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Abstract: This investigation focuses on the impact of Stefan blowing on the flow of hybrid nanoliquids
over a moving slender needle with magnetohydrodynamics (MHD), thermal radiation, and entropy
generation. To facilitate analysis, suitable transformations are applied to convert the governing partial
differential equations into a set of ordinary differential equations, which are then solved analytically
using Homotopy Analysis Method (HAM) in Mathematica. This study investigates how varying
the values of Stefan blowing, magnetic field, and thermal radiation parameters impact the profiles
of velocity, temperature, and concentration. Additionally, the study analyzes the outcomes of the
local skin friction, local Nusselt number, and local Sherwood number. Increasing the magnetic field
reduces the velocity profile. The temperature profile is enhanced by a rise in the thermal radiation
parameter. Also, the results reveal that an increase in the Stefan blowing number leads to higher
profiles of velocity.

Keywords: hybrid nanofluid; Stefan blowing; MHD; thermal radiation; thin needle; entropy generation

1. Introduction

Smart fluids, known as hybrid nanofluids, contain suspensions of two or more different
types of nanoparticles in the base fluid, significantly improving their characteristics even
at low concentrations. They have a lot of potential and are used in solar collectors, heat
exchangers, refrigerators, desalination, electrical and engine cooling, machining, and heat
transfer. Siti et al. [1] conducted a study in which they analyzed the flow characteristics
of a horizontal thin needle submerged in a nanoliquid under steady 2D laminar forced
convection. Ghadikolaei et al. [2] investigated the thermophysical properties of hybrid
nanofluid transport, focusing on the influence of the shape factor in stagnation point flow.
The effects of the mixed convection parameters, needle size on the flow of fluid, and the
heat transfer characteristics of moving a vertical thin needle in nanoliquid were investigated
by Siti et al. [3]. Iskandar et al. [4] conducted research that focused on studying the steady
motion and heat transfer characteristics of a permeable slender moving needle over a
hybrid nanoliquid. Waqas et al. [5] investigated the effects of velocity slip and nonlinear
thermal radiation on a MoS4-Ag/engine-oil base hybrid nanofluid containing SWCNTs
and MWCNTs, set up in a vertical cylinder. The influence of suction and unsteadiness
parameters on the motion and heat transfer characteristics of a hybrid nanoliquid over
a permeable shrinking cylinder was examined by Zainal et al. [6]. The convective flow
of nanofluids/hybrid nanofluids under various situations has been examined in several
studies [7–10].

MHD is a field of study that focusses on the interaction of magnetic fields with
electrically conductive fluids, such as plasma and molten metals [11,12]. MHD finds
various applications across different fluids, including power generation, nuclear fusion,
space propulsion, material processing, astrophysics and space science, and environmental
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and biomedical applications [13,14]. Sulochana et al. [15] conducted an investigation on the
boundary layer theory for 2D forced convection flow along a moving thin needle with joule
heating and an MHD radiative nanoliquid. The MHD bioconvective flow of a nanoliquid in
a stratified medium, with consideration of gyrotactic microorganisms, was investigated by
Jagan et al. [16]. The objective of the study conducted by Khan et al. [17] was to assess the
impact of nonlinear radiation on the magnetic field using hybrid AA7075 and AA7072 alloy
nanomaterials. In their research, Iskander et al. [18] explored the flow and energy transport
of a hybrid nanofluid induced by a persistently moving needle in an MHD Sakiadis flow
with resistive heating. In a study conducted by Reddy et al. [19], the research focused on
investigating the flow of a hybrid nanoliquid over a moving thin needle with MHD while
also investigating the impacts of Dufour and Soret effects using the Casson model.

