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Abstract: With the proliferation of the Internet of Things devices and cyber-physical systems, there
is a growing demand for highly functional and high-quality software. To address this demand, it
is crucial to employ effective software verification methods. The proposed method is based on the
use of physical quantities defined by the International System of Units, which have specific physical
dimensions. Additionally, a transformation of the physical value orientation introduced by Siano
is utilized. To evaluate the effectiveness of this method, specialized software defect models have
been developed. These models are based on the statistical characteristics of the open-source C/C++
code used in drone applications. The advantages of the proposed method include early detection
of software defects during compile-time, reduced testing duration, cost savings by identifying a
significant portion of latent defects, improved software quality by enhancing reliability, robustness,
and performance, as well as complementing existing verification techniques by focusing on latent
defects based on software characteristics. By implementing this method, significant reductions in
testing time and improvements in both reliability and software quality can be achieved. The method
aims to detect 90% of incorrect uses of software variables and over 50% of incorrect uses of operations
at both compile-time and run-time.

Keywords: cyber-physical systems; internet of things; software defect model; software quality;
physical dimension; physical orientation; formal verification

1. Introduction

The Internet of Things (IoT) is a contemporary paradigm that comprises a wide range
of heterogeneous inter-connected devices capable of transmitting and receiving messages
in various formats through different protocols to achieve diverse goals, as noted by Bai Lan
et al. [1]. Presently, the IoT ecosystem encompasses over 20 billion devices, each with a
unique identifier that can seamlessly interact via existing Internet infrastructure, as noted
in [2]. These devices have diverse areas of application, ranging from inside the human
body to deep within the oceans and underground. The IoT refers to a network of physical
devices, vehicles, buildings, and other items that are embedded with sensors, software, and
other technologies to enable them to collect and exchange data. The main focus of the IoT
is on enabling communication between these devices to enable automation and control.

CPS (cyber-physical systems) are similar to the IoT; however, CPS specifically refer
to a system of physical, computational, and communication components that are tightly
integrated to monitor and control physical processes. CPS typically involve a closed-loop
feedback control system that involves sensors, actuators, and computational elements to
continuously monitor and adjust physical processes in real-time.

CPS integrate physical components with software components, as noted by Buffoni
et al. [3]. According to references [4,5], CPS are able to operate on different spatial and
temporal scales.

Control systems coupled to physical systems are a common example of CPS, with
applications in various domains such as smart grids, autonomous automobile systems,
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medical monitoring, industrial control systems, robotics systems, and automatic pilot
avionics. CPS are becoming data-rich, enabling new and higher degrees of automation and
autonomy.

New, smart CPS drive innovation and competition in a range of application domains,
including agriculture, aeronautics, building design, civil infrastructure, energy, environ-
mental quality, healthcare, personalized medicine, manufacturing, and transportation.

Despite some similarities, the primary distinction between the IoT and CPS is their
focus. CPS are mainly focused on controlling physical processes, while the IoT is primarily
focused on communication and data exchange between physical devices. CPS are typically
used in industrial and manufacturing settings, where they facilitate real-time control of
physical processes. On the other hand, the IoT has a broader range of applications, including
home automation, healthcare, transportation, and other domains, where it enables seamless
communication and integration of smart devices.

With the ever-increasing number of IoT and CPS devices, the need for more functional
and high-quality software has become even more pressing. According to industry estimates,
the global IoT market reached $100 billion in 2017, and this figure is projected to soar to
$1.6 trillion by 2025, as noted in [6]. In 2022, enterprise spending on the IoT experienced a
significant increase of 21.5%, reaching a total of $201 billion. Back in 2019, IoT analytics
had initially projected a spending growth of 24% for the year 2023. However, their growth
outlook for 2023 has been revised to 18.5% according to [7], as shown in Figure 1.
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A model-based approach to CPS development is based on describing both the physical
and software parts through models, allowing the whole system to be simulated before it is
deployed.

