
Citation: Shiriaev, E.; Kucherov, N.;

Babenko, M.; Nazarov, A. Fast

Operation of Determining the Sign of

a Number in RNS Using the Akushsky

Core Function. Computation 2023, 11,

124. https://doi.org/10.3390/

computation11070124

Academic Editor: Rafael

Lahoz-Beltra

Received: 30 May 2023

Revised: 23 June 2023

Accepted: 26 June 2023

Published: 28 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Fast Operation of Determining the Sign of a Number in RNS
Using the Akushsky Core Function
Egor Shiriaev * , Nikolay Kucherov , Mikhail Babenko and Anton Nazarov

Faculty of Mathematics and Computer Science, North-Caucasus Federal University, 355017 Stavropol, Russia;
nkucherov@ncfu.ru (N.K.); mgbabenko@ncfu.ru (M.B.); anazarov@ncfu.ru (A.N.)
* Correspondence: eshiriaev@ncfu.ru

Abstract: This article presents a study related to increasing the performance of distributed computing
systems. The essence of fog computing lies in the use of so-called edge devices. These devices are
low-power, so they are extremely sensitive to the computational complexity of the methods used.
This article is aimed at improving the efficiency of calculations while maintaining an appropriate level
of reliability by applying the methods of the Residue Number System (RNS). We are investigating
methods for determining the sign of a number in the RNS based on the core function in order to
develop a new, fast method. As a result, a fast method for determining the sign of a number based
on the Akushsky core function, using approximate calculations, is obtained. Thus, in the course
of this article, a study of methods for ensuring reliability in distributed computing is conducted.
A fast method for determining the sign of a number in the RNS based on the core function using
approximate calculations is also proposed. This result is interesting from the point of view of nebulous
calculations, since it allows maintaining high reliability of a distributed system of edge devices with
a slight increase in the computational complexity of non-modular operations.

Keywords: Residue Number System; core function; modular calculations; reliability; approximate
calculations; positional characteristic; number rank

1. Introduction

Fog calculations (FC) [1,2]—this is a concept of distributed computing, which involves
the use of resources from not only centralized cloud services but also distributed devices
in close proximity to end users (for example, Internet of Things (IoT) devices [3], sensors,
routers, etc.). The main idea is to move computing power closer to the data usage location
to reduce latency, provide faster access to data, and reduce the load on the cloud.

Such a computing system architecture can be effective, for example, for the Smart
City (SM) [4]. However, when building an FC system, a few problems arise related to the
reliability and security of the system being developed.

One of the main advantages of FC is the ability to collect and analyze data in real time,
which allows faster decision-making and improves responsiveness. In addition, they can
be used to offload computing and storage from the cloud, reducing the costs and delays
associated with cloud solutions. However, this also creates new challenges such as security,
uncertainty, data management, and deployment.

In existing implementations of cloud applications, most of the data that needs to be
stored, analyzed, and made decisions about are sent to cloud data centers. However, as
the volume of data increases, there are problems of efficiency and even the impossibility
of transferring information between IoT devices and the cloud. This is due to bandwidth
limitations and minimum latency requirements in the computer network. The advent of
applications that require instant response (such as patient monitoring, self-driving cars, and
others) makes the remote cloud unable to provide reliable, low-latency communications
for these applications. Additionally, in some cases, sending data to the cloud may not be
possible due to privacy issues.

Computation 2023, 11, 124. https://doi.org/10.3390/computation11070124 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation11070124
https://doi.org/10.3390/computation11070124
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-2359-1291
https://orcid.org/0000-0003-0337-0093
https://orcid.org/0000-0001-7066-0061
https://doi.org/10.3390/computation11070124
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation11070124?type=check_update&version=1

Computation 2023, 11, 124 2 of 14

In order to overcome the problems associated with the high bandwidth of the computer
network, work with geographically distributed data sources, minimal delays, and data
processing in place, there is a need for a universal approach to organizing computing
both in the cloud and on nodes, closer to connected devices. To solve this problem, the
concept of FC is used, which bridges the gap between the cloud and IoT devices by
providing computing, storage, networking, and management capabilities at nodes located
directly next to IoT devices. This allows more efficient processing of data and interaction in
the network.

For example, [5] H. Hua et al. consider the organization and construction of boundary
calculations. The problems of computing offloading, resource allocation, and privacy and
security are also considered. Various researchers commonly use the Lyapunov optimization
algorithm to solve the described problems [6–9]. But the authors propose the use of a
combined approach that combines boundary computing and artificial intelligence. This
paper considers several ideas of artificial intelligence for working both in the cloud and
in the fog with data processing in them. The authors offer an important message to
all researchers, which is the importance of combining artificial intelligence and edge
computing. However, the use of artificial intelligence is a rather computationally complex
task. In addition, when working with artificial intelligence, special attention must be paid to
the reliability of the system. To ensure reliability and security, large amounts of calculations
are required. To reduce the computational load, RNS can be used, with its parallelism and
self-correction properties. There are works that prove the effectiveness of the use of RNS in
distributed computing systems [10,11].

After analyzing the existing literature on the topic of security and reliability of dis-
tributed systems, you can notice a certain trend. To increase reliability, block [12–16] and
correction codes are usually used [17–21], as well as data replication [22]. However, these
methods significantly increase the redundancy of information in the system. To reduce
the effect of redundancy, many researchers propose the use of RNS and its self-correcting
properties. For example, there are several methods for detecting and correcting errors in
RNS [23–30]. The use of these developments makes it possible to reduce the redundancy
of the system with a high level of reliability and fault tolerance. Usually these methods in
RNS are divided into two groups: methods based on number projection [31] and methods
based on the error syndrome [32]. The methods discussed earlier are either modifications
of the syndrome or projection method, or they are also used.

The security of distributed systems is traditionally proposed to be provided us-
ing asymmetric ciphers [33], such as RSA [34]. There are many works devoted to this
topic [35–37]. In addition, in the scientific community, works related to security in dis-
tributed using hybrid technologies are popular. This is caused by the low speed of RSA
encryption. Hybrid encryption schemes are often used in practice, in which RSA is used to
encrypt a symmetric key [38–43]. To reduce the costs associated with the use of asymmet-
ric encryption together with symmetric encryption in scientific papers, the use of secret
division schemes is proposed [44] instead of asymmetric encryption. Some secret sharing
schemes use RNS to speed up their arithmetic [45–47]. In addition, for distributed systems,
the use of fully homomorphic encryption schemes is proposed, which also use RNS to
speed up their arithmetic [48–51].

