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Abstract: Path-specific effect analysis is a powerful tool in causal inference. This paper provides a
definition of causal counterfactual path-specific importance score for the structural causal model
(SCM). Different from existing path-specific effect definitions, which focus on the population level,
the score defined in this paper can quantify the impact of a decision variable on an outcome variable
along a specific pathway at the individual level. Moreover, the score has many desirable properties,
including following the chain rule and being consistent. Finally, this paper presents an algorithm
that can leverage these properties and find the k-most important paths with the highest importance
scores in a causal graph effectively.

Keywords: causal; path-specific effect; structural causal model

1. Introduction

Path-specific effect analysis, which quantifies the strength of pathways linking a
decision to its outcome, is an important topic in statistical causal inference. This ap-
proach has been widely adopted across various disciplines, including social psychology [1],
medicine [2], and economics [3], proving to be a valuable tool for analyzing complex sys-
tems. Recently, with the advancement of artificial intelligence, path-specific effect analysis
has been employed to provide explanations for decision-making mechanisms in models
and design algorithms that promote fair predictions [4–6].

As an illustration of the significance of the path-specific effect, consider the structural
causal model (SCM) in Figure 1, which describes a hiring process based on an applicant’s
gender, number of children, physical strength, and qualifications [7]. The effect of gender
(X) on the hiring decision (Y) can be decomposed into three different pathways starting from
X and ending in Y: the direct impact of gender (unfair) π1 : X → Y; the impact mediated
by the number of children π2 : X → C → Y (unfair, as it also discriminates against women
who have children); and the impact mediated by physical strength π3 : X → M → Y
(fair). It is essential to measure each path’s effect in the SCM to analyze the hiring process’
fairness. The importance of the path-specific effect is also demonstrated in other domains,
such as protein signaling networks, which provide insight into how signaling molecules
influence subsequent molecules in the cascade [2] and biological pathways of symptoms,
where it elucidates the impact of a disease on symptoms [8]. Identifying and differentiating
specific pathways can contribute to a deeper understanding of complex diseases and may
lead to new insights into disease mechanisms.
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Figure 1. The causal graph of job hiring for the physical demanding job. X: gender, C: the number of
children, M: physical strength, Q: qualification, Y: hiring probability.

However, using the classical definition of the path-specific effect [9] has limitations in
assessing the fairness of SCM. This is because it only provides an average effect estimate
at the population (type) level without considering individual-level impact (token). For
example, the impact of gender on hiring (X → Y) can be very small on average for the
population but it can be large for an individual.

To overcome this limitation, we present a novel definition of the causal counterfac-
tual path-specific importance score at the individual level. The proposed definition has
three major advantages. Firstly, it can quantify individual-level impact through a specific
pathway from the source vertex to the target vertex. Secondly, for paths with multiple
edges, the effect can be decomposed into individual edges and evaluated as the product
of the effects associated with the edges, making it cognitively intuitive for humans to
understand. Finally, the computation of the proposed definition is efficient compared to the
classical path-specific effect calculation, which is computationally demanding due to the
need to evaluate each path independently. In complex causal graphs where the number of
pathways grows exponentially with the number of edges, evaluating all pathways from the
source vertex to the target vertex can be expensive. Our proposed path-specific importance
score has desirable mathematical properties and can be efficiently computed through our
designed algorithm.

In summary, we defined a causal counterfactual path-specific importance score, which
quantifies the individual-level impact of a specific path from the source variable to the
target variable. We show that our metric has desirable mathematical properties, including
adherence to chain rules and consistency. Additionally, we present an algorithm that can
efficiently compute the scores of all paths from the source vertex to the target vertex and
identify the k-most significant paths in a causal graph with the highest scores.

The structure of this paper is as follows. Section 2 introduces preliminary knowledge
related to causality. Section 3 presents our definition of path-specific counterfactual im-
portance score. In Section 4, we establish the mathematical properties of the importance
score. In Section 5, we propose an efficient algorithm to identify the most important path.
Section 6 provides the evaluation of our method, while Section 7 presents related works in
the field. Section 8 offers a detailed discussion of our findings. We summarize our work in
Section 9. Lastly, the appendix provides proof of theorems and lemmas.

2. Preliminaries

We introduce the notation used to express concepts and variables. Capital letters, such
as X, are utilized to represent random variables, while small letters, such as x, are utilized
to denote the realizations of these variables. Bold letters, such as X, are used to denote
vectors of random variables. Calligraphic letters, such as X , are used to represent sets. For
a given natural number n, the [n] is defined as the set {1, 2, · · · , n}.

