure 9. Q2 metric for a different number of latent variables, using two combinations of predictors.

Similarly, Figure 9b represents the values of Q2 in function of the number of latent
variables, in the case of predictions with all the meteorological variables. It can be observed
that the number of latent variables that verify the criterion (29) is now three for the variable
WSPD, three or four for the ATMP variable and six for the PRESS variable.

Table 3 shows the errors obtained in the prediction of the variables WSPD, ATMP and
PRES, of the PPX station, with the PLSAnEn, PLSClustAnEn and PLSR methods, for the
cases where a different number of latent variables (LVs) are used as predictors, chosen
according to the previously discussed criteria. As in Section 4, the prediction/reconstruction
period is the year of 2021 (restricted, everyday, to the same period—10 a.m. to 4 p.m.) and
the remaining years, from 2016 to 2020, make up the training period. For each number (p)
of predictor LVs, and each method, the smallest errors are highlighted in bold.

Table 3. Errors of the prediction of PPX station for a different number of latent variables (LVs).

Predicted Predictor # LVs
PLSR PLSClustAnEn PLSAnEN

BIAS RMSE SDE BIAS RMSE SDE BIAS RMSE SDE

WSPD

All 2 0.41 1.91 1.86 0.46 1.95 1.89 0.39 1.90 1.85
3 0.47 1.81 1.75 0.50 1.84 1.77 0.50 1.80 1.73

WSPD/GST 2 0.44 1.86 1.81 0.43 1.85 1.80 0.35 1.84 1.81
3 0.41 1.80 1.75 0.41 1.81 1.76 0.37 1.76 1.72

ATMP

All 3 −0.02 0.60 0.60 −0.02 0.82 0.82 −0.03 0.71 0.7
4 0.02 0.58 0.58 0 0.85 0.85 −0.01 0.7 0.7

ATMP 3 −0.01 0.53 0.53 −0.04 0.57 0.57 −0.04 0.56 0.56
4 −0.01 0.53 0.53 −0.03 0.59 0.59 −0.03 0.57 0.57

PRES

All 3 0.03 0.20 0.20 −0.03 1.04 1.04 −0.01 0.75 0.75
6 0.01 0.13 0.13 −0.01 1.27 1.27 −0.02 0.85 0.85

PRES 3 0.04 0.12 0.12 0.03 0.33 0.33 0.03 0.31 0.31
4 0.01 0.12 0.12 0.03 0.31 0.31 0.02 0.31 0.31

In agreement with what was also observed in Section 4, the use of all variables as
predictors did not bring any advantages, and the errors obtained were smaller for predictor
variables corresponding to the same meteorological variables being predicted. It may also
be concluded that the increase in the number of LVs does not always translate into a smaller
error in the reconstructed/predicted values; for instance, the errors obtained for ATMP
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were higher with four LVs, rather than with three. The PLSAnEn method exhibited the best
results in the reconstruction/prediction of WSPD. The PLSR method exhibited the smallest
errors in the reconstruction/prediction of PRES and ATMP, with results not far from those
produced by the PLSAnEn method (for WSPD and ATMP).

6. Results

In this section, we examine the errors resulting from the data reconstruction using data
from neighboring stations. The results are divided into two subsections: Section 6.1, featur-
ing the prediction of the station PPX, and Section 6.2, which focuses on the reconstruction
of each station contained in the dataset. As in previous sections, the reconstruction period
is the year of 2021 (only the daily period from 10 a.m. to 4 p.m.) and the remaining years,
from the beginning of 2016 to the end of 2020, constitute the training period. For each mete-
orological variable, all reconstruction/prediction methods were applied with the optimal
number of PCs or LVs determined in the two previous sections.

Table 4 contains the number of PCs or LVs used by each method. As shown in Table 2,
ATMP reconstruction using the PCR method obtains better results when all meteorological
variables are used as predictors. For this reason, this is the only case where the PCs (p = 6)
are obtained from all q = 37 original predictor variables. In the remaining cases, both PCs
and LVs are obtained from predictor variables corresponding to the same meteorological
variable that is predicted, i.e., PRES is predicted from PRES and WSPD is predicted from
WSPD and GST, as shown in Table 4.