Now, RNS finds its application in various scientific fields. This proves the relevance
of this number system and confirms its positive properties. As mentioned above, RNS is
relevant in the field of security due to its properties—for example, to speed up the operation
of a homomorphic encryption scheme, as per A. Kim et al. [52]. With the help of RNS, a
reduction in the approximation error is achieved, which makes it possible to increase the
efficiency of the circuit calculation. In work [53], the authors propose RNS as the basis of a
new asymmetric cryptalgorithm. RNS modules are proposed to be used as secret keys. The
public keys are freely chosen coefficients for multiplying the residuals. Another application
of RNS is in its self-correcting properties. In their work [54], I. A. Kalmykov et al. use
polynomial RNS to correct one and two errors. The authors claim that their solution allows

Computation 2023, 11, 124 3 of 14

to increase the speed of fault-tolerant high-speed computing systems for digital signal
processing operating in Gaul fields. The positive properties of RNS are also demonstrated in
the work by K. Givaki et al. [55]. In their work, the authors argue that the use of integrated
circuits based on RNS will reduce peak power and reduce thermal costs. In addition, as a
result, the authors claim a decrease in the area of circuits compared to analogues.

However, for effective implementation of RNS methods in distributed computing
systems, it is necessary to reduce the computational complexity of non-modular operations
in RNS. Such operations include, for example, operations of comparison and determination
of the sign of a number. When processing and storing information, these operations are
extremely important since they allow you to determine the correspondence of data when
searching for matches. When considering practical applications—determining the readings
of various sensors, such as temperature—the transfer of numbers from RNS to a positional
system is not advisable from the point of view of the organization of the system. The
methods discussed above ensure the reliability and security of the system when presenting
data in RNS. Thus, the task is to increase the speed of non-modular RNS operations. One
of the main operations is the operation of determining the sign of a number since it allows
you to implement other operations, such as comparison, division, etc. In the case of RNS, to
determine the sign of a number, it is optimal to find the so-called positional characteristic
of the number. To calculate the positional characteristic of a number, Akushsky proposed a
kernel function that allows you to determine the positional characteristic in a simpler way.
Thus, in this paper, we propose a fast operation for determining the sign of a number using
the core function by Akushsky.

This work is organized as follows: in Section 2, the general terminology of RNS and
its main properties and methods are given; in Section 3, the core function by Akushsky,
its properties and methods, the concept of the positional character of a number, as well as
methods for determining the sign of a number are given; in Section 4, a description of an
experimental study and its results and discussions are given; in Section 5, the conclusions
obtained in the course of the study are presented, as well as a description of future work.

2. Residue Number System

Residue Number System (RNS) is a non–positional number system [56], which is
based on the principles of the Chinese Remainder Theorem (CRT) [57]. CRT represents
statements related to the solution of linear comparison systems, which is interpreted as

x1 ≡ X mod p1
x2 ≡ X mod p1

. . .
xn ≡ X mod pn

, (1)

where n—the number of elements in the tuple of integers (p1, p2, . . . , pn); X—integer. If
the tuple (p1, p2, . . . , pn) consists of mutually prime numbers, then the correspondence
X ⇔ {x1, x2, . . . , xn} is one-to-one. It also follows from the CRT that one-to-one is provided,

if X < P. Then, X is represented in RNS as X RNS→ {x1, x2, . . . , xn} = ∑n
i=1 X mod pi, and

the comparison system (1) is a representation of RNS.
The main advantage of RNS is computationally simple modular operations that can be

performed in parallel. These operations include addition, multiplication, and subtraction.

Let A RNS→ {a1, a2, . . . , an} and B RNS→ {b1, b2, . . . , bn}; then, the general view of the modular

operation, the result of which is C RNS→ {c1, c2, . . . , cn}, will be the following:

A ◦ B = {(a1 ◦ b1) mod p1, (a2 ◦ b2) mod p2, . . . , (an ◦ bn) mod pn} == {c1, c2, . . . , cn} = C.

Operations on each i-th remainder are independent of other residuals, which allows
operations to be performed in parallel. In addition, the independence of the residuals from
each other and the dependence on the RNS basis allow us to talk about the properties

Computation 2023, 11, 124 4 of 14

of self-correction since each remainder can be checked for correctness and, if necessary,
restored or deleted from the general system, provided that after its deletion, X < P is
performed for the new basis. There are several methods for error control in RNS.

To handle negative numbers, CRT supports the following ratio: −P < 2X < P. Then,
for a positive number, |X| < P

2 . However, in order to distinguish between positive and
negative numbers, the so-called complement is introduced in the unsigned RNS. The

complement is a system of residues obtained as P RNS→ {ρ1, ρ2, . . . , ρn} = ∑n
i=1 P mod pi.

Then, a negative number can be expressed as

x′i = X′ mod pi + P mod pi.

Negative numbers are in the range P
2 < X′ < P.

Non-modular RNS operations include the following: determining the sign of a number,
comparison, base expansion, division, etc.

To implement the definition of the sign of a number, the traditional method is to
convert a number to a Weighted Number System (WNS) and compare the number in
positional form with the condition that if the resulting number X

′′
> P

2 , P is subtracted
from it to obtain a negative value. CRT supports the conversion of a number from RNS to
WNS based on the following provisions. If the comparison system (1) is a representation
of the number X in RNS, then the number itself is its solution. Thus, to find a number, it
is necessary to solve this system. The CRT supports the theorem on the inverse values of
modules, on the basis of which it is possible to solve this system. Then, the return of the
number is reduced to the following formula:

X =

∣∣∣∣∣ n

∑
i=1

xi · P−1
pi
· Pi

∣∣∣∣∣
P

, (2)

where Pi = P/pi, P−1
pi

—multiplicative inversion 1
Pi

mod pi which can be obtained, for
example, using the Euclid algorithm [58]. The product P−1

pi
· Pi for RNS is defined as the

orthogonal basis Bi. Then, expression (2) is transformed to the form

X =

∣∣∣∣∣ n

∑
i=1

xi · Bi

∣∣∣∣∣
P

. (3)

In addition to this method, there are other methods based on various properties of
RNS—for example, the Garner method [59], Mixed Radix System (MRS) method [60],
etc. However, most of them have computational complexity equal from O(n) to O

(
n2).

In addition, the very operation of converting a number from RNS to WNS to determine
the sign reduces the efficiency and speed of data processing in systems where RNS is
used. Algorithms based on the positional characteristic of a number allow avoiding such
a translation—for example, the core function method. However, this method also has
disadvantages related to computational complexity. In this paper, we will consider the
properties of RNS, which will allow us to modify the method of the kernel function and
reduce the impact of shortcomings on computation.

3. Methods for Determining the Sign of a Number Based on the Core Function
3.1. Core Function Method

As noted in the previous section, the method of determining the sign of a number
based on CRT is not effective from the point of computational complexity. In this article,
we consider another, more effective method. This method was developed by Akushsky in
his work [61]. Consider it.

For the core function in RNS, the so-called core C(P) is selected, which is the largest
module from the set {p1, p2, . . . , pn} or the product of two or more modules.