There are several programming languages used in IoT and CPS development, includ-
ing C/C++, Python, Java, JavaScript, and others. Among these, C/C++ is considered to be
the most popular language for IoT development, with a popularity rate of 56.9%, according
to recent research [8]. As of June 2023, GitHub has reported a total of over 53,285 IoT public
repositories, with approximately 28,536 of them being C/C++ repositories, accounting for
approximately 53.6% of the total number of IoT public repositories. Additionally, GitHub
has reported over 22,776 CPS public repositories, out of which around 8892 are C/C++
repositories, making up approximately 39% of the total number of CPS public repositories.
This is due to the fact that IoT devices typically have limited computing resources, and
C/C++ is capable of working directly with the RAM while requiring minimal processing
power.
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CPS languages provide a unified approach to describing both the physical components
and control software, making it possible to integrate modeling and simulation. Open
standards such as FMI (Functional Mock-up Interface) and SSP (System Structure and
Parameterization) facilitate this integration by defining a model format that utilizes the C
language for behavior and XML for the interface. These standards, as specified in [9,10],
enable the representation of pre-compiled models that can be exchanged between tools and
combined for co-simulation.

According to the specifications outlined in [11], Modelica has been employed for the
automatic generation of deployable embedded control software in C code from models. This
utilization enhances the utility of Modelica as a comprehensive solution for the modeling,
simulation, and deployment of CPS components.

The selection of a programming language for IoT and CPS development is highly
dependent on the specific requirements of the project as well as the developer’s proficiency.
According to [12], utilizing C++ in embedded systems can be an effective solution, even
considering the limited computing resources of microcontrollers used in small embedded
applications compared to standard PCs. The clock frequency of microcontrollers may be
much lower, and the amount of available RAM memory may be significantly less than that
of a PC. Additionally, the smallest devices may not even have an operating system. To
achieve the best performance, it is essential to choose a programming language that can be
cross-compiled on a PC and then transferred as machine code to the device, avoiding any
language that requires compilation or interpretation on the device itself, as this can lead to
significant resource wastage.

For these reasons, C or C++ is often the preferred language for embedded systems, with
critical device drivers requiring assembly language. If you follow the proper guidelines,
using C++ can consume only slightly more resources than C, so it can be chosen based on
the desired program structure. Overall, choosing the appropriate language for embedded
systems can make a significant impact on performance and resource utilization.

The increasing number of IoT and CPS devices has resulted in a growing need for
software that is both highly functional and of the utmost quality. As these devices become
more ubiquitous and seamlessly integrated into our daily lives, the demand for dependable
and efficient software becomes more critical than ever before. As a result, developers are
constantly striving to enhance their software development methodologies and technologies
to meet the ever-evolving demands of the IoT and CPS landscape.

However, given the increasing importance of the IoT and CPS as emerging technolo-
gies, it is expected that there will be more literature available on the topic of IoT and CPS
software verification and quality assurance.

The typical software development life cycle (SDLC) involves several steps, including
requirement analysis, design, implementation, testing and verification, and deployment
and maintenance. While testing can increase our confidence in the program’s correctness,
it cannot prove it definitively. To establish correctness, we require a precise mathemat-
ical specification of the program’s intended behavior and mathematical proof that the
implementation meets the specification.

IoT verification encompasses a range of testing methodologies. These include con-
formance testing, as highlighted by Xie et al. [13], randomness testing, as discussed by
Parisot et al. [14], statistical verification, as explored by Bae et al. [15], formal verification, as
studied by Silva et al. [16], and the method known as model-based testing, as outlined by
Ahmad [17]. In the specific context of the IoT, the model-checking technique, as emphasized
by Clarke et al. [18], has notable representatives closely associated with it.

However, such software verification is difficult and time-consuming and is not usually
considered cost-effective. In addition, modern verification methods would not replace
testing in SDLC because most programs are not correct initially and need debugging
before verification. The primary principle of verification involves adding specifications and
invariants to the program and checking the verification conditions by proving generated
lemmas based on the requirement specifications, as noted by Back [19].
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However, most existing verification tools cannot detect software errors arising from
incorrect usage of dimensions or units, which are commonly referred to as dimensionality
errors or unit errors. These errors occur when software code or algorithms manipulate
data with incompatible dimensions or units, resulting in incorrect calculations, unexpected
behavior, or system failures. Such errors can have significant consequences across various
domains, including engineering, finance, and scientific research:

1. Inconsistent unit conversions
2. Mixing incompatible units
3. Incorrect scaling or normalization
4. Mathematical operations on incompatible dimensions
5. Inaccurate assumptions about input units

By being aware of these potential pitfalls and implementing proper checks, validation,
and unit-aware programming techniques, developers can mitigate dimensionality or unit
errors, ensuring accurate and reliable software functioning.

