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Abstract: The emergence of new embedded system technologies, such as IoT, requires the design of
new lightweight cryptosystems to meet different hardware restrictions. In this context, the concept of
Finite State Machines (FSMs) can offer a robust solution when using cryptosystems based on finite
automata, known as FAPKC (Finite Automaton Public Key Cryptosystems), introduced by Renji Tao.
These cryptosystems have been proposed as alternatives to traditional public key cryptosystems,
such as RSA. They are based on composing two private keys, which are two FSMsM1 andM2

with the property of invertibility with finite delay to obtain the composed FSM M = M1oM2,
which is the public key. The invert process (factorizing) is hard to compute. Unfortunately, these
cryptosystems have not really been adopted in real-world applications, and this is mainly due to the
lack of profound studies on the FAPKC key space and a random generator program. In this paper,
we first introduce an efficient algebraic method based on the notion of a testing table to compute the
delay of invertibility of an FSM. Then, we carry out a statistical study on the number of invertible
FSMs with finite delay by varying the number of states as well as the number of output symbols.
This allows us to estimate the landscape of the space of invertible FSMs, which is considered a first
step toward the design of a random generator.

Keywords: Finite State Machine; public key cryptosystems; invertibility

1. Introduction

For centuries, cryptography has been used to ensure the privacy of sensitive infor-
mation. Its evolution has been closely tied to military communication throughout history.
However, in the Information Age, there is a growing demand for secure communication in
both commercial and personal contexts. Before the introduction of public key cryptography,
all ciphers relied on a shared secret key, meaning that both parties needed the same key to
encrypt and decrypt messages. This requirement for exchanging a secret key beforehand
became a crucial step in enabling secure communication.

The emergence of public key cryptosystems brought about a revolutionary change
in the field of cryptography by streamlining the distribution of keys. Unlike traditional
methods that involve sharing secret keys, this new approach allowed users to share their
public key with others. The public key could be used by the sender to encrypt the message,
but it could not be utilized for decryption. Instead, the recipient possessed a corresponding
private key that remained confidential, and they used this key to decrypt the message.
This breakthrough eliminated the need for key exchange and simplified the encryption
process significantly.

The concept of public key cryptography was first proposed in 1976 by Hellman, Diffie,
and Merkle. Two years later, Shamir, Rivest, and Adleman developed the RSA cryptosys-
tem, which relies on the challenge of factoring large numbers. In 1985, Taher ElGamal
introduced the ElGamal cryptosystem, which is based on the discrete logarithm problem.
Additionally, in that same year, Victor Miller and Neal Koblitz separately introduced ellip-
tic curve cryptography, which utilizes the discrete logarithm problem on elliptic curves.
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Elliptic curves, despite being more complex mathematically, offer faster operation and
smaller key sizes while maintaining a similar level of security to other cryptosystems based
on number theory problems. However, these systems are dependent on a small set of
problems, making them potentially vulnerable.

In the late 1970s, Renji Tao and his research group proposed a series of Finite Automata
Public Key Cryptosystems (FAPKCs) [1–3]. These systems utilize the challenge of inverting
nonlinear Finite State Machines (FSMs) and factoring matrix polynomials over a field,
instead of relying on number theory problems. FAPKCs have several advantages, including
small key sizes, fast encryption and decryption processes, and the ability to be used
for digital signatures. Furthermore, they can be implemented efficiently using logical
operations, making them suitable for embedded hardware applications [2].

The private keys in FAPKCs are represented by two FSMs with memory, as shown in
Figure 1. One is linear and the second is quasilinear [4]. These FSMs are combined using a
special product in order to generate a nonlinear FSM, which is the public key. Currently,
there is no known algorithm to invert nonlinear FSMs or factorize them, which remains an
open problem. To invert the FSM public key, it is necessary to compute the inverses of its
factors, a task made straightforward using the private key FSMs. Variants of FAPKCs exist,
which differ in terms of the types of FSMs employed in private keys [5].

Figure 1. An illustrative schema of an FAPKC.

Although some FAPKC schemes have been shown to be insecure [6], they are still
considered a viable alternative to traditional cryptosystems. However, the study of FAPKCs
has been hindered by the use of dry language in many papers, with results often lacking
proofs and examples and referencing Chinese papers. Amorim et al. provided clarification
and consolidation of existing research about FAPKCs in a series of papers [7–10] and a
PhD thesis [4].

The invertibility of FSMs is a crucial concept in formal language theory and automata
theory. Inverting a machine enables the reversal of its operation, which has numerous
applications in various fields. In addition to cryptography, where FSMs are used as the basic
concept for FAPKCs, the invertibility of FSMs has a broad range of applications that im-
prove the performance of various systems. For example, they can be used to design systems
that regulate and stabilize the behavior of complex systems [11], and they enable the recon-
struction of original data from extracted features in pattern recognition [12]. In automata
learning [13], they can generate counterexamples that guide the learning process.