2.1. Causal Graph and Skeleton

Causal graphs are probabilistic graphical models specifically constructed to depict
data-generating processes [10]. In the graph, each vertex represents a variable. With a
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given variable set denoted as V = {Vi, i ∈ [n]}, a directed edge started from variable Vj
and ended with Vi implies that Vi reacts to modifications in Vj, with all other variables in
the causal graph maintaining respective constant values. Direct causes of Vi, or its parent
variables, are defined as those linked to Vi through directed edges, denoted by the set
Pai. The underlying structure of a causal graph, commonly referred to as its skeleton, is
determined by the graph’s overall topology.

2.2. Structural Causal Models (SCM)

The Structural Causal Model (SCM) introduces a framework in which the value of
each variable Vi can be determined as a function of both its parent variables and exogenous
variables within a causal graph. This formalization proceeds as follows: let V = {Vi, i ∈ [n]}
denote a set of endogenous (observed) variables, and let U = {Ui, i ∈ [n]} stand for a
set of exogenous (unobserved) variables. An SCM is then established through a series of
structural equations [10]:

Vi = fi(Pai, Ui),Pai ⊂ V , Ui ⊂ U , i ∈ [n], (1)

where function fi signifies the causal mechanism of Vi, thereby determining the value of Vi
contingent upon its parent variables and the respective exogenous variables.

2.3. Intervention and Do-Operation

The intervention of a variable on an SCM, denoted by the do(·) operator, refers to
assigning a constant value v to Vi, irrespective of its structural equation in the SCM.
do(Vi = v) means setting the value of Vi to a constant v regardless of its structural equation
in the SCM, i.e., ignoring the edges into the vertex Vi. This equates to disregarding the
edges leading into the vertex Vi in the causal graph. After intervention do(X = x), the
distribution of Y is denoted by P(YX=x = y), where the variable YX=x is the value of Y
after intervention do(X = x).

2.4. Path

Given a graph G, a path from vertex X to vertex Y in G is a finite sequence of edges
π that originates at X and terminates at Y, such that any two consecutive edges in π
are adjacent and all vertices are distinct. In particular, π can be a direct edge {XY} or a
sequence of edges {XV1, V1V2, · · · , Vm−1Y}.

2.5. Counterfactual Reasoning

Counterfactual reasoning enables the exploration of hypothetical “what if” scenar-
ios. Consider a set of the endogenous (observed) variable O in the causal graph and an
observation o referring to a realization of these variables, given X = x, the counterfactual
question is asking what the potential outcome is if X were assigned a different value, x′ [10].
The counterfactual outcome of Y is represented as YX=x′ |X = x,O = o. With a given
SCM, deterministic counterfactual reasoning can be accomplished through intervention as
follows:

1. Recover the exogenous variable value U as u, via the structural functions and the
values X = x, O = o;

2. Calculate the counterfactual outcome YX=x′ |U = u. Specifically, within the SCM,
assign the value of X to x′ and substitute all exogenous variable values U as u on the
right side of each structural function to obtain the value of Y.

The two steps are called deterministic counterfactual reasoning [11], because the value of
U can be solved uniquely from f when X and o are given. If the exogenous variable U in
step 1 has multiple solutions, then nondeterminism should be involved in causal models by
assigning a prior probability P(U = u). In the nondeterministic counterfactual reasoning [11],
step 1 is to update P(U) as P(U|X = x,O = o), and the counterfactual outcome in step 2 is
defined as the expectation over the posterior distribution of U.
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3. Causal Effect along Different Pathways

We consider an SCM that represents the causal relationships among a set of variables
V = {Vi, i ∈ [n]} that are given. All structural functions fi, i ∈ [n] are assumed to be
continuous, with bounded derivatives on their respective domains. Additionally, we
assume the corresponding causal graph G is a directed acyclic graph (DAG), as an example
depicted in Figure 1.

Our primary objective is to examine the influence of a source vertex X on a target
vertex Y, where X, Y ∈ V . The most prevalent definition of a causal effect is applied within
the medical field for binary cases, where the outcome variable Y depends on whether
a patient accepts the diagnosis D or not. In this context, the causal effect is defined
as the expected difference between these two scenarios within the population, denoted
by E[YD=1] − E[YD=0]. Building upon this concept, to evaluate the causal effect at an
individual level, allowing the algorithm to quantify the impact for a specific data point, we
introduce the total counterfactual importance score described in Definition 1. This method
incorporates counterfactual reasoning and a perturbation value δ in the denominator of
Equation (2).

Definition 1. (Total Counterfactual Importance Score) Given a factual observation o : {Vi =
vi|i = 1, . . . , n}, which is a realization of all endogenous variables, for ∀X, Y ∈ V , the counterfac-
tual importance score of X on Y when O = o is

wX→Y|o = lim
δ→0

E[YX=x+δ|o]−E[YX=x|o]
δ

, (2)

where X = x is the factual observation from o.

The numerator represents the difference between two counterfactual outcomes of Y in
the situations X is setup to X or x + δ when given the observation o. By incorporating the
denominator δ and the limit operation in Equation (2), this definition intuitively captures
how Y responds to the change on X given the current observation o. A larger value of effect
scores for a path indicates greater significance for that path.