Thermal radiation refers to the emission of energy in the form of electromagnetic
radiation from a heated surface, which propagates in all directions at the speed of light until
it is observed at its point of absorption. The ability to control thermal radiation is crucial in
various applications, including thermal management, spectroscopy, optoelectronics, and
energy-conversion devices [20,21]. In their research, Karthikeyan et al. [22] carried out
an extensive study on unsteady MHD conducting fluid past a semi-infinite vertical plate
situated within a porous medium, considering time-dependent suction. Niranjan et al. [23]
conducted a research study to examine the impact of Soret and Dufour effects on the MHD
flow of a viscous fluid towards a vertical plate embedded in a porous medium with a
primary focus on slip and chemical reaction. In their research, Iskander et al. [24] studied
how the characteristics of the flow of dissipative nanofluids are affected by nonlinear
thermal radiation when they pass a thin, moving needle on a horizontal plane. In their
study, Himanshu et al. [25] examined the effects of non-linear thermal radiation, Joule
heating, and viscous dissipation on the flow of an MHD nanoliquid over a moving slender
needle. In the research article conducted by Sreedevi et al. [26], they studied the effects of
nonlinear thermal radiation and the Biot number on the flow along a continuously moving
slender needle filled with carbon-based nanotubes. In their research article, Makinde
et al. [27] investigated the bioconvection behavior of a radiating hybrid nanoliquid flowing
past a thin needle while considering the impacts of a heterogeneous-homogeneous chemical
reaction. Haider et al. [28] investigated the influence of the effects of blowing on the
unsteady MHD flow of a nanoliquid over a stretching sheet, taking into account the effects
of Arrhenius activation energy, thermal radiation, and chemical reaction.

The Stefan blowing effect, which establishes a direct proportionality between the
species (concentration) field and velocity field, is commonly observed in various applica-
tions such as the drying process for paper and the blowing of glass, among others [29].
Tiegang et al. [30] conducted a research study to analyze the effects of blowing on mass
transfer in high flux conditions while investigating the flow, heat, and mass transfer of a
viscous fluid over a stretching sheet. Giri et al. [31] explored the influence of Stefan blowing
on hydro-magnetic bioconvection by studying the behavior of a water-based nanoliquid
containing gyrotactic microorganisms over a permeable surface. Additionally, Amirsom
et al. [32] developed a transport model in their research article to describe the behavior
of an MHD forced convective non-Newtonian boundary flow from a thin needle in a
nanofluid, taking into consideration the effects of Stefan blowing and microorganisms and
ensuring the originality of the content. The effects of Stefan blowing, Dufour and Soret
effects, thermophoresis, and Brownian motion on Casson liquid flow past a moving thin
needle were studied by Jyothi et al. [33]. Narayanaswamy et al. [34] conducted a study
on the thermal radiation, Dufour effect, and Soret effect over a stretching cylinder with
Stefan blowing.

Entropy generation is a measure of the amount of energy that is wasted during the
process. This can include things like heat transfer, fluid flow, and chemical reactions.
Also, it is a measure of randomness in a system, and it is always greater than or equal to
zero. The objective of Afridi et al. [35] was to investigate and compare the generation of
entropy in the flow of conventional and hybrid nanofluids. In their study, Tlili et al. [36]



Computation 2023, 11, 128 3 of 13

examined the characteristics of a two-dimensional MHD nanofluid flow involving water-
based suspended carbon nanotubes. The investigation included the analysis of entropy
generation and nonlinear thermal radiation, within a Darcy-Forchheimer porous medium,
over a horizontally moving thin needle. In their research, Gangadhar et al. [37] conducted
an analysis focused on thermal optimization in magnetic materials. The study examined
the entropy generation within a mixed convective MHD flow, specifically considering an
electrically conductive nanoliquid containing motile microorganisms in conjunction with
a vertical cylinder. Ramzan et al. [38] conducted a comprehensive investigation into the
mechanical characteristics of heat and mass transfer flow in a second-grade nanofluid.
Additionally, they analyzed the motion of gyrotatic microorganisms past a thin needle with
the dipole effect, taking into account entropy generation and thermal radiation. Ogunseye
et al. [39] aimed to numerically examine the generation of entropy, heat propagation, and
conduction in a hybridized Casson ferrofluid with dissipation and radiation, specifically
within a thin needle.

In this study, we conducted an investigation to analyze the impacts of Stefan blowing
on the flow behavior of a hybrid nanofluid over a moving thin needle while considering the
effects of MHD, entropy generation, and thermal radiation. To the best of our knowledge,
the impacts of Stefan blowing on the flow of a hybrid nanoliquid over a slender moving
needle with MHD, thermal radiation, and entropy generation have not been explored in
the existing literature. The HAM implemented in Mathematica software was employed
to solve the problem at hand. The findings of this study are presented through tables
and graphs, which illustrate the significant variations of various physical quantities with
respect to the parameters under consideration. The findings of this study carry practical
implications across various fields such as cooling technology, physics, and engineering, as
well as thermal science.