To advance the development of efficient and secure cryptosystems, it is crucial to
examine the space of invertible FSMs that serve as keys to FAPKCs. This investigation
involves the study of the properties and behavior of these automata. By understanding the
characteristics of these keys, cryptographers can design better algorithms and protocols
that are more resistant to attacks and can protect sensitive information.
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In [5], R. Tao introduced the concept of invertibility and weak-invertibility, also called
injectivity, for various classes of FSMs. The invertibility property of an FSMM implies
that if it generates identical output sequences for two given input sequences, regardless
of their initial states, then the first input symbols of the two input sequences will also
be identical. On the other hand, weak-invertibility ensures that if an FSMM produces
identical output sequences for two given input sequences that originate from the same
initial state, then the first input symbols of these sequences will also be identical. Therefore,
it can be stated that if an FSM is invertible, it is also weak-invertible. The procedure to
check these properties, as described by Tao [5], is based on the structure of the testing graph.
By examining it, one can determine the invertibility and weak-invertibility of an FSM. A
limitation arises when dealing with testing graphs that have a large number of vertices.
Due to the increased complexity, it becomes crucial to employ a more efficient algorithm for
determining whether the graph is loop-free. Our research aims to address this limitation by
presenting a novel method that offers a computationally feasible solution for this task.

Building upon the work suggested by Amorim et al. [4,14], this study aims to further
explore the landscape of invertible FSMs by presenting an approximate analysis of a
general case. The research conducted by Amorim et al. focused on Linear FSMs, specifically
investigating the statistical properties and count of weak-invertible (injective) Linear FSMs.
Their study centered on the analysis of matrices, particularly the invariant factors of the
transfer function matrix H(z) associated with linear FSMs. The results obtained from their
research provided insights on the estimatation of the key space size of weak-invertible
FSMs in cryptographic systems as well as on recurrence relations for counting canonical
linear FSMs and approximating equivalence classes.

In contrast, our study introduces an efficient algebraic method to test the invertibility
of FSMs with a finite delay, encompassing a broader scope beyond linear FSMs. By con-
ducting experiments and analyzing invertible FSMs for general cases, we aim to provide a
comprehensive understanding of their capabilities and limitations. Our research serves
as a complementary contribution to the existing work by Amorim et al., as we delve into
nonlinear FSMs and address the problem of invertibility in a more encompassing manner.
The insights gained from our study highlight the promising potential of invertible FSMs as
practical alternatives for secure key generation and cryptographic applications.

This paper is structured as follows: In Section 2, we introduce some preliminary
notations and the basic definitions of Finite State Machines and graphs. In Section 3, we give
a concise overview of the concept of invertibility with finite delay of Finite State Machines.
In Section 4, we present a new efficient algebraic method for testing the invertibility of
FSMs as well as several experimental results that allow us to give an estimation of the
landscape of their space. Section 5 concludes the paper.

2. Preliminaries

In this paper, we present preliminary concepts and key findings on the topic of Finite
State Machine (FSM) invertibility.

An alphabet A is a finite set of symbols where |A| 6= ∅. A word α over A is a finite
sequence of symbols of length l.

The empty sequence, denoted by ε, represents a word of length l = 0. We defineAn as
the set of words of length n, where n ∈ N0. Thus, A0 = {ε}. Furthermore, A∗ denotes the
set of all finite words, obtained by the union of An for n > 0. Additionally, Aω represents
the set of infinite words, composed of symbols a0a1 . . . an . . ., where ai ∈ A.

2.1. Finite State Machines

Finite State Machines (FSMs) have found widespread use as models for various types
of systems in fields, such as sequential circuits, program development (e.g., lexical analysis
and pattern matching), and communication protocols [15–18]. In this paper, we specifically
focus on Mealy machines, which are deterministic machines that generate outputs during
state transitions after receiving inputs.
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Definition 1. A Finite State Machine is represented by a quintuple 〈X ,Y ,S , δ, λ〉, where X
denotes the input alphabet, Y denotes the output alphabet, S denotes the set of states, δ : S ×X →
S defines the state transition function, and λ : S × X → Y represents the output function.

LetM = 〈X ,Y ,S , δ, λ〉 be a Finite State Machine (FSM). The state transition function δ and
the output function λ can be extended to finite words in X ∗ recursively using the following definitions:

• δ(s, ε) = s
• λ(s, ε) = ε
• δ(s, xα) = δ(δ(s, x), α)
• λ(s, xα) = λ(s, x)λ(δ(s, x), α)

where s ∈ S , x ∈ X , and α ∈ X ∗. Similarly, the output function λ can be extended to infinite
words in X ω. From these definitions, it follows that for any s ∈ S , α ∈ X ∗, and β ∈ X ∗ ∪ X ω,
the output of λ for xβ can be computed as λ(s, xβ) = λ(s, α)λ(δ(s, α), β).