The failure of the Mars Climate Orbiter during its mission to study Mars’ climate
serves as a stark reminder of the consequences of navigational errors [20,21]. The spacecraft
was intended to enter orbit around Mars in September 1999 but tragically entered the
planet’s atmosphere too low and disintegrated. This catastrophic error occurred due to a
mismatch in the use of metric and imperial units, leading to incorrect calculations. Lockheed
Martin, the contractor responsible for the spacecraft’s navigation, used imperial units while
NASA’s software expected metric units. The failure resulted in a loss of $193.1 million and
valuable scientific data. Lessons learned from this incident have since led to improved
communication and unit conversion protocols in future space missions.

NASA’s conversion concerns are particularly relevant to the constellation project,
which places significant emphasis on manned spaceflight [22]. Launched in 2005, the
project ambitiously aims to facilitate future moon landings. However, an obstacle arises
as the project’s specifications and blueprints are exclusively in British imperial units. The
conversion of this extensive body of work into metric units poses a considerable estimated
expenditure of approximately $370 million.

In 2003, Tokyo Disneyland’s Space Mountain roller coaster experienced a disruptive
event when it came to a halt due to a broken axle that failed to meet design requirements [23].
The axle’s excessive gap, which exceeded 1 mm instead of the required 0.2 mm, led to
fractures caused by vibrations and stress. Fortunately, no injuries occurred despite the
derailment. The accident resulted from discrepancies in unit systems. In 1995, the coaster’s
axle specifications switched to metric units, but in August 2002, an order mistakenly
reverted to British imperial units, leading to 44.14 mm axles instead of the required 45 mm
ones.

In 1983, an Air Canada Boeing 767 experienced fuel depletion during a Montreal to
Edmonton flight [24]. Low fuel pressure warnings at 41,000 feet led to engine failures.
However, the skilled captain and first officer managed to land the plane safely at an unused
air force base nearby, with only a few minor passenger injuries. The incident was caused
by a malfunctioning fuel indication system and an incorrect density ratio of 1.77 pounds
per liter instead of the correct 0.80 kg per liter. These factors led maintenance workers to
manually calculate and pump less than half the required amount of fuel, contributing to
the incident.

Adding to the list of errors, in the early 1990s during the creation of the “Mir” space
orbital station, another incident occurred due to incorrect usage of units of measurement.
When experts from the Moscow Design Bureau sent data in kilogram-force to Khartron
in Kharkiv, Ukraine (where one of the authors of this article worked), it was mistakenly
interpreted as newtons. Consequently, the control system of the module, weighing approxi-
mately 20 tons, had to be reprogrammed during the flight, leading to a two-week delay in
its journey to the station.

To mitigate dimensionality or unit errors, it is crucial to follow best practices, which
include the following:
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1. Clearly specifying and documenting the expected units and dimensions of input and
output data.

2. Implementing reliable and consistent unit conversion routines.
3. Leveraging libraries or frameworks with built-in support for units and dimensions.
4. Conducting comprehensive testing, including dedicated unit tests, to validate the

accuracy of calculations and conversions.
5. Validating assumptions about input units and implementing suitable checks.
6. Providing informative error messages or warnings when dimensionality or unit errors

are detected.

By being mindful of dimensions and units during software development, developers
can reduce the occurrence of errors and ensure the accuracy and reliability of their software.

There are several libraries and frameworks available that offer built-in support for
handling units and dimensions in software development. In the following are some popular
options:

As noted by Matthias Christian Schabel et al. [25], Boost.Units provides a compre-
hensive framework for handling physical quantities in C++ programming. It allows you
to work with quantities with different units, perform arithmetic operations, and ensure
dimensional consistency at compile-time. Boost.Units offers compile-time dimensional
analysis, type-safe unit conversions, and supports custom unit systems. It is particularly
useful in scientific and engineering applications, where precise handling of units and
dimensions is crucial for accurate calculations.

As noted by Edzer Pebesma [26], UDUNITS is a flexible and extensive library primarily
used in scientific and meteorological applications. It offers a comprehensive database of
physical units, allowing for unit conversions, arithmetic operations, and parsing of unit
expressions. UDUNITS supports a wide range of units and provides bindings for various
programming languages, including Python and Java. It is a reliable solution for managing
units and dimensions, especially in domains that require extensive support for physical
quantities.

According to [27], Units.NET is a powerful and user-friendly library for managing
physical quantities in C# applications. It provides a comprehensive set of units, support-
ing unit conversions, arithmetic operations, and dimensional analysis. With Units.NET,
developers can work with units and dimensions in a strongly typed manner, ensuring type
safety and accurate calculations. It simplifies the handling of units and dimensions in C#
projects, making it convenient to work with physical quantities.

