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Abstract: Time and frequency concentrations of waveforms are often of interest in engineering
applications. The Slepian basis of order zero is an index-limited (finite) vector that is known to
be optimally concentrated in the frequency domain. This paper proposes a method of mapping
the index-limited Slepian basis to a discrete-time vector, hence obtaining a time-limited, discrete-
time Slepian basis that is optimally concentrated in frequency. The main result of this note is to
demonstrate that the (discrete-time) Slepian basis achieves minimum time-bandwidth compactness
under certain conditions. We distinguish between the characteristic (effective) time/bandwidth of the
Slepians and their defining time/bandwidth (the time and bandwidth parameters used to generate
the Slepian basis). Using two different definitions of effective time and bandwidth of a signal, we
show that when the defining time-bandwidth product of the Slepian basis increases, its effective
time-bandwidth product tends to a minimum value. This implies that not only are the zeroth order
Slepian bases known to be optimally time-limited and band-concentrated basis vectors, but also as
their defining time-bandwidth products increase, their effective time-bandwidth properties approach
the known minimum compactness allowed by the uncertainty principle. Conclusions are also drawn
about the smallest defining time-bandwidth parameters to reach the minimum possible compactness.
These conclusions give guidance for applications where the time-bandwidth product is free to be
selected and hence may be selected to achieve minimum compactness.

Keywords: Slepian basis; time-bandwidth products; signal compactness; energy concentration

1. Introduction

Compact waveforms are often desired in engineering applications, such as commu-
nications, signal processing, and detecting or imaging systems [1–7]. Slepian, Landau,
and Pollak provided a comprehensive study of time and frequency concentration prob-
lems [8–12], leading to the introduction of Prolate Spheroidal Wave Functions (PSWF) and
Discrete Prolate Spheroidal Sequences (DPSS) as functions and sequences with optimal
time-frequency concentration properties. The Slepian basis are vectors defined on a discrete
index, obtained by truncating the infinite length Discrete Prolate Spheroidal Sequence.
The PSWFs answer the question, “what is the maximum concentration of a bandlimited
function inside a given interval?”. Similarly, the DPSS answer the question, “what is the
maximum concentration of a bandlimited function within a finite index set?”. We note that
the literature often uses the terms DPSS and ‘Slepian basis’ interchangeably; however the
terminology we adopt in this paper is to denote the infinite length vectors as DPSS and
finite length (index-limited) vectors as Slepian basis vectors.

Although the PSWF, DPSS and Slepian bases are known to have optimal concentration
properties given a hard limit in the opposite domain [13], their overall time/frequency
compactness is not well studied. To complicate matters further, a signal’s compactness
can be evaluated in various ways [9]; for example, Gaussian functions are the most com-
pact waveform under certain definitions of time and bandwidth compactness [14]. Hence,
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Slepian bases may not be the most compact waveform under measurements of compactness
required for various engineering applications. Furthermore, it is also not clear how to
choose the most compact Slepian from the set of Slepians. This communication paper
considers the compactness properties of the Slepians under different definitions of com-
pactness. This paper proposes a method of mapping the index-limited Slepian basis to
a discrete-time vector, hence obtaining a time-limited (discrete-time) Slepian basis. Fur-
thermore, the time-frequency compactness properties of the time-limited Slepian bases are
discussed, and some conclusions are made.

The Slepian basis is a set of index-limited vectors that are optimally concentrated
in the frequency domain [12]. The Slepian basis s0, . . . , sN−1 ∈ RN are the orthonormal
eigenvectors of the matrix B ∈ RN×N given by [13]

B[m, n] =

{
sin[2πσ(m−n)]

π(m−n) m 6= n
2σ m = n

for m, n = 0, . . . , N − 1 (1)

The matrix B is known in the literature as the prolate matrix [15]. In Equation (1),
0 < σ < 1

2 is the bandwidth of the Slepian basis. The Slepian basis used in this paper
is obtained through MATLAB R2019b signal processing toolbox function dpss, which
calculates the eigenvalues and eigenvectors of the prolate matrix using a fast autocorrelation
technique [16]. The prolate matrix is known to be generally ill-conditioned and this fast
autocorrelation approach gives numerically superior results compared to using simpler
brute-force approaches.