Example 1. The Finite State MachineM1 = 〈{a, b}, {0, 1}, {s1, s2}, δ, λ〉 with:
δ(s1, a) = s1 δ(s1, b) = s2 δ(s2, a) = s1 δ(s2, b) = s2
λ(s1, a) = 0 λ(s1, b) = 0 λ(s2, a) = 1 λ(s2, b) = 1

is represented by the diagram in Figure 2.

Figure 2. The Finite State MachineM1.

2.2. Graphs

Let G = (V, Γ) be a directed cycle-free graph, where V represents the vertex set, and
Γ ∈ V × V denotes the arc set. If V is an empty set, the graph is referred to as an empty
graph. The elements in V are referred to as vertices, while the elements in Γ are referred to
as arcs. Let v ∈ V :

- If v is isolated, then Level(v) = −1.
- If v has no incoming arc and it has at least one outgoing arc, then Level(v) = 0.
- If v has at least one incoming arc and at least one outgoing arc, then Level(v) = Maxi-

mum {Level(v′)|(v′, v) ∈ Γ}+ 1.
- The level of the graph G is Level(G) = Maximum {Level(v)|v ∈ V} − 1.
- If G is the empty graph, then Level(G) = −2.

Example 2. Computing the level of a directed cycle-free graph (Figure 3)

Figure 3. A directed cycle-free graph.

The level of this graph is 1.
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Remark 1. Let G be a cycle-free directed graph of level l . Then, the maximum length of a path in
G is l + 1.

3. The Concept of Invertibility of Finite State Machines

In this section, we recall the concept of invertibility with finite delay τ of an FSM, where
τ ∈ N, as well as the classical testing method based on graph theory for the invertibility
property of an FSM. For more details, refer to [5].

3.1. The Invertibility with Finite Delay of an FSM

An FSM is said to be invertible if for any state in the set of states and any output
sequence, the input sequence that produced the output sequence can be uniquely deter-
mined. An FSMM = 〈X ,Y ,S , δ, λ〉 is considered invertible with some delay τ if, for any
state s ∈ S and any sequence of input symbols x0, x1, ..., xτ ∈ X ∗, the output sequence
λ(s, x0...xτ) ∈ Y∗, generated byM, uniquely determines the input symbol x0. This means
that ifM produces identical output sequences for a given two input sequences, then their
first input symbols are also identical. The delay τ is a non-negative integer that represents
the number of input symbols used to determine the output symbol. The formal definitions
of both are as follows:

Definition 2. A Finite State MachineM = 〈X ,Y ,S , δ, λ〉 is considered to be invertible if

∀s, s′ ∈ S , ∀α, α′ ∈ X ω, λ(s, α) = λ(s′, α′)⇒ α = α′.

This means that for every pair of states s, s′ ∈ S and every pair of infinite words α, α′ ∈ X ω,
if the output generated by the FSM is the same for both state–input pairs, i.e., λ(s, α) = λ(s′, α′),
then the infinite words α and α′ must be identical.

Definition 3. A Finite State MachineM = 〈X ,Y ,S , δ, λ〉 is considered to be τ-invertible or
invertible with finite delay τ, where τ ∈ N, if

∀s, s′ ∈ S , ∀xi, x′i ∈ X with i = 0, 1, ..., τ, if λ(s, x0x1...xτ) = λ(s′, x′0x′1...x′τ), then x0 = x′0.

This implies that for any pair of states s, s′ ∈ S and any sequence of inputs xi ∈ X with
i = 0, 1, ..., τ, if the outputs generated by the FSM are the same for both state–input sequences,
i.e., λ(s, x0x1...xτ) = λ(s′, x′0x′1...x′τ), then the initial inputs x0 and x′0 must be identical.

It is evident that ifM is invertible with a delay of τ ∈ N, thenM is also invertible.
The reverse statement is also true (refer to [5]).

Example 3. Let us consider the FSMM1 presented in Example 1.M1 is invertible with a delay
of 1, since we have for all input sequences of length 2:

λ(s1, aa) = 00 λ(s2, aa) = 10 λ(s1, ba) = 01 λ(s2, ba) = 11
λ(s1, ab) = 00 λ(s2, ab) = 10 λ(s1, bb) = 01 λ(s2, bb) = 11

Example 4. The FSMM2 = 〈{a, b}, {0, 1}, {s1, s2, s3}, δ, λ〉 induced by the diagram
M2 in Figure 4 is not invertible with a delay of 1, since λ(s2, ab) = λ(s3, bb) and a 6= b.
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Figure 4. The Finite State MachineM2.