Next, we will discuss how to perform an intervention on a variable along a path.
Furthermore, we introduce the concept of the path-specific counterfactual importance
score for a given path π, which starts from variable X and ends at variable Y. This score
quantifies the causal effect from the source variable to the target variable along a specific
path. A direct edge can be considered a special case of a path.

Definition 2. (Intervention on a variable along a path) For an SCM M, given a path (or an edge,
a subgraph) π, we can partition each vertex Vi ’s parents into two parts Pai = Pai(π) ∪ Pai(π̃),
where Pai(π) represents those members of Pai that are linked to Vi in π and Pai(π̃) represents
the complementary set. The operation of intervention of X = x on the path π is defined as: we
replace the structural equation fi as fi(Pai, u)π = fi(Pai(π)X=x, Pai(π̃), u), where Pai(π)X=x
represents it taking the value when X = x is enforced. The outcome of Y after the intervention of
X = x on the path π can be represented as YX=x(π), where x(π) represents value x in the path π.

Definition 3. (Path-Specific Counterfactual Importance Score) Given a factual observation o :
{Vi = vi|i = 1, . . . , n}, which is a realization of all endogenous variables, and a causal path π in
graph G, the path-specific counterfactual importance score of source vertex X on target vertex Y
along path π is defined as follows:

w
X

π−→Y|o
= lim

δ→0

E[YX=x+δ(π),X=x(π̃)|o]−E[YX=x|o]
δ

. (3)

Here, X = x is the factual observation. The term π̃ = ΠX→Y\π represents the set of all paths
from X to Y excluding path π, where ΠX→Y is the set of all paths from X to Y. When the path is
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a direct edge from X to Y, the notation w
X

π−→Y|o
can be simplified as wlXY |o. The first term in the

numerator represents the counterfactual outcome of Y when X is fixed at x + δ if X is part of path
π; otherwise, it remains fixed at x.

The numerator captures the effect of X on Y through the given π. Definition 3 can
quantify how Y responds to the change on X only through a path π given the current
observation o. In our model, the direct effect is defined as the effect propagated only
through the edge directly connecting the source and target, which can be regarded as a
special case of path-specific effect.

Intuitively, Definition 3 uses the intervention operation on a path and only considers
the effect of the changing of X on Y propagating from the given path π. We will keep X
as its original value for other edges in the graph. Intuitively, if the change caused by the
intervention is larger, the causal strength of X to Y on these paths is larger. The operation of
intervention on a path isolates the impact on Y by X on the given path. The normalization
and limitation operation on the intervention value provides some “independence” among
edges of the causal effect in a path. These exhibit desirable properties.

The numerator is similar to the definition of the counterfactual path-specific effect
in [5]. However, they focus on the discrete case. Although [5] can be directly extended
to the individual level, it does not have the math properties we propose in the next
section. Our definition adds the normalization of the intervention value in the denominator
and focuses on the strength of the local effect by limitation operation. Intuitively, these
modifications provide some “independence” of the causal effect in the graph. So, our
method has more straightforward decomposition and fast calculation properties (discussed
in the next section), which are important for explaining and evaluating the causal effect
along each path.

The limit format of the perturbation value δ has a similar format to that of the incre-
mental causal effect and the marginal treatment effect [12–14]. Ours are defined on the
counterfactual reasoning and the path-specific effect. However, they focus on the total or
direct effect.

4. Properties of Path-Specific Counterfactual Importance Score

As previously stated in the introduction, the traditional definition of the path-specific
effect encounters difficulties in decomposing its effect to individual edges and computing
it efficiently. This section delves into the mathematical properties of our path-specific
counterfactual importance score, which addresses these limitations.

In detail, we discuss the connection between our definition and the partial derivative
involved in the calculation, as well as the consistency between the total importance score
and path-specific score. First, we introduce an assumption and a lemma pertinent to the
direct effect, which refers to an edge that directly connects the source and target vertex
within the graph.

Lemma 1. For an SCM M, given an edge from X to Y, and the structural causal equation of
Y: Y = fY(X, Zyx, Uy), where Zyx represents all parents of Y excluding X. Given a factual
observation o, the counterfactual importance score of X on Y along the path/link π = lXY = {XY}
is the partial derivative of Y with respect to X at the point of the observation. Formally,

wlXY |o = EUy |o

[
∂Y
∂X

∣∣∣∣
o

]
= EUy |o

[
∂Y
∂X

∣∣∣∣
X=x,Zyx=zyx ,Uy=uy

]

=
∫

∂Y
∂X

∣∣∣∣
X=x,Zyx=zyx ,Uy=uy

P(uy|o)duy. (4)
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Lemma 1 does not require the exogenous variables U to be deterministically recovered
(having a unique solution when f , X, o are given). The derivation is based on nondetermin-
istic counterfactual reasoning. It shows that the value of the path-specific counterfactual
importance score in an edge case is the partial derivative of Y concerning X in the coun-
terfactual reasoning data point weighted by the posterior probability of U . Additionally,
if exogenous variables U can be perfectly recovered as u, given a factual observation
o : {Vj = vj|j = 1, . . . , n}, then Equation (4) in Lemma 1 can be simplified as Equation (5).
The detailed proof of Lemma 1 can be found in Appendix A.

wlXY |o =
∂Y
∂X

∣∣∣∣
o
. (5)

We introduce the following assumption about exogenous variables U .