Computation 2023, 11, 124 5 of 14

In the case of the core function, the so-called weights are used, which are determined
by the following formula:

wi =
(∣∣P−1

i

∣∣
pi
· C(P)

)
mod pi. (4)

However, the weights must satisfy the condition, so that C(P) = ∑n
i=1 P wi

pi
. This allows

us to assert the possibility of the existence of negative weights as well. In addition, for the
basis Bi =

∣∣P−1
i

∣∣
pi

, the core is also defined:

C(Bi) = Bi ·
C(P)

P
− wi

pi
. (5)

Then, having weights as well as the core functions of the bases C(Bi) and a set of
modules C(P), it is possible to obtain a function of the number itself X:

C(X) =

(
n

∑
i=1

xi · C(BI)

)
mod C(P). (6)

Having the core function of a number, it is also possible to restore a number. However,
this is not necessary, since the core function of a number is its positional characteristic,
which follows from the definition of the core function itself. Then, C(X) is sufficient
to determine its sign. Based on CRT, if C(X) < P

2 , then the number is positive, and if
C(X) > P

2 , then the number is negative.

3.2. Core Function Method Based on the Rank of a Number

However, although the considered method has greater efficiency than, for example, the
CRT method, the division operation modulo C(P) is computationally complex and, with a
large size of modules, will reduce system performance. Thus, it is necessary to develop
a method for quickly determining the sign of a number based on the core function by
Akushsky. To solve this problem, it is possible to use the so-called rank of the RNS number.

As noted earlier, when using RNS, there are several problems associated with non-
modular operations. As a solution to this problem, it is possible to use the so-called
positional characteristics. In addition to using the core function of a number, the positional
characteristic of a number is its rank.

However, there is a problem associated with its definition, since in comparison

x1B1 + x2B2 . . . + xnBn ≡ N mod P = N + rP

rank is a coefficient at P, not a modular quantity. The relation of the core and the rank
of the number is established in the work [62]. Then, Formula (5) can be rewritten in the
following form:

(X) =

(
n

∑
i=1

xi · Bi

)
− rXP, (7)

where rX—rank of number X. Rank calculation formula is as follows:

rX =
(∑n

i=1 xi · Bi)

P
. (8)

However, as mentioned earlier, the number P is quite large. Therefore, it is necessary
to perform several transformations to simplify the expression. Taking Formula (3) of the
return of the number from RNS to WNS from Section 2 and Formula (7), we can obtain a
formula such as

C(X) =

(
n

∑
i=1

wi ·
(

n

∑
j=1

Bjxj

pi
− rxP

))
.

Computation 2023, 11, 124 6 of 14

Given Formula (2) and the fact that pi is a divisor of C(Bi), and often pn = C(P),
we obtain

C(X) =

(
n

∑
i=1

xi · C(Bi)

)
− rXC(P). (9)

Thus, it is possible to apply the rank of a number to the core function. In addition,
we got rid of the computationally complex modulo division operation. The resulting
expression is already more productive than the one obtained in Section 3.2, but this result
was obtained in the work [62], and it is effective in the hardware implementation of the
RNS system based on programmable logic integrated circuits, which is not effective in the
implementation of FC.

3.3. The Core Function Method Based on the Rank of Number by Chervyakov

There are several more efficient methods for calculating the rank of the RNS number.
Let us consider them and modify the method of determining the sign of a number using
the core function.

Chervyakov in his work [63] suggested a different formula for calculating the rank of
a number. In fact, Formula (8) undergoes changes related to the properties of the RNS basis,
which allows you to omit unnecessary operations and obtain a rank based on the expression

rX =
n

∑
i=1

xi ·

∣∣∣P−1
i

∣∣∣
pi

pi

. (10)

Such transformations follow from the following Lemma.

Lemma 1.

rX =
n

∑
i=1

xi ·

∣∣∣P−1
i

∣∣∣
pi

pi

.

This transformation of the formula makes it possible to increase productivity by
several percents (see Section 4). However, it is possible to calculate the rank of a number
more efficiently by calculating the rank using approximate methods. Consider this method.

3.4. The Core Function Method Based on the Approximate Rank of a Number

We propose a fast function for determining the sign of a number based on the core
function with approximate rank. Approximate rank calculation allows to increase efficiency
due to less strict iterative formulas with loss of calculation accuracy. However, RNS is an
integer number system. Due to the correct lower and upper estimates, it is possible to keep
the accuracy within the necessary limit to preserve the correct integer value, which was
proved in the work [64].

To obtain an approximate rank, the coefficient is used: N = log2(P · (∑n
i=1 pi − n)).

This coefficient has to establish a connection between the RNS and the binary number
system due to 2N . Then, we can establish the relationship between the rank of the number
and 2N due to the approximation factor

ki =

∣∣∣P−1

i

∣∣∣
pi

2N

pi

. (11)

Substitute Formula (11) into (10) and obtain a modified formula to calculate the rank
of a number. Calculations using this formula will be carried out faster due to a decrease
in the accuracy and synergy of the approximate Chervyakov method and the method for

Computation 2023, 11, 124 7 of 14

calculating the core function by Akushsky. The approximate value of the rank of a number
can be found by

r∗x =
n

∑
i=1

⌊
kixi

2N

⌋
. (12)

because the values of 2N and the value of the approximate coefficients x1, x2, . . . , xn can
be found at the stage of precomputation. This allows us to reduce the computational
complexity of operations due to a slight (compared to other methods based on the core
function) increase in memory consumption.

Then, the full-fledged sign definition function, based on the core function with approx-
imate rank, has the following form:

sign(X) =

1 i f C(X) =

(
n
∑

i=1
xi · C(Bi)

)
− r∗xC(P) < P

2

0 i f C(X) =

(
n
∑

i=1
xi · C(Bi)

)
− r∗xC(P) ≥ P

2

(13)

In the next section, a performance study of the considered methods will be conducted
in order to confirm the relevance of the obtained result in the study.

4. Results

Based on the methods described above, we will conduct a study of their performance
in terms of execution time. For the study, mutually simple modules ranging in size from 8
to 1024 bits and in the amount of 21 elements in one set were taken; there are only 9 sets.
Research is conducted on the basis of programs written in C++ on equipment with the
following characteristics:

• CPU: Frequency: 2.90 GHz, Core—6, Process technology 14 nm
• GPU: Video memory 6144 MB, Memory frequency 14,000 MHz, GPU frequency 1680 MHz,

TDP 500 W
• RAM: 16 GB, Frequency 3200 MHz
• OS: Windows 10

The NTL library is used to implement long arithmetic [65]. The experiment is as
follows, and the study is carried out in two stages:

• Stage A—performance study of 9 sets, 21 modules, dimension from 8 to 1024 bits;
• Stage B—performance study of 20 sets, from 3 to 21 modules, dimension of 32 bits.