Example 5. The FSMM3 = 〈{a, b}, {0, 1, 2}, {s1, s2, s3}, δ, λ〉 induced by the diagram
is invertible with a delay of 1 (Figure 5). To prove this, we have to compute the outputs for all states
with all input sequences of l = 2:

λ(s1, aa) = 00 λ(s2, aa) = 12 λ(s3, aa) = 22
λ(s1, ab) = 00 λ(s2, ab) = 12 λ(s3, ab) = 22
λ(s1, ba) = 01 λ(s2, ba) = 11 λ(s3, ba) = 20
λ(s1, bb) = 01 λ(s2, bb) = 11 λ(s3, bb) = 20

Figure 5. The Finite State MachineM3.

3.2. Graph-Based Method for Testing the Invertibility of an FSM

Let us recall some important properties of the invertibility with finite delay of an FSM,
as well as the classical method for testing these properties.
Let M = 〈X ,Y ,S , δ, λ〉 be an FSM. Let us define the testing graph Ginv

M = (V, Γ) of M
as follows:

Rinv = {(δ(s, x), δ(s′, x′))|x 6= x′, λ(s, x) = λ(s′, x′), x, x′ ∈ X , s, s′ ∈ S}.

(a) ifRinv 6= ∅, then:
- The vertex set V of G inv

M is the minimal subset of S × S , which verifies:

(a) Rinv ⊆ V,
(b) if (s, s′) ∈ V and λ(s, x) = λ(s′, x′), x, x′ ∈ X, then (δ(s, x), δ(s′, x′)) ∈ V.

- The arc set Γ of G inv
M is the set of all arcs ((s, s′), (δ(s, x), δ(s′, x′)), such that:

(a) (s, s′) ∈ V,
(b) λ(s, x) = λ(s′, x′), where x, x′ ∈ S .

(b) ifRinv = ∅ then G inv
M is the empty graph, G inv

M = {∅, ∅}.

In other words, the graph G inv
M is constructed by forming a graph of the state transitions

and output values based on the conditions described above. The vertices in the graph
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represent pairs of states that have the same output value for any input symbol, and the
arcs represent the transition from one pair of states to another pair of states with the same
output value. The graph is constructed to minimize the number of vertices and to satisfy
the conditions for the vertices and arcs as described in the conditions.

Theorem 1 (Theorem 1.4.1, [5]). LetM be a Finite State Machine.M is invertible if and only
if G inv
M has no circuit. Moreover, if G inv

M has no circuit and the level of G inv
M is ρ− 1, thenM is

invertible with a delay of ρ + 1 and not invertible with a delay of τ for any τ 6 ρ.

Corollary 1. If M = 〈X ,Y ,S , δ, λ〉 is invertible, then τ 6 |S|(|S|−1)
2 exists, such that M is

invertible with a delay of τ.

Example 6. Let us define the testing graph ofM2 defined in Example 4.
Rinv is the set of pairs of states (s, s′) that have the same output value for any two distinct

input symbols, a and b. It is calculated by applying the transition function δ and the output function
λ to each state s and to the input symbols a and b.

Rinv = {(δ(s1, a), δ(s1, b)), (δ(s2, a), δ(s2, b)), (δ(s2, a), δ(s3, b)), (δ(s2, b), δ(s3, a)),
(δ(s3, a), δ(s3, b))}
Rinv = {(s1, s2), (s3, s1), (s2, s3), (s3, s3)}

V is the vertex set of the graph G inv
M . It is a minimal subset of the set of state pairs (s, s′) that

have the same output value for any input symbol. To form V, we start withRinv and keep adding
state pairs that have the same output value and are reachable from other state pairs in V. Using the
information provided in the example andRinv:

V = {(s2, s3), (s2, s1), (s3, s3), (s2, s2), (s3, s1)}

Γ is the arc set of the graph G inv
M . It consists of all arcs connecting pairs of state pairs (s, s′)

that have the same output value for any input symbol. To form Γ, we connect each state pair (s, s′)
in V to its reachable state pairs that have the same output value:

Γ = {((s2, s3), (s2, s3)), ((s2, s3), (s2, s1)), ((s2, s3), (s3, s3)),
((s2, s3), (s2, s2)), ((s2, s3), (s3, s1)), ((s3, s3), (s3, s1)), ((s3, s3), (s3, s3))}

Note that this is the set of arcs connecting the state pairs in V. The graph G inv
M5

is represented by:

The testing graph G inv
M2

has a circuit; therefore, it is not invertible.

Example 7. The FSMM5 = 〈{a, b}, {0, 1, 2}, {s0, s1, s2}, δ, λ〉 is represented by the following
diagram:
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The graph G inv
M5

can be constructed as follows:
Rinv = {(s0, s1), (s1, s2)}
V = Rinv

Γ = {((s1, s2), (s0, s1))}

The graph G inv
M5

is loop-free, and the maximum length of a path is 1; therefore,M5 is invertible
with a delay of τ = 2.