Assumption 1. (Independent exogenous variables assumption) All exogenous variables U are
independent.

Based on Lemma 1, when Assumption 1 holds true, we can derive the following
theorem for a general path in the causal graph, which shows that the calculation of the
importance score for each edge in the graph is independent and the importance score for
a path is the multiplication of the importance score for each edge inside the path. Our
path-specific score can be directly decomposed to individual edges. This is helpful for
understanding the effect of these edges on the outcome and designing effective algorithms
for calculating the importance score in the graph. The detailed proof of Theorem 1 is in
Appendix A.

Theorem 1. (Chain rule: path-specific counterfactual importance score and partial derivative).
For an SCM M, when Assumption 1 holds true, given a path π = {XV1, V1V2, · · ·Vm−2Vm−1,
Vm−1Y} with length m and a factual observation o, the path-specific counterfactual importance
score of the source vertex X on target vertex Y along the path π can be represented as:

w
X

π−→Y|o
= wlXV1 |o

(
m−2

∏
i=1

wlViVi+1
|o

)
wlVm−1 Y|o

= EU1|o

[
∂V1

∂X

∣∣∣∣
o

](m−2

∏
i=1

EUi+1|o

[
∂Vi+1

∂Vi

∣∣∣∣
o

])

EUY |o

[
∂Y

∂VY

∣∣∣∣
o

]
.

We also show the consistency of our definition in Theorem 2. The sum of counter-
factual path-specific scores among all paths from source to target is the same as the total
counterfactual importance score from source to target. It provides the connection between
Definitions 1 and 3. This makes the addition and comparison among different paths’ scores
more meaningful. The detailed proof is in Appendix A.

Theorem 2. (Consistency) Given an SCM M and a factual observation o, when Assumption 1
holds true, the total counterfactual importance score of X on Y equals the summation of path-specific
counterfactual importance score among all the possible paths from X to Y:

wX→Y|o = ∑
π∈ΠX→Y

w
X

π−→Y|o
.

5. Efficient Algorithm for the Most Important Path

In reality, given an SCM, people are more interested in finding the most important
path that has the largest impact. We define the most important paths from the source to the
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target as the path with the largest absolute value of the Importance score. We introduce
Algorithm 1 to find the most important path effectively. We note that this algorithm can be
easily extended to the k-most important path, by using a priority queue.

Algorithm 1 Fast calculation for the most important path.

1: Inputs: Graph G(V, E), source vertex X, target vertex Y
2: Outputs: Path P
3: Calculate the path-specific importance score for each edge in the graph: w1, w2, · · · , wn,

where n = |E|
4: Transfer the importance score to log scale, log(|w1|), log(|w2|), · · · , log(|wn|)
5: Define a graph G′ that maintains same skeleton as graph G, with edge weight

log(|w1|), log(|w2|), · · · , log(|wn|)
6: Path P = LongestPathDAG(G′, X, Y)
7: return P

Based on Theorem 1, the calculation for the importance score for each edge is inde-
pendent. So, we can evaluate each edge’s score first and then calculate the path’s score.
Then, we notice that finding the most important path in the original causal graph can be
reduced into finding the longest path in a DAG with different edge weights. In detail,
based on Theorem 1, the importance score for a path is the multiplication of the importance
score for each edge inside the path. We denote the importance score of all edges in a graph
as w1, · · · , wn, where n is the number of edges. Because of the monotonicity of the log
function, ∏n

i=1 |wi| achieves the largest value as the log(∏n
i=1 |wi|). Then, we can transfer it

from the multiplication to the summation as follows:

log(
n

∏
i=1
|wi|) =

n

∑
i=1

log(|wi|).

Next, we define a new graph G′ with the same skeleton as the original graph G, but
the length for edge i is log(|wi|), rather than wi, i ∈ [n]. For each path in G′ with a length
of ∑n

i=1 log(|wi|), there exists a corresponding path in G with an absolute importance score
of ∏n

i=1 |wi|. Given the monotonicity of logarithms, the most important path in the original
graph G corresponds to the longest path in the transformed graph G′. Finally, Algorithm 1
calls a subroutine Algorithm 2 to calculate the longest path in a DAG [15]. Because of the
acyclic property, Algorithm 2 can find the longest path in polynomial time by topological
sort and dynamic programming.