2. Mathematical Formulation

The section provides the hybrid nanofluid’s physical model and governing equations.
Figure 1 illustrates the physical model of a steady, incompressible, and laminar flow of
a hybrid nanoliquid over a moving slender needle in this regard. The axial and radial
coordinates are taken as the cylindrical coordinates in this instance, which are x and r,
respectively. The boundary layer over the needle in this instance is not thicker than it.
The free stream velocity U∞ and the needle velocity Uw will move in the axial direction
of fluid flow. In addition, a perpendicular to the flow direction magnetic field is applied.
The concentrations at the wall and in the vicinity are also considered to be constant.
Furthermore, the following terms: MHD, thermal radiation, and Stefan blowing effect, are
included in the fundamental equations.
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The governing equations of this study have been formulated based on (Sulochana
et al. [15] and Jyothi et al. [33]), as provided in the list below.

∂(ru)
∂x

+
∂(rv)

∂r
= 0 (1)

u
∂u
∂x

+ v
∂u
∂r

=
µhn f

ρhn f

1
r

∂

∂r
(r

∂u
∂r

)−
σhn f B0

2u
ρhn f

(2)

u
∂T
∂x

+ v
∂T
∂r

=
khn f

(ρCp)hn f

1
r

∂

∂r
(r

∂T
∂r

)− 1
(ρCp)hn f

1
r

∂

∂r
(rqr) +

σhn f

(ρCp)hn f
B0

2 u2 (3)

u
∂C
∂x

+ v
∂C
∂r

=
Dm

r
∂

∂r
(r

∂C
∂r

) (4)

Associated boundary conditions are subjected to (Jyothi et al. [33]).

u = uw, v = −Dm
(1−Cw)

∂C
∂r , T = Tw, C = Cw at r = R(x)

u→ u∞, C → C∞ , T → T∞ as r → ∞

 (5)

The velocity components along the x and r axes are represented by u and v, respectively,
in the given equations. Detailed information regarding the thermophysical properties of
the nanoparticles and base fluid can be found in Tables 1 and 2, respectively. φ1 and φ2
stand for Al2O3 and copper nanoparticles, respectively, in terms of volume fraction.

Table 1. The thermophysical properties of the hybrid nanofluid employed in this research are as
follows (Iskandar et al. [4] and Narayanaswamy et al. [29]).

Properties Hybrid Nanofluid

Density ρhn f = [φ1ρs1 + (1− φ2)ρ f ](1− φ1)
+φ2ρs2

Heat capacity (ρCp)hn f = [(1− φ2)(ρCp) f + φ1(ρCp)s1]

(1− φ1) + φ2(ρCp)s2

Dynamic viscosity µhn f =
µ f

(1−φ1)
2.5(1−φ2)

2.5

Thermal conductivity
khn f
k f

=
ks2+kn f (2−2φ2)+2φ2ks2

ks2−φ2ks2+kn f (2+φ2)

Where kn f =
ks1+2k f−2φ1(k f−ks1)

ks1+2k f +φ1(k f−ks1)
k f

Electrical Conductivity
σhn f
σf

=
σs2+σn f (2−2φ2)+2φ2σs2

σs2−φ2σs2+σn f (2+φ2)

Where σn f =
σs1+2σf−2φ1(σf−σs1)

σs1+2σf +φ1(σf−σs1)
σf

Table 2. The thermophysical properties of nanoparticles and base fluid are considered in this research
(Iskandar et al. [4] and Narayanaswamy et al. [29]).

Properties Al2O3 Cu Water

σ
(
Ω m−1) 1.502× 10−10 5.96× 107 5× 10−2

k
(

W m−1K−1
)

40 400 0.613

CP

(
J kg−1K−1

)
765 385 4179

ρ
(
kg m−3) 3970 8933 997.1
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The similarity variables and stream functions for the formulated governing equations
are provided below (Jyothi et al. [22]).