2. Materials and Methods

In this section, we demonstrate the mapping of the Slepian basis to a discrete-time
vector and present approaches to quantify the effective time and bandwidth of the signal.

2.1. Slepian Basis

The Slepian basis is a function of number of points N and time bandwidth product.
In this paper, in order to exploit symmetry of intervals and of definitions of the Fourier
transform, the defining duration of waveforms will be considered as [−T, T] in time, and
[−B, B] in frequency, where B is in Hertz. As a comment, Matlab refers to the time (length
of the interval; in this paper 2T), and half-bandwidth (in this paper B) product c = 2TB.
However, the Matlab “time half-bandwidth” nomenclature is not common in the literature,
which more commonly refers to a “time bandwidth” product. We draw this to the attention
of the reader since there are various slightly different definitions of time-bandwidth product
used in the literature in general, and in the literature on DPSS and PSWFs specifically.

The zeroth order Slepian basis vector s0(N, c) is the eigenvector corresponding to the
largest eigenvalue of the prolate matrix defined by parameters N and c, here defined as
the vectors returned by the Matlab function dpss written by E. Breitenberger [16]. N is the
size of the vector and must be greater than 2c + 1 with no upper limit. The vector returned
can be mapped to a time vector t = −TS : dt : TS with dt = 2TS

N−1 , where 2TS is the duration
of the Slepian basis. That is, we choose c and N, then the dpss function solves the prolate
matrix (Equation 1) eigenvalue problem for σ = c

N−1 to return a Slepian basis. This is
achieved by using inverse iteration with the exact eigenvalues on a starting vector with
approximate shape, to obtain the eigenvectors required. The eigenvalues of the Toeplitz
sinc matrix are then computed using a fast autocorrelation technique. The N-dimensional
eigenvector corresponding to the largest eigenvalue is s0(N, c). Now, we choose a TS to
convert any of the Slepian vectors into a discrete-time vector via t = −TS : dt : TS. The
resulting discrete-time Slepian basis vector will be time-limited to [−TS, TS] and optimally
concentrated in the bandwidth [−BS, BS] with BS = c

2TS
, where BS is denoted in Hertz.

An example of the Matlab code to generate the Slepian basis with N = 201 and c = 10 is
provided in Appendix A. The complete Matlab code to generate the figures in Section 3 is
provided in Appendices B and C.
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2.2. Compactness

There are several different ways to quantify the time and frequency compactness
characteristics of a discrete-time signal xi (defined on discrete-time vector ti) and its Fourier
transform Xi (defined on discrete frequency vector fi). Heuristically speaking, compactness
is a measure of how compact a signal can be, or in other words, how much the signal
spreads out. It is known that signals that are compact (narrow) in time cannot be compact
in frequency. From the mathematical symmetry of the definitions, the reverse is also true.
That is, signals compact (narrow) in frequency cannot be compact in time. We are interested
in quantifying the compactness of signals in both time and frequency domains. To consider
compactness, we introduce two different definitions. The most common method to quantify
compactness—how much a signal is narrow or wide—is by measuring via variance [9,17],
defined as

T2
σ =

N
∑

i=1

(
ti − t

)2|xi|2

N
∑

i=1
|xi|2

(2)

B2
σ =

N
∑

i=1

(
fi − f

)2
|Xi|2

N
∑

i=1
|Xi|2

(3)

Here, T2
σ and B2

σ are the variances, and Tσ and Bσ are the signal’s variance-based char-
acteristic time and bandwidth, respectively. A smaller Tσ or Bσ means the signal has a
shorter characteristic duration or narrower bandwidth. Note that the characteristic time
and bandwidth are different from the defining time TS and bandwidth BS. Here, t and f
are the mean values of the time and frequency vectors, ti and fi, and N is the length of
the signal.