Algorithm 2 Longest path in DAG.

1: Inputs:Weighted DAG graph G(V, E), source vertex X, target vertex Y
2: Outputs: Path P
3: Linearized order V = Topologically sort G
4: for each vertex v ∈ V in linearized order from X to Y do
5: dist(v) = maxu,v∈E(dist(u) + w(u, v))
6: vprevious = argmaxu,v∈E(dist(u) + w(u, v))
7: end for
8: Recursively find the path using vprevious starting from X to Y
9: return P

Our methodology retains its applicability even when |wi| is less than 1. If |wi| is
found within the range of 0 to 1, then the associated edge length log(|wi|) in the graph
G′ is a negative value. As we presuppose the causal graph to be acyclic, issues related to
negative cycles are avoided and the validity of our longest path computation is preserved.
Intuitively, when |wi| lies between 0 and 1, in the original graph G, the expansion of a path
by an edge results in a decrease in the path’s importance score. Correspondingly, in the
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graph G′, a negative path log(|wi|) contributes to a decrease in path length. Consequently,
the consistent correlation between these observations validates our approach.

The time complexity of Algorithm 1 is in the linear scale of number of edges and
vertices, O(|E|+ |V|) [16]. Compared with the case using the classical definition, where
the calculations for each path are independent, and the number of paths is exponential
to the edge, our algorithm significantly improves finding the most important path in the
causal graph.

Because of the math property that the edge’s scores are independent, we can easily
formulate our definition of the path-specific score into the existing algorithm that is based
on a graph theorem to design an efficient algorithm. For example, we can use the algorithm
in [17] to find the paths with the top k largest importance score in a causal graph.

6. Evaluation

We demonstrate the performance of our method for path-specific analysis using two
datasets, one synthetic and the other real.

6.1. Job Hiring Problem

We assume the following SCM for the physically demanding job hiring process dis-
cussed in the introduction (illustrated in Figure 1):

X = Ux, Ux ∼ Bernoulli(0.6)

Q = UQ, UQ ∼ N (2, 52)

C = X + 0.5QUc, Uc ∼ TrN (2, 12, 0.1, 3.0)

M = 3X + 0.4QUM, UM ∼ TrN (3, 22, 0.1, 3.0)

Y = h(X, Q, C, M) = ζ(−10 + 5X + C + Q + M),

where Bernoulli, N , and TrN represent the Bernoulli, Gaussian, and truncated Gaussian
distributions, respectively, and ζ(k) = 1/(1 + exp(−k)) denotes the standard sigmoid
function. A similar data generation process was employed in [7].

The simulation results are presented in Figure 2. The first three figures display
population-level results. Specifically, they illustrate the distribution of importance scores
for three distinct paths, originating from gender and ending in hiring, which quantify the
impact of X on Y. For the majority of individuals (over 80%), the effect of these three paths
is small, indicating that the model appears fair on average. This result aligns with the
classical definition at the population level.

In the final subfigure, we examine a specific individual and assess the impact of all
paths related to hiring decisions of Figure 1 for this particular individual. We observe that
the hiring process is unfair for this individual, as the impact of the unfair paths X → Y and
X → C → Y possess importance scores comparable to other paths. This example highlights
how our approach can be utilized to quantify the influence of paths for individuals.
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(a) (b)

(c) (d)

Figure 2. The causal counterfactual path-specific importance score in job hiring problem. (a) Path X-Y
(Gender-Hiring). (b) Path X-M-Y (Gender-Physical strength-Hiring). (c) Path X-C-Y (Gender-Num of
children-Hiring). (d) Important score for an individual.

To further investigate the variations in importance scores for paths within the pop-
ulation and at the individual level, we introduce a weight coefficient, wc, corresponding
to the ‘number of children’ feature, into the equation for Y. An increase in the value of wc
signifies an amplified impact of feature C on Y.

Y = h(X, Q, C, M) = ζ(−10 + 5X + wcC + Q + M).

Our analysis results are depicted in Figure 3. The first figure presents the distribution
of importance scores for path X− C−Y. The second figure relates to the individual-level
importance scores. We note that, as the value of wc increases, the importance score for
path X− C−Y increases correspondingly, while the scores for other paths remain almost
unchanged. This indicates an increased level of unfairness associated with this specific
path, in line with the changes in wc.
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(a) (b)

Figure 3. The causal counterfactual path-specific importance score in the job hiring problem with
different values of wC. (a) The distribution of importance score for path X-C-Y with different values
of wc. (b) Importance score for an individual with different values of wc.

6.2. Smoking Impact Problem

We also evaluated our method using a real dataset—the Framingham Heart Study
dataset [18]. The original Framingham cohort dataset comprises two years of examination
data for 5209 participants aged between 30 and 62 years. Our objective was to investigate
the causal mechanisms of smoking behavior on systolic blood pressure (SBP) mediated by
cholesterol levels and body weight (depicted in Figure 4). Our SCM was formulated as a
linear regression model with some covariant terms, as recommended by [19].