Table 4. Number of PCs or LVs used by each method.

Predicted Predictor # Orig. Pred.
q

PCR
p

PCClustAnEn
p

PCAnEn
p

PLSR
p

PLSClustAnEn
p

PLSAnEn
p

WSPD WSPD/GST 18 4 4 4 3 3 3
ATMP All/ATMP 37/11 6 1 1 3 3 3
PRES PRES 8 1 1 1 4 4 4

6.1. Reconstruction of Meteorological Variable in One Station

Figure 10 makes it possible to compare the real/observed values with the recon-
structed/predicted ones, for the three meteorological variables, at the PPX station, in 9
January 2021, from 10 a.m. to 4 p.m. Only the values obtained by the methods with the
smallest errors in Tables 2 and 3 are presented. It can be seen that the WSPD variable varies
much more in time than ATMP, and especially in comparison to the PRES variable. Visu-
ally, WSPD exhibits more variance at higher frequencies, i.e., more fluctuations between
consecutive records.

For the WSPD variable, the reconstructed values are not able to reproduce specific
variations. However, they reproduce the general trend of variation of the variable. It
should be stressed that this meteorological variable undergoes permanent changes over
time. These changes are greatly influenced by factors inherent to the location, such as the
orientation and topography of the site. It can also be seen that there are no major differences
between the values reconstructed by the PCAnEn and PLSAnEn methods.

For the ATMP variable, the values obtained by the PLSR method are closer to the
observed values than those produced by the PCR method. Both sets of values exhibit some
distance in relation to the observed values. In this geographic region (San Francisco bay
area), there are persistent meteorological effects, namely the northern Oregon–California
coastal jet [37], coupled with the summer sea breeze [38]. The spatial distribution of
temperature is dependent on how inland the meteorological stations are located. Despite the
spatial correlation shown in Figure 5, the PCR method is worse than PLSR in reproducing
the tendencies in temperature evolution.
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Figure 10. Comparison between reconstructed and observed values of the meteorological: WSPD,
ATMP and PRES variables, from the PPX station, at 9 January 2021, from 10 a.m. to 4 p.m.

The values reconstructed by the PLSR and PCR methods for PRES are very close to the
observed values. Firstly, this meteorological variable is highly correlated over the spatial
region of interest (c.f. Figure 6); hence, the tendencies of the signals are similar. This is
both a consequence of the stations being located at similar altitudes (near sea-level) and as
pressure spatial variations are smooth. Secondly, its signal exhibits lower high-frequency
fluctuations when compared to the wind speed signals. Both of these characteristics
contribute to the performance of the reconstruction methods.

Although Figure 10 presents a one-day comparison of predicted and observed values,
it is insufficient to conclude that these patterns remain constant throughout the entire time
series (1 year). Thus, an analysis is necessary to verify the consistency of these patterns in
the complete dataset. To evaluate the prediction methods’ ability to capture high-frequency
patterns, the normalized power spectrum densities (PSDs) [39] of both reconstructed and
observed series are compared in Figure 11. Upon initial observation, the WSPD data display
greater high-frequency density than that of ATMP and PRES. Generally, at low frequencies,
the methods’ densities align with the observed data across all variables. However, for WSPD,
the predictions fail to accurately capture the observed high-frequency variance. In contrast,
for ATMP and PRES, the reconstructions exhibit similar high-frequency variance to the
observed data. These results corroborate the previous one-day analysis.

6.2. Reconstruction of Meteorological Variable in All Stations

Figure 12 shows the values of the RMSE errors per station, resulting from the recon-
struction of the WSPD meteorological variable by the different methods. For all methods,
it is observed, in general, that the lowest errors are obtained for the stations that occupy
central positions in relation to the others. In general, it is also observed that PLS-based
methods obtain lower errors than PC-based methods, although the differences are small
(on the order of a tenth or a hundredth of a unit). The PLSAnEn method presents the best
results in the reconstruction of the WSPD in all meteorological stations.
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Figure 11. Power spectral densities of the reconstructed/observed time series from the PPX station.