Another common method to quantify signal time and frequency compactness char-
acteristics is via the signal energy-based effective time and bandwidth, defined through
energy concentration [9,17], given by

α2 =

T
α2

∑
−T

α2

|xi|2

∞
∑
−∞
|xi|2

(4)

and

β2 =

B
β2

∑
−B

β2

|Xi|2

∞
∑
−∞
|Xi|2

(5)

where α2 and β2 are measurements of the signal’s energy proportion in a time interval

[−Tα2 , Tα2 ] and frequency interval
[
−Bβ2 , Bβ2

]
, respectively. This paper uses α2 = 98%

and β2 = 98% as the criterion to determine a signal’s energy-based effective time and
bandwidth. That is, the (energy-based) effective time and bandwidth are the values of time
and bandwidth that capture 98% of the signal energy in both time and frequency domains.
For example, T98% = 2s implies that 98% of the energy is concentrated in [−T98%, T98%].

We use the variance and energy-based effective time/frequency definitions of com-
pactness via Tσ, Bσ, T98%, B98% to quantify the signal effective time and frequency values.
In contrast, the defining time and bandwidth TS, BS are those used to define the Slepian
basis through the prolate matrix, as discussed in the previous subsection.
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3. Results and Discussion
3.1. Mapping to Time Domain

Figure 1 shows four different zeroth order eigenvectors of Slepian bases with the same
defining time bandwidth product c = 4 but with different number of points (N).
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Figure 1. Zeroth order Slepian basis vector with time bandwidth product with c = 4. Figure 1. Zeroth order Slepian basis vector with time bandwidth product with c = 4.

Applying the mapping method presented in Section 2, the zeroth order eigenvector of
the Slepian bases with different number of points (Figure 1) are mapped to the time domain
to become discrete-time vectors. Time and frequency domain plots are shown for various
choices of N in Figure 2. In Figure 2, all the Slepian zeroth order eigenvectors are specified
with the time variable corresponding to TS = 2s, that is, they are defined on [−TS, TS]. The
frequency domain plots show that the Slepian bases are concentrated inside the bandwidth
[−BS, BS] where BS = c

2TS
. Here, BS = 1 Hz.
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3.2. Time Frequency Characteristics

Figure 3 shows the effect of changing the defining duration and bandwidth on the
effective duration and bandwidth (using both variance and energy definitions) of zeroth
order Slepian eigenvectors. Time and frequency characteristics of 400 Slepian zeroth order
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eigenvectors are shown using the proposed method. The defining time and bandwidth
of the Slepian bases ranged from 0.1 to 2 s (time parameter, so total duration 0.2–4 s) and
0.1 to 2 Hertz (bandwidth). Data from four hundred Slepians provide enough detail to
visualize the trends. As can be seen from Figure 3, the two measurements of effective time
bandwidth products TσBσ and T98%B98% converge to a constant value when the defining
time bandwidth products TSBS of the Slepian zeroth order eigenvector increase. TSBS
are denoted as ‘defining’ time-bandwidth since they are used to generate the discrete
vectors. However, the simulations show that although the Slepians are time(index)-limited
in TS and band-concentrated in BS by definition, the effective time-bandwidth values TσBσ

and T98%B98% are not the same as the defining TSBS. As the Slepian defining-parameter
time-bandwidth product (TSBS) increases, the actual effective time-bandwidth products (in
the sense of variance or energy-based definitions) converge to constant values.
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Figure 4a shows the (variance) effective time bandwidth products TσBσ of the Slepian
zeroth order eigenvector with fixed TS = 1 s and varying BS, and Figure 4b shows the
(variance) effective time bandwidth products TσBσ Slepian basis with fixed BS = 1 Hz and
varying TS.

Gaussian functions are known to have the smallest (variance definition) time band-
width products TσBσ = 0.5, where this minimum possible time bandwidth product is
governed by the (variance) uncertainty principle [9,14]. To enable the exploitation of sym-
metry of intervals and symmetry of Fourier definitions, we note that in our nomenclature
for this paper, the T variable represents an interval of [−T,T] (i.e., the length of the interval
is 2T).
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Figure 4. (Variance) effective time bandwidth products (variance definition) of Slepian basis (a)
TS = 1 s and varying BS and (b) BS = 1 Hz and varying TS.