When conducting a two-stage simulation, the time characteristics of each method were
obtained. The results obtained are reflected in the tables (Tables 1 and 2). The time is given
in seconds.

Table 1. The result of the study of stage A (Bit—the size of one module in a set in bits).

Bit Core Method Rank Core Method Rank Chervyakov Core Method Approximate Rank Core Method

8 0.00003753 0.00004114 0.00004959 0.00003219

16 0.00003776 0.00003826 0.00004781 0.00003226

32 0.00005424 0.00004512 0.00005613 0.00003582

64 0.00009028 0.00006913 0.00007189 0.00004645

128 0.00017094 0.00013323 0.00010866 0.00007626

256 0.00035464 0.00015862 0.00012334 0.00008889

512 0.00097338 0.00018338 0.00013638 0.00010082

1024 0.00332057 0.00022026 0.00015774 0.00012020

Computation 2023, 11, 124 8 of 14

Table 2. The result of the study of stage B (p[n] is the length of the set of modules, where n is the
number of modules in the set).

p[n] Core Method Rank Core Method Rank Chervyakov Core Method Approximate Rank Core Method

3 0.00001990 0.00001951 0.00002319 0.00001634

4 0.00002614 0.00002465 0.00002959 0.00002045

5 0.00003163 0.00002893 0.00003493 0.00002365

6 0.00003847 0.00003473 0.00004164 0.00002776

7 0.00004784 0.00004030 0.00004936 0.00003214

8 0.00005414 0.00004488 0.00005407 0.00003505

9 0.00006395 0.00005184 0.00006285 0.00004180

10 0.00007199 0.00005894 0.00007015 0.00004647

11 0.00008225 0.00006477 0.00007784 0.00005093

12 0.00009216 0.00007083 0.00008187 0.00005461

13 0.00010498 0.00007804 0.00009002 0.00005895

14 0.00011476 0.00008619 0.00009779 0.00006389

15 0.00012540 0.00009271 0.00010423 0.00006829

16 0.00014282 0.00010458 0.00011384 0.00007590

17 0.00015564 0.00011428 0.00012296 0.00008210

18 0.00017346 0.00012126 0.00013020 0.00008711

19 0.00018540 0.00013041 0.00013854 0.00009289

20 0.00020574 0.00014039 0.00014750 0.00009914

21 0.00021779 0.00014707 0.00015429 0.00010362

Let us take a closer look at the resulting tables.
Table 1 shows the time characteristics of stage A. Stage A is of high importance. It

allows you to track the behavior of the method when the size of the processed information
increases. Larger modules increase the range of processed values. Analyzing the obtained
values, we can notice that the growth is linear. This allows us to talk about the stability
of the obtained method and the nominal method of approximate rank. Next, for greater
clarity, graphs will be presented.

Table 2 shows the time characteristics of stage B. Stage B is just as important as stage
A. Some examples of the application of RNS have been presented previously. For example,
redundant RNS (RRNS) is used for error correction techniques. The main point of RRNS is
that two base systems are used: working and control systems of bases. Thus, if we have
a working system consisting of four modules, then the control system can consist of two,
four, six, or more modules. Therefore, the study of the behavior of methods depending on
the number of modules in the system is also necessary. Based on the obtained data, we can
also state the stability of the method.

Based on the data presented in the table, illustrations were prepared. Illustrations
allow you to analyze the result more clearly. The graphs are presented on a logarithmic
scale for a more convenient perception of the result.

For a more detailed analysis, extrapolation of the obtained values was also carried
out using polynomials. The following polynomials were used to carry out the polyno-
mial extrapolation.

Analyzing the results, we can draw the following conclusions. Analyzing the graph
Figure 1a, one can notice a tendency that the classical core function method is effective
only on small modules (8–32 bits). However, starting from the dimension of 64 bits, the
method begins to lose to methods based on the rank of the number. A similar situation is

Computation 2023, 11, 124 9 of 14

observed in the graph Figure 1b, where the classical core function method is more efficient
than the number rank method on small sets of modules (3–6 modules in a set). Further, its
effectiveness decreases. The constructed graphs allow you to analyze in more detail the
advantages that the rank of a number gives for RNS methods.

Computation 2023, 11, x FOR PEER REVIEW 9 of 14

Based on the data presented in the table, illustrations were prepared. Illustrations
allow you to analyze the result more clearly. The graphs are presented on a logarithmic
scale for a more convenient perception of the result.

For a more detailed analysis, extrapolation of the obtained values was also carried
out using polynomials. The following polynomials were used to carry out the polynomial
extrapolation.

Analyzing the results, we can draw the following conclusions. Analyzing the graph
Figure 1a, one can notice a tendency that the classical core function method is effective
only on small modules (8–32 bits). However, starting from the dimension of 64 bits, the
method begins to lose to methods based on the rank of the number. A similar situation is
observed in the graph Figure 1b, where the classical core function method is more efficient
than the number rank method on small sets of modules (3–6 modules in a set). Further, its
effectiveness decreases. The constructed graphs allow you to analyze in more detail the
advantages that the rank of a number gives for RNS methods.

(a)

(b)

Figure 1. The results of the study: (a) stage A; (b) stage B.

At stage A, we can observe the following. The performance of the classical method
starts to drop sharply starting with numbers 128 bits long, falling, compared with other
methods, from 2 to 100–200 times. At the same time, the approximate rank method is about
1.5 times more productive than the others, which proves its effectiveness.

At stage B, we can observe the following. With an increase in the number of modules
in the set, a slightly different situation is observed. Here, the method of approximate rank
of a number is also the most effective. With a RNS set size of 3 modules, this method is 1.2
times more efficient than other considered methods. However, this gap increases with the
size of the set. With a set size of 21, the proposed method is twice as efficient. It is worth
noting separately the time characteristic of the method based on the Chervyakov rank. On
small sets of modules, this method is the least efficient. However, with the number of
modules in the set from 20, its performance becomes almost equal to the performance of
the method based on the rank of the number. At the same time, at stage A, the Chervyakov
rank method is the second in terms of performance. This is due to the fact that the classical
number rank method uses bases. Chervyakov’s method uses the usual RNS bases. The use

Figure 1. The results of the study: (a) stage A; (b) stage B.

At stage A, we can observe the following. The performance of the classical method
starts to drop sharply starting with numbers 128 bits long, falling, compared with other
methods, from 2 to 100–200 times. At the same time, the approximate rank method is about
1.5 times more productive than the others, which proves its effectiveness.