Common disadvantages of the described libraries are that they cannot utilize orienta-
tional information for checking software code.

In addition, the utilization of a specialized software language called F# enables efficient
manipulation of physical units and dimensions [28]. While F# is widely recognized for its
applications in general-purpose programming and data analysis, it also proves to be highly
effective in the context of the IoT (Internet of Things) and CPS (cyber-physical systems)
domains.

However, in the case of reusing IoT and CPS software programs that employ different
physical units and orientations of physical values, which are typically implemented in
languages like C++, it becomes essential to undergo additional formal verification. This
verification process should incorporate orientational and dimensional information to ensure
successful integration and reduce the development time of new software projects.

This article focuses on exploring a formal verification method that utilizes dimensional
and orientational homogeneities and natural software invariants. Specifically, it considers
the dimensions and orientations of physical quantities as defined by the International
System of Units (SI), as described in references [29,30]. Additionally, it incorporates trans-
formations of physical quantity orientations proposed by Siano [31,32] and extended by
Santos et al. [33]. By leveraging these invariants, this method can effectively verify the
correctness of software and detect errors that may arise due to inconsistent or incorrect use
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of units and dimensions, as well as incorrect usage of software operations, variables, and
procedures, among other things.

The SI defines a set of base units, such as meters for length, kilograms for mass, and
seconds for time, along with derived units, which are combinations of base units, such as
meters per second for velocity or kilograms per cubic meter for density.

When it comes to software code, developers often need to work with and manipulate
physical quantities in their programs. To ensure the correctness of such code, formal
software verification methods can be applied. These methods use mathematical techniques
to formally prove the properties of the software, such as its correctness, safety, or absence
of certain errors.

The concept of homogeneity, derived from the SI system, plays a significant role
in formal software verification. Siano proposed extending dimension homogeneity via
orientation [31,32]. Now, the main concept of homogeneity states that any physical equation
involving physical quantities must be both dimensionally and orientationally consistent.
In other words, the units on both sides of an equation must match.

It is important to note that formal software verification involves more than just ensur-
ing the homogeneity of physical quantities. It encompasses a broader range of techniques
and methods to rigorously analyze and prove properties about software systems. However,
leveraging the concept of homogeneity from the SI system can be a valuable tool in the
pursuit of formal software verification, especially when dealing with physical quantities.
The approach of leveraging the homogeneity of physical quantities and applying formal
software verification techniques can make a significant contribution to ensuring functional
and high-quality software for the IoT and CPS.

The advantages of the proposed method for software correctness and safety are that by
utilizing formal software verification techniques, such as enforcing both dimensional and
orientational homogeneity, developers can detect errors early in the development process
and ensure that the software behaves as intended. This, in turn, reduces the potential for
system failures or safety incidents.

IoT and CPS systems are typically subject to updates, maintenance, and evolution
throughout their lifecycle. Enforcing both dimensional and orientational homogeneity and
applying formal verification methods can enhance software maintainability and evolvability.
By establishing clear and consistent units and enforcing them in the code, developers can
more easily understand and modify the software, reducing the risk of introducing errors
during updates or modifications. This promotes efficient maintenance and facilitates the
evolution of the software as new requirements or functionalities are introduced.

Formal software verification methods, including the use of homogeneity, contribute to
a rigorous quality assurance process. By systematically applying verification techniques,
developers can identify and eliminate potential software defects, thereby improving the
overall quality and reliability of IoT and CPS systems. This, in turn, enhances user satisfac-
tion, reduces the risk of failures, and increases confidence in the deployed software. The
thorough verification process helps ensure that the software meets the specified require-
ments and operates correctly in various scenarios, thereby ultimately enhancing the overall
quality assurance efforts.

By combining the principles of homogeneity from the SI system with formal software
verification methods, developers can create more robust, reliable, and functional software
for the IoT and CPS. This approach helps mitigate risks, ensures safety, enhances interoper-
ability, facilitates maintenance, and improves the overall quality of the software deployed
in these systems.

2. The Formal Software Verification Method

Proposed is the utilization of natural software invariants, which are the physical
dimensions and spatial orientation of software variables that correspond to real physical
quantities. By incorporating these invariants into the program specification, it becomes
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possible to convert all program expressions into a series of lemmas that must be proven.
This enables the verification of the homogeneity and concision of the program.