In Figure 13, it is possible to observe the values of the same error for the reconstruction
of the ATMP variable. In general, the errors obtained are smaller than in the case of WSPD.
Here, also, the highest errors are obtained in the most peripheral stations, which have less
correlation with the remaining. For this meteorological variable, the supremacy of methods
based on the PLS method is also verified. The best results at all stations are obtained by the
PLSR method, followed closely by the results obtained by the PLSAnEn method.

Finally, Figure 14 also shows the RMSE errors, this time during the reconstruction of
the meteorological variable PRES. The low error values show that PRES is clearly the easiest
variable to reconstruct. In this case, PLS-based methods do not always obtain the best score,
which is achieved by the PLSR method. Following PLSR, the method that obtains the best
results is PCR, especially in the most central stations. The PLSAnEn and PLSClustAnEn
methods obtain the same results at all stations.

0.88

1.44

1.3

0.781.23

1.57

1.75

1.49

1.18

1.13

0.84

1.42

1.27

0.771.21

1.59

1.76

1.49
1.18

1.11

0.92

1.48

1.32

0.821.28

1.66

1.79
1.58

1.23

1.17

0.88

1.49

1.29

0.791.25

1.64

1.81
1.53

1.22

1.15

0.89

1.48

1.36

0.791.25

1.76

1.85

1.56
1.27

1.18

0.86

1.46

1.33

0.771.23

1.74

1.8

1.54

1.26

1.14

PLSAnEn PLSClustAnEn PLSR

PCAnEn PCClustAnEn PCR

1.00
1.25
1.50
1.75

RMSE
m/s

Figure 12. RMSE for the reconstruction of WSPD variable across all available stations.
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Figure 13. RMSE for the reconstruction of ATMP variable across all available stations.
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7. Computational Performance

This section analyzes the computational performance of the reconstruction methods
considered in this study. The computational system used for the evaluation was a virtual
machine hosted in a KVM-based virtualization cluster, with the following characteristics:
16 cores of an Intel Xeon W-2195 CPU, 64 GB of RAM, SSD-based local storage, Ubuntu
20.04 operating system, R version 4.2.2 (all tests were implemented in the R language [40]).

Table 5 presents the mean execution times, in seconds, needed by each method in the
reconstruction of the meteorological variables for all the different stations analyzed in the
previous section (each execution time presented in the table corresponds to the average of
the times of all stations). These execution times concern the execution in a parallel regime
(by instructing the R platform to exploit, whenever possible, all the available CPU-cores).

Table 5. Mean execution times in seconds across methods, variables and steps.

Method
WSPD ATMP PRES

Loading PCA/PLS Prediction Loading PCA/PLS Prediction Loading PCA/PLS Prediction

PCAnEn 37.2 0.5 341.4 24.1 0.3 72.1 24.6 0.3 72.1
PLSAnEn 37.2 0.7 289.9 24.1 0.4 287.1 24.6 0.3 340.3

PCClustAnEn 37.2 0.5 13.2 24.1 0.3 4.2 24.6 0.3 5.5
PLSClustAnEn 37.2 0.7 11.8 24.1 0.4 6.0 24.6 0.3 7.1

PCR 37.2 3.7 0 61.2 6.8 0 24.6 2.0 0
PLSR 37.2 3.4 0 24.1 2.1 0 24.6 1.7 0

The execution times are broken down into three consecutive stages: loading, decom-
position (PCA or PLS) and prediction/reconstruction. The loading stage corresponds to
the reading of the data set from CSV files and interpolation of missing values (when they
are not more than four consecutive values). In the case of the reconstruction of WSPD,
the loading step involves the reading of both the WSPD and GST dataset files, which takes
≈37.2 s; even longer, the loading of the ATMP dataset, when using the PCR method, takes
≈61.2 s because this method uses all 37 predictor variables (recall Table 2).

The PCA or PLS decomposition step corresponds to the calculation of PCs or LVs, re-
spectively. This step is conducted by internal R functions that are already highly optimized
from a computational point of view. As such, the execution time of this step is very fast
(however, this step can include also the choice of the number of components through the
LOOCV method, which may have some computational costs).