Figure 4. The causal graph of smoking effect on blood pressure. S: smoking behavior, C: cholesterol
level, B: body weight, Y: systolic blood pressure (SBP).

Figure 5 presents the average effect of the paths that begin with smoking and end with
SBP at the population level by using our method. Our method reveals that the direct impact
of smoking on blood pressure, denoted as (S → Y), has the highest average importance
score in comparison with the other three paths. Consequently, the direct path’s influence is
the most dominant factor relative to other paths. Notably, the ranking for the paths sorted
by their importance based on our method is consistent with the conclusion drawn in [19].
We believe the difference in the magnitude of the results is due to the different perturbation
values used by the two methods.

The first four subfigures of Figure 6 display the distribution of importance scores along
the paths that begin with smoking and end with SBP at the population level. Additionally,
the last two subfigures show the individual-level importance of these paths for two specific
individuals. Interestingly, we find that, for person A, both the direct path from smoking
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to blood pressure (S → Y) and the path of smoking affecting blood pressure through
body weight (S → B → Y) are significant. However, for person B, the direct impact of
smoking on blood pressure (S→ Y) is the dominant factor. This type of individual-level
path analysis provided by our method can help an individual know each path’s influence
for the particular individual.

Figure 5. Average effect for each path at the population level compared with Lin et al. [19].

(a) (b) (c)

(d) (e) (f)

Figure 6. The causal counterfactual path-specific importance score in smoking impact problem.
(a) Importance score for path S-Y (population level). (b) Importance score for path S-B-Y (population
level). (c) Importance score for path S-C-Y (population level). (d) Importance score for path S-C-B-Y
(population level). (e) Importance score for individual (person A). (f) Importance score for individual
(person B).
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7. Related Works

The study of path-specific analysis has garnered significant interest within the aca-
demic community. A majority of the existing research has centered around non-parametric
settings, identifiability, or informational decomposition of SCMs [20–22]. These approaches
diverge from our work, which is grounded in a known SCM model. Our method enables
the quantification of individual-level path-specific effects and the development of efficient
algorithms to identify the most crucial paths.

Several related studies have proposed causal effect definitions such as incremental
causal effects and marginal treatment effects [12–14]. These definitions employ a similar
constraint format for the perturbation value δ. However, while their focus lies on total
effects and population-level analysis, our work concentrates on path-specific effects and
offers individual-level quantification.

We elucidate the relationship between our work and existing literature concern-
ing population-level causal effects. In particular, the studies by Janzing et al. [23] and
Wang et al. [24] both define and measure causal strength (effect) using Shapley values.
Janzing et al. [25] assess causal influence based on the distributional change resulting
from removing a “causal arrow”. Furthermore, Janzing’s concept of intrinsic causal contri-
bution [23] allows for the separation of intrinsic information added by each vertex from
the information obtained from its ancestors. Wang et al. [24] allocate credit to edges and
provide an interpretation of the entire causal graph. In contrast, our method builds upon
the classical definition of average treatment effect, which is grounded in intervention op-
erations, and extends this definition to continuous and individual cases. Our approach
boasts advantages such as the clear decomposition of causal effects along paths and rapid
calculations for identifying the most important paths. This transparent decomposition
proves critical for interpreting the entirety of the SCM.

8. Discussions
8.1. Motivation for Path-Specific Effects

In certain applications, the analysis of path effects yields vital information that is not
captured by total effects. Notable examples include the fairness analysis of a model as
discussed in the introduction, protein signaling networks (which examine the influence of
signaling molecules on subsequent molecules within the cascade) [2], and the biological
pathway of symptoms (exploring the impact of a disease on its symptoms) [8]. Identifying
and distinguishing specific pathways can enhance our understanding of complex diseases
and potentially offer novel insights into disease mechanisms.

8.2. Linear Case

Based on our definition, when all structural equations are linear, the individual-level
effect is equivalent to the population-level effect, as the difference between the counterfac-
tual after perturbation and the original is independent of U . Consequently, for each edge,
the path-specific score is the partial derivative of the structural function, which corresponds
to the coefficient of the linear function. Simultaneously, using Theorem 1, the path-specific
score for a given path is determined by the product of each variable’s coefficient within its
respective linear model along that path.

8.3. Assumptions

We do not make the assumption that U is perfectly recovered, which is only necessary
for deterministic counterfactual reasoning and facilitates the calculation of the expecta-
tion over U . The only requirement is the independence of U (Assumption 1). Without
perfectly recovered U , our definitions and theorems remain valid, and our method can still
be employed based on nondeterministic counterfactual reasoning, as evidenced by our
experiments.
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8.4. Single-Point Derivatives and Potential for Severe Errors

Our objective was to quantify the local effect at a specific point; hence, we used a
method that concentrates on a single point to preserve generality. We recognized that the
product of effects along a causal path may lead to error propagation and amplification,
a common issue when estimating a path’s strength. This arises because the target vertex
can be represented as a multi-layer composition function of the source vertex through the
causal graph structure. We intend to explore this challenge in future work.