At stage B, we can observe the following. With an increase in the number of modules
in the set, a slightly different situation is observed. Here, the method of approximate rank
of a number is also the most effective. With a RNS set size of 3 modules, this method is
1.2 times more efficient than other considered methods. However, this gap increases with
the size of the set. With a set size of 21, the proposed method is twice as efficient. It is worth
noting separately the time characteristic of the method based on the Chervyakov rank.
On small sets of modules, this method is the least efficient. However, with the number of
modules in the set from 20, its performance becomes almost equal to the performance of
the method based on the rank of the number. At the same time, at stage A, the Chervyakov
rank method is the second in terms of performance. This is due to the fact that the classical
number rank method uses bases. Chervyakov’s method uses the usual RNS bases. The use
of the usual basis Pi is effective in terms of the speed of its calculation and, in comparison
with the method of orthogonal bases, its size depending on the size of the number.

In the course of the study, the method with the best efficiency was determined, namely
the method of approximate rank of the core function. To prove the statement put forward,
an extrapolation of the values was carried out from Figure 1, and the results obtained were
stored at the nearest values.

Stage A:

• Core Method 7 · 10−13 · x3 + 2 · 10−9 · x2 + 8 · 10−7 · x + 3 · 10−5 with the accuracy of
the approximation R2 = 1;

• Rank Core Method 9 · 10−13 · x3 + 2 · 10−9 · x2 + 9 · 10−7 · x + 3 · 10−5 with the accuracy
of the approximation R2 = 0.9857

Computation 2023, 11, 124 10 of 14

• Rank Chervyakov Core Method 6 · 10−13 · x3− 1 · 10−9 · x2 + 6 · 10−7 · x + 4 · 10−5 with
the accuracy of the approximation R2 = 0.9881

• Approximate Rank Core Method 4 · 10−13 · x3 − 1 · 10−9 · x2 + 6 · 10−7 · x + 4 · 10−5

with the accuracy of the approximation R2 = 0.9885

Stage B:

• Core Method 3 · 10−9 · x3 + 2 · 10−7 · x2 + 4 · 10−6 · x + 6 · 10−6 with the accuracy of
the approximation R2 = 0.9995

• Rank Core Method 6 · 10−10 · x3 + 5 · 10−8 · x2 + 6 · 10−6 · x + 5 · 10−6 with the accuracy
of the approximation R2 = 0.9995

• Rank Chervyakov Core Method 2 · 10−9 · x3 + 2 · 10−7 · x2 + 3 · 10−6 · x + 1 · 10−5 with
the accuracy of the approximation R2 = 0.9992

• Approximate Rank Core Method 1 · 10−10 · x3 + 7 · 10−8 · x2 + 3 · 10−6 · x + 6 · 10−6

with the accuracy of the approximation R2 = 0.999

Let us conduct an additional study, namely the relation of the method of approximate
rank of the core function, as well as the rank of the core function, and for stage B, addi-
tionally, the Chervyakov rank method of the core function. This is necessary because the
graphs of the rank and Chervyakov rank methods converge at stage B (Figure 2).

Computation 2023, 11, x FOR PEER REVIEW 10 of 14

of the usual basis 𝑃 is effective in terms of the speed of its calculation and, in comparison
with the method of orthogonal bases, its size depending on the size of the number.

In the course of the study, the method with the best efficiency was determined,
namely the method of approximate rank of the core function. To prove the statement put
forward, an extrapolation of the values was carried out from Figure 1, and the results ob-
tained were stored at the nearest values.

Stage A:
• Core Method 7 ⋅ 10 ⋅ 𝑥 + 2 ⋅ 10 ⋅ 𝑥 + 8 ⋅ 10 ⋅ 𝑥 + 3 ⋅ 10 with the accuracy

of the approximation 𝑅 = 1;
• Rank Core Method 9 ⋅ 10 ⋅ 𝑥 + 2 ⋅ 10 ⋅ 𝑥 + 9 ⋅ 10 ⋅ 𝑥 + 3 ⋅ 10 with the ac-

curacy of the approximation 𝑅 = 0.9857
• Rank Chervyakov Core Method 6 ⋅ 10 ⋅ 𝑥 − 1 ⋅ 10 ⋅ 𝑥 + 6 ⋅ 10 ⋅ 𝑥 + 4 ⋅ 10

with the accuracy of the approximation 𝑅 = 0.9881
• Approximate Rank Core Method 4 ⋅ 10 ⋅ 𝑥 − 1 ⋅ 10 ⋅ 𝑥 + 6 ⋅ 10 ⋅ 𝑥 + 4 ⋅ 10

with the accuracy of the approximation 𝑅 = 0.9885
Stage B:

• Core Method 3 ⋅ 10 ⋅ 𝑥 + 2 ⋅ 10 ⋅ 𝑥 + 4 ⋅ 10 ⋅ 𝑥 + 6 ⋅ 10 with the accuracy
of the approximation 𝑅 = 0.9995

• Rank Core Method 6 ⋅ 10 ⋅ 𝑥 + 5 ⋅ 10 ⋅ 𝑥 + 6 ⋅ 10 ⋅ 𝑥 + 5 ⋅ 10 with the ac-
curacy of the approximation 𝑅 = 0.9995

• Rank Chervyakov Core Method 2 ⋅ 10 ⋅ 𝑥 + 2 ⋅ 10 ⋅ 𝑥 + 3 ⋅ 10 ⋅ 𝑥 + 1 ⋅ 10
with the accuracy of the approximation 𝑅 = 0.9992

• Approximate Rank Core Method 1 ⋅ 10 ⋅ 𝑥 + 7 ⋅ 10 ⋅ 𝑥 + 3 ⋅ 10 ⋅ 𝑥 + 6 ⋅ 10
with the accuracy of the approximation 𝑅 = 0.999
Let us conduct an additional study, namely the relation of the method of approximate

rank of the core function, as well as the rank of the core function, and for stage B, addi-
tionally, the Chervyakov rank method of the core function. This is necessary because the
graphs of the rank and Chervyakov rank methods converge at stage B (Figure 2).

(a)

(b)

Figure 2. Time difference of methods: (a) stage A; (b) stage B. Figure 2. Time difference of methods: (a) stage A; (b) stage B.

Analyzing the charts, one can notice the following trend. In the case of stage A, the
ratio of time characteristics (Figure 2a) tends to unity. Considering the extrapolation also
carried out, it can be argued that the approximation method will be the most productive at
least up to numbers with a length of 2000 or more bits. For stage B, the ratio of the time
characteristics of the methods tends to zero, which means that the approximation method is
less prone to performance degradation with an increase in the number of modules in the set.
This allows us to talk about its effectiveness from the point of view of practical application.

Thus, the conducted studies prove the effectiveness of the approximate calculation of
the rank of a number for the method of determining the sign of a number using the core
function. The implementation of a fast operation for determining the sign of a number
will allow RNS methods to be applied in distributed computing systems, such as cloud
and fog computing, with greater efficiency. This, in turn, improves the reliability and fault
tolerance of computing systems.