When the number of vertices is very large in a testing graph G inv , it is important to
have a more efficient algorithm to decide whether it is loop-free. In the next section, we
present one such algorithm that can be easily executed by a computer.

4. A New Algebraic Method for Testing the Invertibility of FSMs

In this section, we introduce an efficient algorithm for testing and computing the delay
of invertibility of a given FSM. We also conduct some experiments in order to produce
an estimation of the landscape of the set of invertible FSMs. Our method is based on the
notion of the testing table, instead of the testing graph of an FSM, which allows us to conduct
a fast test using iterative zero-matrix reduction.

4.1. Algebraic Method for Testing the Invertibility of an FSM

The major tools used in the proposed method are the testing table and its corresponding
connection matrix.

Definition 4. The testing table Tinv
M : (S × S) × Y −→ S × S associated with an FSM

M = 〈X ,Y ,S , δ, λ〉 is an application defined by two steps, as follows:

1. Tinv
M ((s, s′), y) = (δ(s, x), δ(s′, x′)), such that λ(s, x) = λ(s′, x′) = y and x 6= x′, for all

x, x′ ∈ X .
2. for all (s, s′) ∈ Img(Tinv

M ), we define: Tinv
M ((s, s′), y) = (δ(s, x), δ(s′, x′)), such that

λ(s, x) = λ(s′, x′) = y, for all x, x′ ∈ X .

Note that, in Definition 4, we consider (s, s′) = (s′, s) for all s, s′ ∈ S . Then, the testing
table has |S|(|S|+1)

2 rows and |Y| columns. To simplify the notation, in the next section, we
note that (s, s′) = ss′.

By construction, the testing table is defined in two steps. First, the table entries are
the successor’s pairs of states of a given pair of states’ row index if they have outgoing
transitions with the same output symbol and different input symbols. Then, from the
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resulting pairs of states in the first step, the testing table entries are completed by the set of
their successor’s pairs if they have outgoing transitions with the same output symbol.

Definition 5. The connection matrix Cinv
M associated with a testing table Tinv

M of an FSMM is
an N × N matrix, where N = |S|(|S|+1)

2 , whose rows and columns are labeled by the set of pair of
states and the ((s0, s′0), (s1, s′1))th entry is 1 if y ∈ Y exists, such that Tinv

M ((s0, s′0), y) = (s1, s′1),
or 0 otherwise.

Based on its connection matrix, the checking of the invertibility of an FSM is performed
with Algorithm 1.

Here is a step-by-step description of the testing algorithm:

1. Construct the corresponding connection matrix based on the testing table.
2. Delete all rows that consist of only zeroes in every position, and remove the corre-

sponding columns. If there are no rows with all zeroes, proceed to step 4.
3. Repeat step 2 until there are no more rows with all zeroes.
4. If the matrix still has rows or columns remaining after the iterations, this indicates

that the graph Ginv
M is not loop-free; otherwise, if the matrix has completely vanished,

it means that the graph Ginv
M is loop-free.

Algorithm 1: Reduction of a connection matrix.

Input: The connection matrix Cinv
M of an FSMM

Output: Print whetherM is invertible with a finite delay τ or not
tau← 0;

repeat
foreach Row[ss’] in Cinv

M do
if Row[ss’].isEmpty() then

Cinv
M ← Cinv

M .remove(Row[ss’]);
Cinv
M ← Cinv

M .remove(Column[ss’]);
end

end
tau++;
deleted← f alse;
foreach Row[ss’] in Cinv

M do
if Row[ss’].isEmpty() then

deleted← true;
Break;

end
end

until deleted← true;
if Cinv

M has vanished then
Print “M is invertible with a finite delay”, tau

else
Print “M is not invertible”

end

From a given connection matrix of a testing table of an FSM Algorithm 1 eliminates all
rows that consist entirely of zeroes as well as their corresponding columns and repeats this
process until no more rows can be eliminated. If the resulting matrix is empty (i.e., it has
no rows or columns), the FSMM associated with the input connection matrix is invertible.

It is important to note that if there are two or more rows in the matrix that contain
only zeroes in all of their positions, then these rows and their corresponding columns must
be removed together, and this procedure will be counted as a single iteration.
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In summary, the algorithm checks for rows of zeroes in the matrix and removes them,
updating the matrix until no more rows of zeroes are found. The number of iterations
required to remove all rows of zeroes represents the finite delay τ. If the matrix has
vanished, then M is invertible with a finite delay τ; otherwise, it is not invertible. (A
“vanished” matrix has no columns or rows.)

Example 8. Let us consider the FSMM5 defined in Example 7. The testing table in Table 1 of
M5 is as follows:

Table 1. The testing table ofM5.