The final step consists of the reconstruction/prediction of the missing values. In the
PCR and PLSR methods, this stages executes very fast, through linear regression with
previously determined PCs or LVs. However, for PCAnEn and PLSAnEn, this stage is very
demanding because, for each value to be reconstructed/predicted, the training period is
swept in search for analogs. In turn, for the PCClustAnEn and PLSClustAnEn methods,
this step is not as demanding, once all possible analogs are previously clustered, and the
sweeps are reduced to a single operation in which the predictor value is compared with the
cluster centroid. Overall, the slowest methods are thus the PCAnEn method (WSPD) or the
PLSAnEn method (ATMP and PRES) and the faster (for all variables) is the PLSR method.

The execution times presented in Table 5 were obtained using all CPU-cores available.
The impact of using a varying number of CPU-cores may be apprehended by inspecting
Figure 15. This figure represents the execution time for the reconstruction of WSPD
in station PPX in function of the number of CPU-cores, without including the loading
time (more IO-sensitive). In these experiments, PLSR and PCR cross-validations were
parallelized to accelerate the 10-fold LOOCV process. It can be seen that the PCR and
PLSR methods perform similarly for any number of CPUs. In turn, the PLSClustAnEn and
PCClustAnEn methods benefit from increasing the number of CPU-cores, especially up to
6/8; however, as these methods depend heavily on the clustering phase of possible analogs,
which is not always performed in the same number of iterations, their performance does
not always improve with the increased calculation capacity.
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Figure 15. CPU time for the reconstruction of WSPD in station PPX in function of the number of
cores (excluding loading time).

Regarding the PCAnEn and PLSAnEn methods (right sub-figure), it may be observed
that they are more sensitive to the increase in the CPU-cores employed, with their compu-
tational efficiency improving when using up to about ≈10 cores. It turns out that these
methods are highly parallelizable: many searches for analogs may be carried out simul-
taneously once they are inherently independent from each other. However, despite the
performance gains brought by the parallel execution, the PCAnEn and PLSAnEn methods
are still considerably slower than the others.

8. Conclusions

This study presents methods that allow for solving hindcasting and forecasting prob-
lems with a high number of predictors. Solving these problems with a large number
of predictors using the classical analog ensemble methodology, though feasible, is very
inefficient, due to the magnitude of the computational load involved.

The methods presented here combine the robustness of the AnEn method (with or
without clustering) and the PCA and PLS techniques for dimension reduction of the predic-
tor dataset. Using these techniques, the predictor variables are reduced to a small number
of new variables that mostly retain (PCA) and may even enhance (PLS) the meteorological
information used by the AnEn method to reconstruct or forecast the records sought.

The results produced by the PLS-based techniques were found to be slightly more
accurate than those obtained with the PCA-based ones, especially in the reconstruction
or forecast of meteorological variables with a significant amount of oscillation, such as
wind speed (WSPD). This happens because PLS builds the latent variables in such a way
that they simultaneously explain the variation of the predictor variables and the predicted
variable, while the main components, obtained by PCA, only explain the variation of the
predictor variables.

The combination of the AnEn method with PLS results in a hybrid method, PLSA-
nEn, which makes it possible to accurately reconstruct or predict the wind speed. It is
therefore a highly suitable forecasting method for meteorological time-series with potential
applications in wind-resource assessment and wind energy. At the same time, PLSAnEn
is very demanding from a computational point of view, which benefits from a parallel
implementation.

PLSClustAnEn, which combines the AnEn methods with the prior clustering of
analogs, could be an alternative to the PLSAnEn method, as it is much more compu-
tationally efficient. It is, however, a method that depends on many parameters that have to
be properly chosen in order to improve the accuracy of the results.

Simultaneously with the AnEn-based methods, regression methods were also tested
on the new variables determined by PCA or PLS. The resulting methods, PCR and PLSR,
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are very fast and allow for very accurate reconstructions. In particular, the PLSR method is
the most suitable for reconstructing or forecasting highly correlated predictor variables.

In the sequence of this work, we intend to apply the proposed methods to industrial
problems, related to renewable energies, such as forecasting, downscaling or reanalyzing,
where there is a need to address a large number of predictor datasets.
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