From Figure 4, the (variance) effective time bandwidth products TσBσ for Slepian
basis approaches this minimum limit of 0.5 when the defining TSBS increases. Essentially,
as the Slepian-defining time-bandwidth products increase, the defining constraints on
time and bandwidth become less restrictive. This gradual ease in constraints allows the
Slepians to approach the optimal compactness of the Gaussian functions, and the theoretical
minimum time bandwidth product allowed by the uncertainty principle. This convergence
towards the minimum effective time bandwidth product (variance definition) occurs at
about TSBS ≈ 1.

A similar trend can be observed with the 98% energy criteria of time and bandwidth
definition, Figure 5.
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As shown in Figure 5, as the defining time bandwidth product TSBS increases, the
effective time bandwidth product of Slepian zeroth order eigenvectors calculated with
98% energy criteria, T98%B98%, approaches the lower bound of ~0.4. Here, there is no
significance to the value of 0.4 since choosing another percentage (e.g., 99% instead of 98%)
in the energy-based definition will change the value of the lower bound. However, unlike
the variance definition of compactness and the optimality of the Gaussians, there is no
known function that satisfies the theoretical lower limit for the time bandwidth product
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when using the 98% energy criteria. The convergence towards the minimum energy-based
effective time bandwidth product occurs at about TSBS ≈ 0.5.

The classical (Fourier) uncertainty principle states that if a function is essentially
zero outside an interval of length ∆t and its Fourier transform is essentially zero outside
an interval ∆Ω, then ∆t∆Ω ≥ 1 [14]. In our notation, this reads as 2T%X2B%X ≥ 1 or
T%XB%X ≥ 0.25. We have shown that the ∆t and ∆Ω are not necessarily equal to the
‘expected’ Slepian-defining values of 2TS and 2BS, in particular for small values of TSBS.
Changing the choice of definition of ‘essentially zero’ affects the defining TSBS for which
the minimum lower bound is first reached. For example, if we were to choose ‘essentially
zero’ defined through the variance definition, the defining TSBS for which the minimum
lower bound is reached is different, as demonstrated above. In applications, it may be
desired to choose the smallest TSBS for which minimum compactness is reached. Using the
energy-based effective time-bandwidth definition for compactness, the smallest defining
TSBS to reach minimum compactness is TSBS = 0.5. Slepians with values of TSBS smaller
than 0.5 will not reach minimum compactness. Instead, ∆te f f ∆Ωe f f > 1 (strictly greater
than 1) will be satisfied. That is, Slepians with values of TSBS smaller than 0.5 tend to
spread. Slepians with values of TSBS larger than 0.5 will achieve minimum compactness
but at the expense of a larger defining TSBS, which may or may not satisfy other constraints
given in the application problem.

4. Conclusions

This paper proposed a method of mapping the index limited zeroth order Slepian
basis to a discrete-time vector. This allows it to be used as a discrete function of time, which
can be convenient for use in engineering applications. The time bandwidth concentra-
tion properties of the Slepian zeroth order eigenvectors are discussed. Results show that
when the defining time bandwidth product TSBS increases, the effective time bandwidth
products calculated with variance (TσBσ), and 98% energy criterion (T98%B98%) definitions
converge to minimum values. This result agrees with known uncertainty principles for
minimum time-bandwidth products. This indicates that not only are the zeroth order
Slepian bases known to be optimally time-limited and band-concentrated basis vectors, but
as their defining time-bandwidth products increase, their effective time-bandwidth prop-
erties approach known minimum compactness limits allowed by uncertainty principles.
Furthermore, using the percentage energy definition of compactness allows us to conclude
that the smallest value of Slepian defining time-bandwidth product to meet the minimum
allowable compactness of the classical Fourier uncertainty principle is given by TSBS ≈ 0.5.
This conclusion gives guidance for applications where the time-bandwidth product is free
to be selected and hence may be selected to achieve minimum compactness.
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Appendix A

The example of the Matlab code to generate the Slepian basis with N = 201 and c = 10
is provided below:
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Appendix B

The Matlab code to generate Slepian bases with different number of points is provided
below:
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Appendix C

The Matlab code to generate the 3D plot of the Slepian bases effective duration and
bandwidth with varying defining duration and bandwidth is provided below. Supporting
self-defined functions are also provided.
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