S × S Output = 0 Output = 1 Output = 2

st
ep

1 s0s0 s1s1, s1s2, s2s2 - -

s0s2 s0s1 - -

st
ep

2

s1s1 - - -
s1s2 - s0s1 -
s2s2 - - -
s0s1 - - -

The corresponding connection matrix is as follows:


s1s1 s1s2 s2s2 s0s1

s1s1 0 0 0 0
s1s2 0 0 0 1
s2s2 0 0 0 0
s0s1 0 0 0 0


In this matrix, the rows and columns are labeled with the state pairs. The cells of the matrix

represent the output symbol associated with the transition from the current state pair to the next
state pair. The output symbol is represented by 0 or 1, where 0 represents no transition and 1
represents a transition.

First, we remove the rows labeled s1s1, s2s2, s0s1 and their corresponding columns. After that,
we repeat the application of this step, which will result in the deletion of the row labeled s1s2.


s1s1 s1s2 s2s2 s0s1

s1s1 0 0 0 0
s1s2 0 0 0 1
s2s2 0 0 0 0
s0s1 0 0 0 0

 −→ s1s2
s1s2 ( 0 )

The next step results in the matrix disappearing entirely. Consequently,M5 is invertible with
a delay of τ = 2, as is already shown in Example 7.

Theorem 2. Algorithm 1 checks the invertibility of an FSMM = 〈X ,Y ,S , δ, λ〉 and computes
its delay in a time period of O(|S|4).

Proof. Let us consider an FSM M. Suppose that M is not invertible and Algorithm 1
produces an empty connection matrix. By the construction of the connection matrix Cinv

M ,
there are rows indexed by the pairs of states ss′ from step 1 in the corresponding testing
table. This means that x, x′ ∈ X exists, such that λ(s, x) = λ(s′, x′) and x 6= x′. SinceM is
not invertible, two input sequences α = xx0 · · · xn · · · ∈ Xω and α′ = x′x′0 · · · x′n · · · ∈ Xω

exist, such that λ(s, α) = λ(s′, α′). Suppose now that δ(si, xi) = si+1, δ(s′i, x′i) = s′i+1 and
δ(sn, xn) = s0 ∧ δ(s′n, x′n) = s′0, for all 0 ≤ i < n. We have

• Cinv
M [ss′][s0s′0] = 1 and Cinv

M [sns′n][s0s′0] = 1,
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• Cinv
M [sis′i][si+1s′i+1] = 1, for all 0 ≤ i < n.

The connection matrix is as follows:



· · · s0s′0 · · · sis′i · · · sn−1s′n−1 sns′n
ss′ · · · 1 · · · 0 . . . 0 0
... · · ·

... · · ·
...

. . .
...

...
s0s′0 · · · 0 · · · 1 . . . 0 0
...

...
... · · · . . .

...
...

...
sis′i · · · 0 · · · 0 . . . 1 0
...

...
... · · · . . .

...
...

...
sn−1s′n−1 · · · 0 · · · 0 . . . 0 1
sns′n · · · 1 · · · 0 . . . 0 0


According to Algorithm 1, the ones are eliminated when the corresponding columns

correspond to an empty row. In our case, the matrix cannot be reduced. Consequently,M
is invertible.

To prove the sufficiency condition, assume that Algorithm 1 produces a nonempty ma-
trix. Without a loss of generality, we can consider a produced matrix with the previous ma-
trix form. Then, two input sequences α = xx0 · · · xn · · · ∈ Xω and
α′ = x′x′0 · · · x′n · · · ∈ Xω exist, such that for some s, s′ ∈ S, we have λ(s, α) = λ(s′, α′) and
x 6= x′. Then, the associated FSM is not invertible.

The time complexity of Algorithm 1 depends on the number of rows in the connection
matrix. Since there are |S|×(|S|+1)

2 rows and columns, Algorithm 1 runs in the worst case
scenario of a time period of O(|S|4).Thus, the Theorem is proved.

4.2. Experimentation and Results

This section aims to present an estimation of the landscape of invertible FSMs through
the proposed algebraic testing method and randomized statistical sampling.

Theorem 3. The number of Finite State Machines with n states, i input alphabet symbols, and o
output alphabet symbols is equal to (n× o)n×i.

Proof. Let us assume that we have an FSM with n states, i input alphabet symbols, and o
output alphabet symbols. First, consider the input side of the FSM. There are i possible
input symbols and n possible states. Since the FSM is complete, for each state, there must
be a transition defined for every input symbol in the alphabet. Therefore, the number
of possible transitions from each state is equal to ni. Therefore, there are n(i×n) possible
transition tables for the input side of the FSM. Next, consider the output side of the FSM.
There are o possible output symbols that can be associated with each transition in the
input side of the FSM. Therefore, there are oi×n possible transitions for each state in the
output side of the FSM. Finally, to determine the total number of FSMs, we need to consider
all possible combinations of transitions with input symbols and output symbols. Thus,
the total number of possible FSMs is (n× o)n×i.

Table 2 summarizes the total number of considered FSMs in our experiments when
i = 2 for a different number of states n and output alphabet size o in {2, · · · , 5}.