ϕ = ν f x f (η), θ(η) =
T − T∞

Tw − T∞
, η =

Ur2

ν f x
, φ(η) =

C− C∞

Cw − C∞
(6)

By using the above transformations (6), Equation (1) is satisfied, and the nonlinear
PDE Equations (2)–(5) are converted into nonlinear ODE Equations (7)–(10),

2
B1B2

(η f ′′′ + f ′′ ) + f f ′′ − B3

B2
M f ′ = 0 (7)

2
PrC2

(C1 +
4
3

Rd)(θ′ + ηθ′′ ) + f θ′ +
B3

C2
M Ec f ′

2
= 0 (8)

2
Sc

(φ′ + ηφ′′ ) + f φ′ = 0 (9)

subjected to

f (η) = 2η Sb
Sc φ′(η) + ε

2 η , f ′(η) = 1
2 ε , θ(η) = 1, φ(η) = 1 at η = c

f ′(η) = 1
2 (1− ε), φ(η)→ 0, θ(η)→ 0 as η → ∞

}
(10)

where B1 =
µ f

µhn f
, B2 =

ρhn f
ρ f

, B3 =
σhn f
σf

, B4 =
khn f
k f

and B5 =
(ρCp)

hn f

(ρCp) f
are the constants.

ν f =
µ f
ρ f

, Pr =
(µCp) f

k f
, M =

σf B0
2x

2uρ f
, Sb = (1−Cw)

(Cw−C∞)
, ε = Uw

U , Ec = (2u)2

(Cp) f (Tw − T∞)
,

Sc =
ν f
Dm

and Rd = 4σ∗T∞
3

k∗k f
represents the parameters of kinematic viscosity, Prandtl

number, magnetic field, Stefan blowing, velocity ratio, Eckert number, Schmidt number,
and thermal radiation, respectively.

Listed below are the relevant physical parameters: the skin friction coefficient, local
Nusselt number, and local Sherwood number.

C f =
4C1/2

B1
(Rex)

−1/2 f ′′ (c) (11)

Nux = −2C1/2(C1 +
4
3

Rd)(Rex)
1/2θ′(c) (12)

Shx = −2C1/2(Rex)
1/2φ′(c) (13)

where Rex = Ux
υ f

is the local Reynolds number.

3. Entropy Generation

The current investigation allows us to depict the rate of volumetric entropy generation
as (Muhammed et al. [35] and Gangadhar et al. [37]).

Ec =
k f

T∞2

[
khn f

k f
+

16σ∗T3

3k∗k f

] (
∂T
∂r

)2
+

σhn f B0
2

T∞
u2 +

Dm

C∞

(
∂C
∂r

)2
+

µhn f

T∞

(
∂u
∂r

)2
(14)

The generation of entropy (NG) is determined by dividing the volumetric generation
by the characteristic entropy generation:

NG =
EG
E0
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The characteristic entropy generation is given by

E0 =
4 k f U
υ f x

NG =

(
C1 +

4
3

Rd
)

Λ1
2 η θ′

2
+

B3
2

Pr M Ec Λ1 f ′
2
+ Λ3Λ2

′ηφ′
2
+

Pr Ec Λ1 η

B1
f ”2

(15)

where, Λ1 = Tw − T∞
T∞

, Λ2 = Cw − C∞
C∞

and Λ3 = R Dm (Cw −C∞)
k f

are the temperature
difference parameter, concentration difference parameter, and diffusion parameter.

The Bejan number quantifies the ratio between the transfer of heat and mass and the
overall entropy (Gangadhar et al. [37]).

Bn =

(
C1 + 4

3 Rd
)

Λ1
2 η θ′

2
+ Λ3Λ2

′ηφ′
2(

C1 + 4
3 Rd

)
Λ1

2 η θ′2 + B3
2 Pr M Ec Λ1 f ′2 + Λ3Λ2′ηφ′2 +

Pr Ec Λ1 η
B1

f ”2
(16)

Therefore, based on Equation (16), the Bejan number (Bn) ranges from 0 and 1. When
Bn � 0.5, indicates that the heat transfer predominately contributes to the irreversibility.
Conversely, when Bn � 0.5, suggests that irreversibility is primarily caused by fluid
friction, thermal radiation, and joule heating. When Bn = 0.5, it signifies that irreversibility
arises equally from fluid friction, joule heating, heat, and mass transfer.