Computation 2023, 11, 124 11 of 14

5. Conclusions and Future Work

The work carried out a study aimed at improving the performance of distributed
computing systems. This result is achieved by using RNS, which, due to the properties of
a non-positional number system, the independence of calculations on bases with natural
parallelism, and corrective abilities, makes it possible to increase reliability and fault toler-
ance. However, RNS has several disadvantages associated with non-modular operations.
In this paper, we propose a fast method for performing the operation of determining the
sign of a number based on the RNS Core Function. In addition, an experimental analysis
was carried out, during which the effectiveness of the proposed method was established.

In addition, an extrapolation of the time characteristics of the methods was carried out,
and a study was made of the relationship of the proposed method with the methods closest
in performance. Such a study allows for a performance analysis in a wider range. The
data obtained during extrapolation are achieved based on the calculation of the confidence
values of the approximation. The results obtained allow us to state that the proposed
method is applicable for building data transmission models.

Thus, this paper presents a method for quickly determining the sign of a number
from the core function based on the approximate rank of a number. For this method,
experimental confirmation of the effectiveness was obtained based on a computational
experiment. In the future, it is planned to study this method in practical application.

The result obtained allows us to extend the use of RNS for FC and other distributed
computing systems. In the future, we plan to develop a full-fledged computing system
based on RNS for FC. To do this, it is necessary to implement such a non-modular operation
as division. The implementation of an efficient division algorithm will allow you to perform
full-fledged arithmetic on RNS numbers. The development of a complete computing system
will expand the use of FC for SC and IoT.

Author Contributions: E.S.: conceptualization, methodology, software, validation, research, writing;
N.K.: methodology, research, writing, supervision; M.B.: conceptualization, methodology, research,
writing, supervision; A.N.: conceptualization, methodology, research, writing. All authors have read
and agreed to the published version of the manuscript.

Funding: The research was supported by the Russian Science Foundation Grant No. 22-71-10046,
https://rscf.ru/en/project/22-71-10046/.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yi, S.; Li, C.; Li, Q. A Survey of Fog Computing: Concepts, Applications and Issues. In Proceedings of the 2015 Workshop on

Mobile Big Data, Hangzhou, China, 21 June 2015; pp. 37–42.
2. Priyadarshini, R.; Barik, R.K.; Dubey, H. Deepfog: Fog Computing-Based Deep Neural Architecture for Prediction of Stress Types,

Diabetes and Hypertension Attacks. Computation 2018, 6, 62. [CrossRef]
3. Al-Turjman, F.; Abujubbeh, M. IoT-Enabled Smart Grid via SM: An Overview. Future Gener. Comput. Syst. 2019, 96, 579–590.

[CrossRef]
4. Su, K.; Li, J.; Fu, H. Smart City and the Applications. In Proceedings of the 2011 International Conference on Electronics,

Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1028–1031.
5. Hua, H.; Li, Y.; Wang, T.; Dong, N.; Li, W.; Cao, J. Edge Computing with Artificial Intelligence: A Machine Learning Perspective.

ACM Comput. Surv. 2023, 55, 1–35. [CrossRef]
6. Ren, C.; Lyu, X.; Ni, W.; Tian, H.; Song, W.; Liu, R.P. Distributed Online Optimization of Fog Computing for Internet of Things

under Finite Device Buffers. IEEE Internet Things J. 2020, 7, 5434–5448. [CrossRef]
7. Chang, Z.; Liu, L.; Guo, X.; Sheng, Q. Dynamic Resource Allocation and Computation Offloading for Iot Fog Computing System.

IEEE Trans. Ind. Inform. 2020, 17, 3348–3357. [CrossRef]

https://rscf.ru/en/project/22-71-10046/
https://doi.org/10.3390/computation6040062
https://doi.org/10.1016/j.future.2019.02.012
https://doi.org/10.1145/3555802
https://doi.org/10.1109/JIOT.2020.2979353
https://doi.org/10.1109/TII.2020.2978946

Computation 2023, 11, 124 12 of 14

8. Abouaomar, A.; Cherkaoui, S.; Kobbane, A.; Dambri, O.A. A Resources Representation for Resource Allocation in Fog Computing
Networks. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa Village, HI, USA,
9–13 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

9. Huang, C.; Wang, H.; Zeng, L.; Li, T. Resource Scheduling and Energy Consumption Optimization Based on Lyapunov
Optimization in Fog Computing. Sensors 2022, 22, 3527. [CrossRef] [PubMed]

10. Isupov, K. High-Performance Computation in Residue Number System Using Floating-Point Arithmetic. Computation 2021, 9, 9.
[CrossRef]

11. Chang, C.-H.; Molahosseini, A.S.; Zarandi, A.A.E.; Tay, T.F. Residue Number Systems: A New Paradigm to Datapath Optimization
for Low-Power and High-Performance Digital Signal Processing Applications. IEEE Circuits Syst. Mag. 2015, 15, 26–44. [CrossRef]

12. Cluzeau, M. Block Code Reconstruction Using Iterative Decoding Techniques. In Proceedings of the 2006 IEEE International
Symposium on Information Theory, Washington, DC, USA, 9–14 July 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 2269–2273.

13. Jafarkhani, H. A Quasi-Orthogonal Space-Time Block Code. IEEE Trans. Commun. 2001, 49, 1–4. [CrossRef]
14. Muder, D.J. Minimal Trellises for Block Codes. IEEE Trans. Inf. Theory 1988, 34, 1049–1053. [CrossRef]
15. Solomon, G.; Tilborg, H.C.A. A Connection between Block and Convolutional Codes. SIAM J. Appl. Math. 1979, 37, 358–369.

[CrossRef]
16. Tarokh, V.; Jafarkhani, H.; Calderbank, A.R. Space-Time Block Codes from Orthogonal Designs. IEEE Trans. Inf. Theory 1999, 45,

1456–1467. [CrossRef]
17. Chen, C.-L.; Hsiao, M.Y. Error-Correcting Codes for Semiconductor Memory Applications: A State-of-the-Art Review. IBM J. Res.

Dev. 1984, 28, 124–134. [CrossRef]
18. Choukroun, Y.; Wolf, L. Error Correction Code Transformer. arXiv 2022, arXiv:2203.14966.
19. Knill, E.; Laflamme, R. Theory of Quantum Error-Correcting Codes. Phys. Rev. A 1997, 55, 900. [CrossRef]
20. Peterson, W.W.; Peterson, W.; Weldon, E.J.; Weldon, E.J. Error-Correcting Codes; MIT Press: Cambridge, MA, USA, 1972.
21. Sellers, F. Bit Loss and Gain Correction Code. IRE Trans. Inf. Theory 1962, 8, 35–38. [CrossRef]
22. Lamehamedi, H.; Szymanski, B.; Shentu, Z.; Deelman, E. Data Replication Strategies in Grid Environments. In Proceedings of the

Fifth International Conference on Algorithms and Architectures for Parallel Processing, Beijing, China, 23–25 October 2002; IEEE:
Piscataway, NJ, USA, 2002; pp. 378–383.