It should be noted that we consider the input symbols to be in the binary alphabet,
since real-world data are typically encoded in binary format.

The algorithm described in this paper was implemented in Java, and its detailed
description is available in the repository [19]. A series of experiments were conducted
using these implementations, which led to significant findings.
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Table 2. The total number of FSMs when i = 2.

n o = 2 o = 3 o = 4 o = 5 o = 6 o = 7 o = 8

2 44 64 84 104 124 144 164

3 66 96 126 156 186 216 246

4 88 128 168 208 248 288 328

5 1010 1510 2010 2510 3010 3510 4010

6 1212 1812 2412 3012 3612 4212 4812

7 1414 2114 2814 3514 4214 4914 5614

8 1616 2416 3216 4016 4816 5616 6416

9 1818 2718 3618 4518 5418 6318 7218

10 2020 3020 4020 5020 6020 7020 8020

11 2222 3322 4422 5522 6622 7722 8822

12 2424 3624 4824 6024 7224 8424 9624

13 2626 3926 5226 6526 7826 9126 10426

14 2828 4228 5628 7028 8428 9828 11228

15 3030 4530 6030 7530 9030 10530 12030

16 3232 4832 6432 8032 9632 11232 12832

17 3434 5134 6834 8534 10234 11934 13634

18 3636 5436 7236 9036 10836 12636 14436

19 3838 5738 7638 9538 11438 13338 15238

20 4040 6040 8040 10040 12040 14040 16040

We exhibit the number of τ-invertible classes for i = 2 and a given value of o ∈ {2, ..., 8},
while the n and τ range are ∈ {2, ..., 20} and {0, ..., 8}, respectively.

For each triple of structural parameters i, o, and n, we uniformly and randomly
generated a sample of 20000 FSMs. We computed the number of τ-invertible FSMs in
these samples.

The graphs presented in Figure 6 represent the number of τ-invertible FSMs that can
be built with a certain number of states and output symbols. They were generated using
the approximate values obtained from the tables in Appendix A.

The x-axis shows the number of states, ranging from 2 to 20, and the y-axis shows
the number of output symbols, ranging from 2 to 8. The z-axis represents the number of
invertible FSMs that can be constructed for each combination of a number of states and
output symbols. The surface plot shows a peak where the number of invertible FSMs is
the highest. The plot shows that the number of invertible FSMs generally increases with
the number of states and outputs. However, the rate of increase appears to decrease as the
number of states and output symbols increases.

Overall, these plots provide a clear visualization of the relationship between the
number of states, number of outputs, and number of invertible FSMs, with the peak
indicating the most favorable conditions for constructing invertible FSMs.

The heatmap in Figure 7 shows the number of invertible FSMs for different combina-
tions of the number of states and output symbols when the number of input symbols is
fixed at 2.

The number of states is presented on the y-axis, while the number of output symbols
is presented on the x-axis. The cells of the heatmap represent the total number of invertible
FSMs for the corresponding combination of the number of states and output symbols.

From the heatmap, the main observation is that there is an increase in the number of
invertible FSMs when the number of states n is much smaller than the number of output
symbols o i.e., n << o. This is principally due to the fact that an increase in the number of
output symbols expands the number of potential transitions between states, consequently
leading to a higher number of possible FSMs. Conversely, as the number of states rises
relative to the number of outputs, the heatmap demonstrates that the number of invertible
Finite State Machines decreases. Notably, when the number of states greatly exceeds the
number of outputs, the count of invertible FSMs reaches zero.
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Figure 6. Approximate values for the number of τ-invertible FSMs when i = 2.

Figure 7. Heatmap showing the approximate percentage values of invertible FSMs when i = 2.

From various experiments involving the estimation of the landscape of invertible
FSMs, it has been observed that the number of invertible FSMs can grow exponentially
under certain conditions. This characteristic renders them a viable solution for creating
efficient and lightweight keys that offer resistance to brute force attacks in any cryptosystem.
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Invertible FSMs have been shown to be a promising alternative to traditional cryptographic
methods, and they can offer several advantages in terms of security, efficiency, and ease
of implementation [20]. However, further research and testing may be necessary to fully
explore the potential of invertible FSMs for different cryptographic applications.