4. Method of Solution

HAM gives a series of solutions used to solve nonlinear problems. It is an iterative
numerical technique that combines the benefits of both analytical and numerical meth-
ods [40]. It provides a systematic approach to solve problems that are not amenable to
traditional analytical methods such as numerical integration or differential equations. It is
based on the idea of the continuous deformation of the solutions of a problem until they
reach the solutions of the original problem. One of the key benefits of HAM is its ability
to provide a precise approximation of the solution to a nonlinear problem, particularly in
instances when the exact solution is unknown [41,42]. The system of Equations (7)–(9) with
boundary conditions (10) is solved using the HAM by carefully selecting appropriate initial
approximations and auxiliary linear operators.

f0(η) = −2
Sb
Sc

c + (c + 1)
(

2ε − 1
2

)
+

(
1
2
− ε

)
η +

(
1− 2ε

2

)
exp (c− η)

θ0(η) = exp(c− η), φ0(η) = exp(c− η)

L f ( f ) =
∂3 f
∂η3 −

∂ f
∂η

, Lθ(θ) =
∂2θ

∂η2 − θ, Lφ(φ) =
∂2φ

∂η2 − φ

which satisfies the property

L f [E1 + E2 exp(η) + E3 exp(−η)] = 0

Lθ [E4 exp(η) + E5 exp(−η)] = 0

Lφ[E6 exp(η) + E7 exp(−η)] = 0

where E1,E2 . . . E7 are arbitrary constants.
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The convergence of the series solution obtained through the HAM is evaluated using
the h-curve, which incorporates the auxiliary parameters. These parameters play a pivotal
role in adjusting the convergence of the HAM solutions. The curves of h f , hθ , and hφ are
presented in Figure 2. The h-curve is plotted for φ1 = 0.15, φ2 = 0.15, M = 0.1, Pr = 6.2,
Sc = 0.6, ε = 1, Sb = 0.5, Rd = 0.1, c = 0.1, Ec = 0.2. As depicted in Figure 2, the
admissible ranges of h f , hθ , and hφ are −0.4 ≤ h f ≤ 0.1, −0.35 ≤ hθ ≤ 0.1, and
−0.27 ≤ hφ ≤ 0.1.
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5. Results and Discussion

In this study, the HAM is employed to analyze highly nonlinear and coupled Equations
(7)–(9) that are subjected to corresponding boundary restrictions Equation (11). The study
investigates various parameter combinations, including the variation of thermal radiation,
magnetic field, and Stefan blowing parameters, as depicted in Figures 3–5. Figures 6–8
illustrate the analysis of local skin friction, Nusselt number, and Sherwood number while
considering various values of magnetic field, Stefan blowing, and thermal radiation param-
eters. The variation of the Eckert number and diffusion parameters is depicted in Figure 9
for entropy generation. Table 3 shows the calculated results for M, Sb, and Rd.

Figure 3 shows the increasing magnetic field velocity profile decreases. As the mag-
netic field increases, it creates a Lorentz force on the electrons of the conductor, which
opposes the flow of the fluid. This means that the electrons move slowly, and the velocity
profile decreases.
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Figure 4 represents the Rd temperature profile increases. Thermal radiation is a form of
energy transfer, and as it increases, it will cause fluid to absorb more energy. This additional
energy will cause the temperature of the fluid to increase. This increase in temperature will
result in the temperature profile becoming more pronounced.

As shown in Figure 5, when the Sb increases, the velocity profile also increases. Stefan
blowing is a process used to increase the velocity of a fluid by introducing additional energy.
The additional energy causes the fluid to become more energetic, resulting in an increase in
velocity of the fluid. This increases the velocity profile.

As shown in Figure 6a,b, increasing the values of M can decrease skin friction due
to the suppression of fluid motion while simultaneously increasing the Nusselt number
because of the enhanced convective heat transfer caused by the induced fluid motion.
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Table 3. Computed results for different physical parameters Rd, M, and Sb.