2.1. Using Dimensional Homogeneity in Formal Software Verification

According to Martínez-Rojas et al. [34], dimensional analysis is a widely used method-
ology in physics and engineering. It is employed to discover or verify relationships among
physical quantities by considering their physical dimensions. In the SI a physical quantity’s
dimension is the combination of the seven basic physical dimensions: length (meter, m),
time (second, s), amount of substance (mole, mol), electric current (ampere, A), temperature
(kelvin, K), luminous intensity (candela, cd), and mass (kilogram, kg). Derived units are
products of powers of the base units, and when the numerical factor of this product is one,
they are called coherent derived units. The base and coherent derived units of the SI form a
coherent set designated as the set of coherent SI units. The word “coherent” in this context
means that equations between the numerical values of quantities take the same form as
the equations between the quantities themselves, ensuring consistency and accuracy in
calculations involving physical quantities.

Some of the coherent derived units in the SI are given specific names and, together with
the seven base units, form the core of the set of SI units. All other SI units are combinations
of these units. For instance, plane angle is measured in radians (rad), which is equivalent
to the ratio of two lengths; solid angle is measured in steradians (sr), which is equivalent to
the ratio of two areas. The frequency is measured in hertz (Hz), which is equivalent to one
cycle per second. The force is measured in newtons (N), which is equivalent to kg m/s2.
The pressure and stress are measured in pascals (Pa), which is equivalent to kg/m s2 or
N/m2. The energy and work are measured in joules (J), which is equivalent to kg m2/s2 or
N m.

The fundamental principle of dimensional analysis is based on the fact that a physical
law must be independent of the units used to measure the physical variables. According to
the principle of dimensional homogeneity, any meaningful equation must have the same
dimensions on both sides. This is the fundamental approach to performing dimensional
analysis in physics and engineering.

Existing software analysis tools only check the syntactic and semantic correctness of
the code, but not its physical correctness. However, we can consider the program code of
systems as a set of expressions consisting of operations and variables (constants). By using
DA, we can verify the physical consistency of the program code and detect errors that may
arise due to inconsistent or incorrect use of units and dimensions.

To check the correctness of expressions, we can use the dimensionality of program
values. Preservation of the homogeneity of the expressions may indicate the physical
usefulness of the expressions. Violation of homogeneity indicates the incorrect use of a
program variable or program operation. Dimensional analysis provides an opportunity to
check not only simple expressions but also calls to procedures and functions. The use of
the physical dimension allows the verification of the software.

Dimensional analysis is a powerful tool that can be used to ensure the physical
correctness of software code. By checking the dimensionality of program values, we can
ensure the preservation of the homogeneity of expressions, which may indicate the physical
usefulness of the code. In cases where homogeneity is violated, it may indicate an incorrect
use of program variables or operations. Dimensional analysis can be applied not only to
simple expressions but also to calls to procedures and functions, providing a comprehensive
approach to verifying the physical consistency of the software.

We can view software as a model, and dimensional analysis can serve as a validation
tool to ensure that this model adheres to the physical laws and principles governing the
system it represents. By incorporating physical dimensions into the validation process,
we can effectively identify and rectify errors that may arise from inconsistent or incorrect
usage of units and dimensions. This approach ultimately contributes to the development
of more reliable and accurate software.
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In the software system, we can define it as a collection of interacting sub-systems.
Each sub-system consists of interacting software units, and each unit comprises a set of
operators. Operators, in turn, are ordered sets of statements or expressions. By structuring
the software system in this hierarchical manner, we can effectively check the interactions
and operations within the system.

To prove the homogeneity of software systems, we need to demonstrate the homo-
geneity of each subsystem. Similarly, to prove the homogeneity of subsystems, we need
to establish the homogeneity of each software unit. Finally, to ensure the homogeneity of
software units, we need to demonstrate the homogeneity of each software statement or
expression. This stepwise approach allows us to systematically verify the homogeneity of
the software and ensure its adherence to the specified physical dimensions.

Let us introduce a set of “multiplicative” operations {*, /, etc.} that generate new
physical dimensions, while “additive” operations {+, −, =, <, ≤, >, ≥, !=, etc.} act as
checkpoints to ensure dimensional homogeneity. If the source code contains variables that
preserve specific physical dimensions, we can utilize this property, known as dimensional
homogeneity, as a software invariant. Each additive operation serves as a source for
generating lemmas. Following the principle of dimensional homogeneity, we can develop
a set of lemmas to support the verification process.