5. Conclusions

The construction of invertible finite automata has two critical applications in the field
of cryptography: Firstly, they are utilized to generate encryption and signature keys in
FAPKCs. Secondly, they can be used to attack existing cryptographic systems based on
finite automata theory. In this paper, we presented an efficient algebraic algorithm that
allows us to check the invertibility of FSMs with some finite delay. Then, we presented an
estimation of the landscape of invertible FSMs through some experiments conducted for
general cases. Our study was conducted as suggested by [14] and shows that invertible
FSMs are promising alternatives to conventional cryptographic methods and can potentially
provide a practical solution for creating efficient and lightweight keys that offer resistance
to brute force attacks. Overall, the study of the invertibility of finite FSMs is an active area
of research with both theoretical and practical implications.
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Appendix A

Table A1. Approximate number values for i = 2 and o = 2.

n τ = 0 τ = 1 τ = 2

2 0 8 0
3 0 71 0
4 0 14 1
5 0 1 0
6 0 1 0
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0

Table A2. Approximate number values for i = 2 and o = 3.

n τ = 0 τ = 1 τ = 2 τ = 3 τ = 4

2 0 120 0 0 0
3 9 760 136 14 0
4 19 215 80 25 2
5 6 39 25 6 0
6 0 4 8 1 0
7 0 2 3 0 0
8 0 0 0 0 0
9 0 0 0 0 0
10 0 0 0 0 0
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Table A3. Approximate number values for i = 2 and o = 4.

n τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8

2 0 429 0 0 0 0 0 0 0
3 5 1424 292 11 0 0 0 0 0
4 45 821 416 82 16 0 1 0 0
5 605 34 236 220 71 32 9 2 1
6 33 76 97 39 24 5 2 2 0
7 13 13 22 15 5 2 4 1 0
8 3 3 5 7 4 0 0 1 0
9 2 0 0 0 1 2 3 0 0

10 0 0 0 0 1 0 1 0 0
11 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0

Table A4. Approximate number values for i = 2 and o = 5.

n τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8

2 0 736 0 0 0 0 0 0 0
3 0 2168 311 4 0 0 0 0 0
4 42 1781 766 104 19 2 0 0 0
5 1820 73 855 646 194 41 4 4 3
6 72 291 381 165 42 13 6 0 0
7 47 87 179 84 40 13 4 2 1
8 22 30 50 49 22 5 2 1 1
9 11 10 12 24 16 4 1 2 1

10 9 1 6 3 5 4 0 0 0
11 3 0 1 4 1 2 2 0 0
12 1 0 0 1 0 0 0 0 0
13 1 0 0 0 1 0 0 0 0
14 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0

Table A5. Approximate number values for i = 2 and o = 6.

n τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8

2 0 1251 0 0 0 0 0 0 0
3 3 3436 389 9 0 0 0 0 0
4 35 2731 892 103 5 0 0 0 0
5 65 1578 984 234 52 5 2 0 0
6 83 748 766 256 70 13 6 1 0
7 75 291 513 209 57 20 1 2 1
8 45 99 242 158 64 17 6 3 1
9 34 17 111 80 31 18 4 4 1

10 26 12 42 47 23 4 1 0 0
11 13 3 16 19 11 3 1 0 1
12 7 0 1 10 7 3 1 3 0
13 9 0 1 3 1 2 0 0 0
14 2 0 0 1 1 0 0 0 0
15 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0
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Table A6. Approximate number values for i = 2 and o = 7.

n τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8

2 0 1434 0 0 0 0 0 0 0
3 3 2962 259 2 0 0 0 0 0
4 27 3728 885 88 7 0 0 0 0
5 68 2597 1135 248 29 2 0 0 0
6 92 1402 1191 295 74 8 3 1 0
7 77 675 880 311 68 13 3 0 0
8 81 305 587 268 77 20 3 1 0
9 75 121 341 204 52 12 3 0 0

10 52 36 193 126 52 19 8 2 0
11 31 9 111 75 29 11 1 1 1
12 19 2 41 43 23 6 4 0 0
13 19 1 22 28 16 1 1 2 1
14 10 0 10 12 8 5 2 1 0
15 5 0 6 1 3 2 1 0 0
16 2 0 2 4 0 1 0 0 0
17 1 0 0 2 0 0 0 0 0
18 1 0 0 1 0 0 1 1 0
19 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0

Table A7. Approximate number values for i = 2 and o = 8.

n τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8

2 0 1489 0 0 0 0 0 0 0
3 2 4009 327 4 0 0 0 0 0
4 22 4353 891 80 9 0 0 0 0
5 48 3417 1295 196 33 4 1 0 0
6 66 2259 1369 339 61 9 1 0 0
7 78 1284 1197 392 76 19 1 0 0
8 95 630 957 350 105 21 4 1 0
9 91 308 631 321 84 16 6 1 0

10 79 103 410 235 73 22 6 0 0
11 61 43 263 189 63 16 7 0 1
12 42 16 133 119 42 18 2 0 0
13 34 10 78 100 31 11 0 1 0
14 17 2 29 40 23 8 1 1 0
15 12 1 20 29 9 3 0 0 0
16 9 1 12 15 5 8 2 0 0
17 7 0 2 4 3 2 0 0 0
18 3 0 0 4 2 2 1 0 0
19 0 0 1 2 1 1 0 0 0
20 1 0 0 1 2 1 0 0 0
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