9. Conclusions

In this study, we presented a novel metric for path-specific effect analysis, termed the
causal counterfactual path-specific importance score. This score quantifies path-specific
effects at the individual level. We demonstrated that our metric exhibits desirable mathe-
matical properties, such as compliance with chain rules and preservation of consistency.
These properties facilitate the decomposition of the path-specific score into each edge
within the path, enabling the development of an efficient algorithm to identify the most
critical path in a causal graph in linear time with respect to the number of edges. Our
simulations indicate that our innovative definition concurs with the classical definition at
the population (type) level while also delineating path-specific effects at the individual
(token) level.
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Appendix A. Proof of Theorems and Lemmas

We first introduce Lemma A1, which pertains to the properties based on our assump-
tion of the structural function. Lemma A1 demonstrates that if f is continuously differ-
entiable and possesses a bounded derivative of Y with respect to X, then the expectation
operation (integration) and limit (derivative) on f are exchangeable.

Lemma A1. Let U ∈ U be a random variable. Suppose that f (x, U) is continuously differentiable
with respect to x for all U ∈ U and integrable on U for all x ∈ R. If the partial derivative
| ∂

∂x f (x, U)| is bounded by a constant B for all x ∈ R, U ∈ U,∣∣∣∣ ∂

∂x
f (x, U)

∣∣∣∣ ≤ B,

then

∂

∂x
E
[

f (x, U)
]
=

∂

∂x

∫
U

f (x, U)dF(U)

=
∫

U

∂

∂x
f (x, U)dF(U)

= E
[

∂

∂x
f (x, U)

]
,
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where F is the cumulative distribution function of U.

Proof. From the mean value theorem, there exists x′ ∈ (x, x+ δ) such that f (x+δ,U)− f (x,U)
δ =

∂
∂x f (x′, U). Then

∂

∂x
E
[

f (x, U)
]
=

∂

∂x

∫
U

f (x, U)dF(U)

= lim
δ→0

∫
U

f (x + δ, U)− f (x, U)

δ
dF(U)

= lim
δ→0

∫
U

∂

∂x
f (x′, U)dF(U).

Since | ∂
∂x f (x′, U)| ≤ B for all x′ ∈ (x, x + δ), from dominated convergence theorem

[26], we have

∂

∂x
E
[

f (x, U)
]
= lim

δ→0

∫
U

∂

∂x
f (x′, U)dF(U)

=
∫

U
lim
δ→0

∂

∂x
f (x′, U)dF(U)

=
∫

U

∂

∂x
f (x, U)dF(U)

= E
[

∂

∂x
f (x, U)

]
.

Appendix A.1. Proof of Lemma 1

According to our assumption about f and U, we can have following results by using
Lemma A1 in Definition 3.

Proof.

wlXY |o = lim
δ→0

E[YX=x+δ(π),X=x(ΠX→Y\π)|o]−E[YX=x|o]
δ

= lim
δ→0

E[ fY(x + δ, zyx, Uy)|o− fY(x, zyx, Uy)|o]
δ

= lim
δ→0

∫
( fY(x + δ, zyx, uy)− fY(x, zyx, uy)

)
P(uy|o)duy

δ

=
∫

lim
δ→0

fY(x + δ, zyx, uy)− fY(x, zyx, uy)

δ
P(uy|o)duy

=
∫

∂Y
∂X

∣∣∣∣
X=x,Zyx=zyx ,Uy=uy

P(uy|o)duy

= EUy |o

[
∂Y
∂X

∣∣∣∣
X=x,Zyx=zyx ,Uy=uy

]

Appendix A.2. Proof of Theorem 1

Proof. We first show Theorem 1 holds for the path with two edges. Consider a path
π′ = {XV1, V1V2}, we can show that the impact score of a path can be decomposed to the
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score of the edge inside the page. The calculation of each edge’s score is independent. From
the assumption of f1, f2 and U1, U2,

w
X

π′−→V2|o
= lim

δ→0

E[V2X=x+δ(π),X=x(ΠX→V2\π)|o]−E[YX=x|o]
δ

= lim
δ→0

(E[ fV2( fV1(x + δ, zv1x, U1), zv2v1 , U2)|o

− fV2( fV1(x, zv1x, U1), zv2v1 , U2)|o])/δ

= lim
δ→0

EU1,U2|o[( fV2( fV1(x + δ, zv1x, U1), zv2v1 , U2)

− fV2( fV1(x, zv1x, U1), zv2v1 , U2))/δ|o]

= EU1,U2|o

[
lim
δ→0

( fV2( fV1(x + δ, zv1x, U1), zv2v1 , U2)

− fV2( fV1(x, zv1x, U1), zv2v1 , U2))/δ|o
]
.