23. Babenko, M.; Tchernykh, A.; Pulido-Gaytan, B.; Cortés-Mendoza, J.M.; Shiryaev, E.; Golimblevskaia, E.; Avetisyan, A.;
Nesmachnow, S. RRNS Base Extension Error-Correcting Code for Performance Optimization of Scalable Reliable Distributed
Cloud Data Storage. In Proceedings of the 2021 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), Portland, OR, USA, 17–21 June 2021; pp. 548–553.

24. Babenko, M.; Nazarov, A.; Tchernykh, A.; Pulido-Gaytan, B.; Cortés-Mendoza, J.M.; Vashchenko, I. Algorithm for Constructing
Modular Projections for Correcting Multiple Errors Based on a Redundant Residue Number System Using Maximum Likelihood
Decoding. Program Comput. Soft 2021, 47, 839–848. [CrossRef]

25. Di Claudio, E.D.; Orlandi, G.; Piazza, F. Parallel Error Correction Algorithm in RNS VLSI Digital Circuits. In Proceedings of the
ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing, New York, NY, USA, 11–14 April 1988; IEEE:
Piscataway, NJ, USA, 1988; pp. 1738–1741.

26. Gladkov, A.; Gladkova, N.; Kucherov, N. Analytical Review of Methods for Detection, Localization and Error Correction in the
Residue Number System. In Proceedings of the International Conference on Mathematics and its Applications in New Computer
Systems, Munich, Germany, 25–28 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 507–514.

27. Shiryaev, E.; Bezuglova, E.; Babenko, M.; Tchernykh, A.; Pulido-Gaytan, B.; Cortés-Mendoza, J.M. Performance Impact of Error
Correction Codes in RNS with Returning Methods and Base Extension. In Proceedings of the 2021 International Conference
Engineering and Telecommunication (En&T), Online, 24–25 November 2021; pp. 1–5.

28. Tay, T.F.; Chang, C.-H. A New Algorithm for Single Residue Digit Error Correction in Redundant Residue Number System. In
Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, 1–5 June 2014;
pp. 1748–1751.

29. Pontarelli, S.; Cardarilli, G.C.; Re, M.; Salsano, A. A Novel Error Detection and Correction Technique for RNS Based FIR Filters.
In Proceedings of the 2008 IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems, Boston, MA, USA,
1–3 October 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 436–444.

30. Mohan, P.A.; Ananda Mohan, P.V. Error Detection, Correction and Fault Tolerance in RNS-Based Designs. In Residue Number
Systems: Theory and Applications; Birkhäuser: Cham, Switzerland, 2016; pp. 163–175.

31. Jenkins, W.K. Residue Number System Error Checking Using Expanded Projection. Electron. Lett. 1982, 18, 927–928. [CrossRef]
32. Tay, T.F.; Chang, C.-H. Fault-Tolerant Computing in Redundant Residue Number System. In Embedded Systems Design with Special

Arithmetic and Number Systems; Springer: Cham, Switzerland, 2017; pp. 65–88.
33. Garg, N.; Yadav, P. Comparison of Asymmetric Algorithms in Cryptography. J. Comput. Sci. Mob. Comput. 2014, 3, 1190–1196.
34. Milanov, E. The RSA Algorithm. RSA Lab. 2009, 1–11. Available online: https://sites.math.washington.edu/~morrow/336_09

/papers/Yevgeny.pdf (accessed on 27 June 2023).
35. Boneh, D.; Franklin, M. Efficient Generation of Shared RSA Keys. In Proceedings of the Advances in Cryptology—CRYPTO’97:

17th Annual International Cryptology Conference, Santa Barbara, CA, USA, 17–21 August 1997; Proceedings 17. Springer:
Berlin/Heidelberg, Germany, 1997; pp. 425–439.

https://doi.org/10.3390/s22093527
https://www.ncbi.nlm.nih.gov/pubmed/35591216
https://doi.org/10.3390/computation9020009
https://doi.org/10.1109/MCAS.2015.2484118
https://doi.org/10.1109/26.898239
https://doi.org/10.1109/18.21228
https://doi.org/10.1137/0137027
https://doi.org/10.1109/18.771146
https://doi.org/10.1147/rd.282.0124
https://doi.org/10.1103/PhysRevA.55.900
https://doi.org/10.1109/TIT.1962.1057684
https://doi.org/10.1134/S0361768821080089
https://doi.org/10.1049/el:19820632
https://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf
https://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf

Computation 2023, 11, 124 13 of 14

36. da Silva, J.C.L. Factoring Semiprimes and Possible Implications for RSA. In Proceedings of the 2010 IEEE 26-th Convention of
Electrical and Electronics Engineers in Israel, Eilat, Israel, 17–20 November 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 182–183.

37. Park, J.M.; Chong, E.K.; Siegel, H.J. Constructing Fair-Exchange Protocols for E-Commerce via Distributed Computation of RSA
Signatures. In Proceedings of the Twenty-Second Annual Symposium on Principles of Distributed Computing, Boston, MA, USA,
13–16 July 2003; pp. 172–181.

38. Jamaludin, J.; Romindo, R. Implementation of Combination Vigenere Cipher and RSA in Hybrid Cryptosystem for Text Security.
Int. J. Inf. Syst. Technol. 2020, 4, 471–481.

39. Ren, W.; Miao, Z. A Hybrid Encryption Algorithm Based on DES and RSA in Bluetooth Communication. In Proceedings of the
2010 Second International Conference on Modeling, Simulation and Visualization Methods, Las Vegas, NV, USA, 12–15 July 2010;
pp. 221–225.

40. Kuppuswamy, P.; Al-Khalidi, S.Q.Y. Hybrid Encryption/Decryption Technique Using New Public Key and Symmetric Key
Algorithm. Int. J. Inf. Comput. Secur. 2014, 6, 372–382. [CrossRef]

41. Ramaraj, E.; Karthikeyan, S.; Hemalatha, M. A Design of Security Protocol Using Hybrid Encryption Technique (AES-Rijndael
and RSA). Int. J. Comput. Internet Manag. 2009, 17, 34–43.

42. Jintcharadze, E.; Iavich, M. Hybrid Implementation of Twofish, AES, ElGamal and RSA Cryptosystems. In Proceedings of the
2020 IEEE East-West Design & Test Symposium (EWDTS), Varna, Bulgaria, 4–7 September 2020; pp. 1–5.

43. Alkady, Y.; Habib, M.I.; Rizk, R.Y. A New Security Protocol Using Hybrid Cryptography Algorithms. In Proceedings of the 2013
9th International Computer Engineering Conference (ICENCO), Giza, Egypt, 28–29 December 2013; pp. 109–115.