Rd M Sb Cf(Rex)
0.5 Nux(Rex)

−0.5 Shx(Rex)
−0.5

0.1

0.1

0.5

−1.94549 1.70681 0.74003
0.4 −2.08484 1.70623 0.73979
0.7 −2.21756 1.70568 0.73956
1.0 −2.34425 1.70516 0.73935

0.1 0.1

0.1 −2.05374 1.71442 0.73540
0.2 −2.00182 1.70266 0.73060
0.3 −1.9507 1.69096 0.72583
0.4 −1.90036 1.67933 0.72109

0.1

0.1 0.5

−1.8508 1.66777 0.71637
0.2 −1.8508 1.86173 0.71637
0.3 −1.8508 2.05793 0.71637
0.4 −1.8508 2.25604 0.71637

Figure 7 shows that as Rd increases, the value of Nux also increases. The Nusselt
number is used to measure the rate of convective heat transfer between a solid surface and
the fluid surrounding it. An increase in the thermal radiation from the surface results in a
rise in local temperature, leading to a higher temperature gradient between the surface and
the surrounding fluid. This intensifies the temperature gradient and enhances convective
heat transfer, causing the Nusselt number to increase.

In Figure 8a–c, C f rises, but Nux and Shx fall. The increased flow rate of Stefan blowing
causes the skin friction to increase because of the increased viscous forces between the flow
and the wall. This in turn reduces the Nusselt number and Sherwood number since these
numbers are inversely proportional to the skin friction. Therefore, when the skin friction
increases, the Nusselt number and Sherwood number decrease.

As shown in Figure 9a,b, increasing the Eckert number leads to an increase in entropy
generation. This is because higher Eckert numbers correspond to higher velocities and
higher energy dissipation within the flow. Increasing the diffusion parameter increases
mass diffusivity and reduces the density of the hybrid nanofluid, which creates a more
disordered system. Hence, entropy generation is increased.

Table 3 displays the calculated values for M, Sb, and Rd. As the value of M is increased
while keeping Sb constant, the skin friction, Nusselt number, and Sherwood number
decrease. Similarly, when the value of Sb is increasing while keeping M constant, the skin
friction rises to 7.45% but the Nusselt and Sherwood number declines to 2.08% and 1.94%.
On the other hand, by increasing the value of Rd while keeping M constant, the Nusselt
number can increase by up to 35%.

6. Conclusions

The effects of Stefan blowing on a hybrid nanofluid flow involving MHD, thermal
radiation, and entropy generation over a slender moving needle were studied. Our findings
were as follows:

• The range of motion of the velocity profile becomes restricted as the strength of the
magnetic field increases.

• As the thermal radiation intensifies, the thermal boundary layer expands.
• Elevating the Stefan blowing parameter results in an increase in the profiles of velocity.
• Raising the magnetic parameter causes a decrease in skin friction but an increase in

Nusselt number.
• When Rd varies from 0.1 to 0.4, the heat transfer raises up to 35%.
• As the intensity of thermal radiation rises, the Nusselt number exhibits a correspond-

ing increase.
• Augmenting the Stefan blowing number leads to an increase in skin friction, coupled

with a decrease in the Nusselt number and Sherwood number.
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• The generation of entropy is enhanced as the Eckert number and diffusion parameter
are increased.

Author Contributions: Conceptualization, J.K. and S.S.; methodology, J.K.; software, J.K. and V.S.R.;
validation J.K.; formal analysis, J.K., S.S. and V.S.R.; investigation, J.K.; resources, J.K.; writing—
original draft preparation, J.K. and V.S.R.; writing—review and editing, J.K.; visualization, J.K.;
supervision, J.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Sb Stefan blowing parameter
B0 Magnetic field strength
u ,v velocity components along x and r directions
c needle radius (m)
T∞ ambient temperature (K)
Cw wall concentration
Nux Nusselt number
C∞ ambient concentration
Uw velocity at the surface (m s−1)
σ∗ Stefan-Boltzman Constant
Tw temperature at the surface (K)
Cp specific heat (kg−1 J)
U∞ free stream velocity (m s−1)
qr radiative heat flux (kg m2 s−3)
C f Skin friction
Shx Sherwood number
Dm mass diffusion coefficient (m2 s −1)
k∗ coefficient of mean absorption (c m−1)
C fluid concentration
Rex Local Reynolds number
Greek Symbols
ε velocity ratio
ν kinematic viscosity
ρ fluid density
µ dynamic viscosity of a fluid
Subscripts
nf nanofluid
f fluid
hnf hybrid nanofluid
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