(A1)

Next we prove the chain rule g′(h(x)) = g′(h(x))h′(x) for continuously differentiable
function g and h. Define

g̃(y) =


g(y)− g(h(x))

y− h(x)
, y 6= h(x),

g′(h(x)), y = h(x),

which is continuous around x due to the differentiability of g. It’s easy to verify that ∀δ 6= 0,

g(h(x + δ))− g(h(x))
δ

= g̃(h(x + δ))
h(x + δ)− h(x)

δ
.

Since g̃ is continuous and h is continuously differentiable, limδ→0 g̃(h(x + δ)) and
limδ→0

h(x+δ)−h(x)
δ exist, which implies that limδ→0

g(h(x+δ))−g(h(x))
δ exists and

lim
δ→0

g(h(x + δ))− g(h(x))
δ

= g′(h(x))h′(x).

Applying chain rule into (A1),

w
X

π′−→V2|o
= EU1,U2|o

[
lim
δ→0

( fV2( fV1(x + δ, zv1x, U1), zv2v1 , U2)

− fV2( fV1(x, zv1x, U1), zv2v1 , U2))/δ|o
]
. (Step 1)

= EU1,U2|o

[
∂V2

∂V1
|V1=v1,Zv2v1=zv2v1 ,U2=u2

× ∂V1

∂X
|X=x,Zv1x=zv1x ,U1=u1

]
(Step 2)

= EU2|o

[
∂V2

∂V1
|V1=v1,Zv2v1=zv2v1 ,U2=u2

]
×EU1|o

[
∂V1

∂X
|X=x,Zv1x=zv1x ,U1=u1

]
(Step 3)

= wlXV1 |o
wlV2V1 |o

(Step 4).

The transition from step 2 to step 3 is valid because the first term in step 2 is indepen-
dent of U1 and the second term in step 2 is independent of U2. Therefore, their expectations
can be decomposed and calculated independently, which is shown in step 3.

Then, given a path contains multiple edges π = {XV1, V1V2, · · ·Vm−2Vm−1, Vm−1Y},
because the impact score for each edge is independent, we can show that the calculation
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of path-specific counterfactual importance score can be written as the format similar to
the chain rule in calculus. The path-specific counterfactual importance score of the source
vertex X on target vertex Y along the path π can be represented as:

w
X

π−→Y|o
= EU1|o

[
∂V1

∂X

∣∣∣∣
o

](m−2

∏
i=1

EUi+1|o

[
∂Vi+1

∂Vi

∣∣∣∣
o

])

EUY |o

[
∂Y

∂VY

∣∣∣∣
o

]
= wlXV1 |o

(
m−2

∏
i=1

wlViVi+1
|o

)
wlVm−1 Y|o

Appendix A.3. Proof of Theorem 2

Proof. We denote the set of all paths from X to Y as ΠX→Y = {π = (XVπ,1, Vπ,1Vπ,2, . . . ,
Vπ,mπ−1Y) | X ∈ Pa(Vπ,1), Vπ,mπ−1 ∈ Pa(Y), Vπ,i ∈ Pa(Vπ,i+1), ∀i = 1, . . . , mπ − 2}, where
mπ is the number of vertex in path π. We use m to denote the number of vertex in the
largest path in the DAG (which means that if we start from Y going backward along its
parents, we will reach the root at most m steps). Then from the definition of the total
derivative, we have

wX→Y|o = lim
δ→0

E[YX=x+δ|o]−E[YX=x|o]
δ

=
∂Y
∂X

∣∣∣∣
X=x

= ∑
Vm−1∈Pa(Y)\{X}

∑
Vm−2∈Pa(Vm−1)\{X}

· · · ∑
V1∈Pa(V2)\{X}

EU|o

[
∂Y

∂Vm−1

∣∣∣∣
o

(
m−2

∏
i=1

∂Vi+1

∂Vi

∣∣∣∣
o

)
∂V1

∂X

∣∣∣∣
o

]

= ∑
π∈ΠX→Y

EUY |o

[
∂Y

∂Vπ,mπ−1

∣∣∣∣
o

]
(

mπ−2

∏
i=1

EUi+1|o

[
∂Vπ,i+1

∂Vπ,i

∣∣∣∣
o

])
EU1|o

[
∂Vπ,1

∂X

∣∣∣∣
o

]
= ∑

π∈ΠX→Y

w
X

π−→Y|o

The step of combining a sequence of summation operations to one summation over π ∈
ΠX→Y holds, because the change of X will not affect the value of Vm−1 if there is not exist a
path (XVm−1, Vm−2Vm−1, . . . , V1Y).
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