44. Beimel, A. Secret-Sharing Schemes: A Survey. In Proceedings of the Coding and Cryptology, Qingdao, China, 30 May–3 June 2011;
Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 11–46.

45. Dong, X. A Multi-Secret Sharing Scheme Based on the CRT and RSA. Int. J. Electron. Inf. Eng. 2015, 2, 47–51.
46. Mignotte, M. How to Share a Secret. In Proceedings of the Workshop on Cryptography, Burg Feuerstein, Germany, 29 March–2

April 1982; Springer: Berlin/Heidelberg, Germany, 1982; pp. 371–375.
47. Asmuth, C.; Bloom, J. A Modular Approach to Key Safeguarding. IEEE Trans. Inf. Theory 1983, 29, 208–210. [CrossRef]
48. Gomathisankaran, M.; Tyagi, A.; Namuduri, K. HORNS: A Homomorphic Encryption Scheme for Cloud Computing Using

Residue Number System. In Proceedings of the 2011 45th Annual Conference on Information Sciences and Systems, Baltimore,
MD, USA, 23–25 March 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–5.

49. Muhammed, K.J.; Isiaka, R.M.; Asaju-Gbolagade, A.W.; Adewole, K.S.; Gbolagade, K.A. Improved Cloud-Based N-Primes Model
for Symmetric-Based Fully Homomorphic Encryption Using Residue Number System. In Machine Learning and Data Mining for
Emerging Trend in Cyber Dynamics: Theories and Applications; Chiroma, H., Abdulhamid, S.M., Fournier-Viger, P., Garcia, N.M., Eds.;
Springer International Publishing: Cham, Switzerland, 2021; pp. 197–216, ISBN 978-3-030-66288-2.

50. Al Badawi, A.; Polyakov, Y.; Aung, K.M.M.; Veeravalli, B.; Rohloff, K. Implementation and Performance Evaluation of RNS
Variants of the BFV Homomorphic Encryption Scheme. IEEE Trans. Emerg. Top. Comput. 2021, 9, 941–956. [CrossRef]

51. Lee, J.-W.; Lee, E.; Lee, Y.; Kim, Y.-S.; No, J.-S. High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption Using Optimal
Minimax Polynomial Approximation and Inverse Sine Function. In Proceedings of the Advances in Cryptology—EUROCRYPT 2021,
Zagreb, Croatia, 17–21 October 2021; Canteaut, A., Standaert, F.-X., Eds.; Springer International Publishing: Cham, Switzerland,
2021; pp. 618–647.

52. Kim, A.; Papadimitriou, A.; Polyakov, Y. Approximate Homomorphic Encryption with Reduced Approximation Error. In
Proceedings of the Topics in Cryptology–CT-RSA 2022: Cryptographers’ Track at the RSA Conference 2022, Virtual Event,
1–2 March 2022; Proceedings. Springer: Berlin/Heidelberg, Germany, 2022; pp. 120–144.

53. Nykolaychuk, Y.M.; Yakymenko, I.Z.; Vozna, N.Y.; Kasianchuk, M.M. Residue Number System Asymmetric Cryptoalgorithms.
Cybern. Syst. Anal. 2022, 58, 611–618. [CrossRef]

54. Kalmykov, I.A.; Pashintsev, V.P.; Tyncherov, K.T.; Olenev, A.A.; Chistousov, N.K. Error-Correction Coding Using Polynomial
Residue Number System. Appl. Sci. 2022, 12, 3365. [CrossRef]

55. Givaki, K.; Khonsari, A.; Gholamrezaei, M.H.; Gorgin, S.; Najafi, M.H. A Generalized Residue Number System Design Approach
for Ultra-Low Power Arithmetic Circuits Based on Deterministic Bit-Streams. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
2023, 1, 14. [CrossRef]

56. Garner, H.L. The Residue Number System. In Proceedings of the Western Joint Computer Conference, San Francisco, CA, USA,
3–5 March 1959; pp. 146–153.

57. Pei, D.; Salomaa, A.; Ding, C. Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography; World Scientific:
Singapore, 1996.

58. Brown, W.S.; Traub, J.F. On Euclid’s Algorithm and the Theory of Subresultants. J. ACM 1971, 18, 505–514. [CrossRef]
59. Kocherov, Y.N.; Samoylenko, D.V.; Koldaev, A.I. Development of an Antinoise Method of Data Sharing Based on the Application of

a Two-Step-Up System of Residual Classes. In Proceedings of the 2018 International Multi-Conference on Industrial Engineering
and Modern Technologies (FarEastCon), Vladivostok, Russian, 2–4 October 2018; pp. 1–5.

60. Gbolagade, K.A.; Cotofana, S.D. An O(n) Residue Number System to Mixed Radix Conversion Technique. In Proceedings of the
2009 IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 24–27 May 2009; pp. 521–524.

61. Akushsky, I.Y.; Akushsky, V.M.; Pak, I.T. About the New Positional Characteristic of the Non-Positional Code and Its Application.
In Theory of Coding and Optimization of Complex Systems; Nauka: Alma-Ata, Kazakhstan, 1977; pp. 8–16.

https://doi.org/10.1504/IJICS.2014.068103
https://doi.org/10.1109/TIT.1983.1056651
https://doi.org/10.1109/TETC.2019.2902799
https://doi.org/10.1007/s10559-022-00494-7
https://doi.org/10.3390/app12073365
https://doi.org/10.1109/TCAD.2023.3250603
https://doi.org/10.1145/321662.321665

Computation 2023, 11, 124 14 of 14

62. Akushsky, I.Y.; Burtsev, V.M.; Pak, N.T. Calculation of the Positional Characteristic (Core) of the Non-Positional Code. In Theory of
Coding and Optimization of Complex Systems; Nauka: Alma-Ata, Kazakhstan, 1977; pp. 17–25.

63. Chervyakov, N.I.; Averbukh, V.M.; Babenko, M.G.; Lyakhov, P.A.; Gladkov, A.V.; Gapochkin, A.V. An Approximate Method for
Performing Non-Modular Operations in a System of Residual Classes. Fundam. Res. 2012, 6, 189–193.

64. Babenko, M.; Golimblevskaia, E. About One Property of Number Rank in RNS. In Proceedings of the 2021 IEEE Conference of
Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), St. Petersburg, FL, USA, 26–29 January 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 212–216.

65. NTL: A Library for Doing Number Theory. Available online: https://libntl.org/ (accessed on 23 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://libntl.org/

	Introduction
	Residue Number System
	Methods for Determining the Sign of a Number Based on the Core Function
	Core Function Method
	Core Function Method Based on the Rank of a Number
	The Core Function Method Based on the Rank of Number by Chervyakov
	The Core Function Method Based on the Approximate Rank of a Number

	Results
	Conclusions and Future Work
	References