By employing dimensional analysis, we can verify the physical dimensions of variables
to identify errors resulting from inconsistent or incorrect usage of units and dimensions, as
well as improper utilization of software operations, variables, and procedures. However, it
is worth noting that certain variables may possess the same dimensions, such as moments of
inertia and angular velocities. In order to detect software defects arising from the erroneous
handling of such variables, careful examination of expressions involving angles, angular
speed, and related quantities is required. It is important to remember that, according to the
SI, angles are considered dimensionless values.

2.2. Using Orientational Homogeneity in Formal Software Verification

To address this issue, we can utilize features for transformations of angles and oriented
values. In [31,32], Siano proposed an orientational analysis as an extension of dimensional
analysis. This approach involves considering not only the physical dimensions but also the
orientations of the quantities to enhance the analysis.

The use of orientational analysis can aid in expanding the base unit set while also
ensuring dimensional and orientational consistency. Additionally, the orientational analysis
technique can be applied for the formal verification of software code, allowing for a
thorough evaluation of its accuracy and reliability.

Siano’s proposed notation system for representing vector directions involved the use
of orientational symbols lx, ly, lz [31,32]. Furthermore, a symbol without orientation repre-
sented by l0 was introduced to represent vectors that do not possess a specific orientation.

For example, a velocity in the x-direction can be represented by Vx
.
= lx, while a length

in the x-direction can be represented by Lx
.
= lx. Here, the symbol .

= denotes that the
quantity on the left-hand side has the same orientation as the quantity on the right-hand
side. In non-relativistic scenarios, mass is considered to be a quantity without orientation.

In order for equations involving physical variables to be valid, they must exhibit
orientational homogeneity, meaning that the same orientation must be utilized on both
sides of the equation. Furthermore, it is crucial that the orientations of physical variables
are assigned in a consistent manner. For instance, the representation of acceleration in the
x-direction as ax = ∆Vx

∆t , Vx
.
= lx, ∆t .

= l0 and ax
.
= lx

l0
is only valid if both sides have the

same orientation.
But what about the orientation of time? From the expression H = gt2

2 we can define

the time as follows: t =
√

2H
g

.
=
√

lz
lz

.
=
√

lzlz
.
=
√

l0
.
= l0.

The physical quantity of time is considered to be without orientation, meaning it does
not possess a specific orientation in space.
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In order to maintain orientational homogeneity, it is necessary to introduce a charac-
teristic length scale l0, since time is a quantity without orientation. Therefore, lx can be
expressed as lx

.
= lx

lo
.
= lx and lolx

.
= lxlo

.
= lx, l−1

0
.
= lo ensuring that the orientation of lx

remains consistent. That is why ax
.
= lx.

It is essential to assign orientations to physical variables in a consistent manner. For
instance, pressure is defined as force per unit area. If the force is acting in the z-direction,
then the area must be normal to it etc.:

P =
Fz

Sxy

.
=

lz
lxly

.
=

lz
lz

.
= l0, P =

Fx

Syz

.
=

lx

lylz
.
=

lx

lx

.
= l0, P =

Fy

Sxz

.
=

ly
lxlz

.
=

ly
ly

.
= l0.

In order for pressure to be considered a quantity without orientation, the area S must
have the same orientation as the force F. If the force F is in a particular direction, then
the area S must be normal to that direction, meaning that both variables have the same
orientation. Therefore, pressure can only be a quantity without orientation if this consistent
orientation is maintained.

We define this as follows:

lxly
.
= lz, lylz

.
= lx, lxlz

.
= ly,

lx

lx

.
= l0,

ly
ly

.
= l0,

lz
lz

.
= l0.

If a .
= lx, b .

= ly, c .
= lz a volume of space, V, is a quantity without orientation:

Vabc = Sabc .
= lzlz

.
= l0, Vabc = Sbca .

= lxlx
.
= l0, Vabc = Sacb .

= lyly
.
= l0

Let us take a look at uniformly accelerated motion in the x-direction: Sx = S0X + vxt +
axt2

2 , where Sx is the total distance, S0X is the initial distance, vx is the velocity, and ax is the
acceleration.

According to orientational homogeneity

Sx
.
= lx, S0X

.
= lx, vxt .

= lxl0
.
= lx,

axt2

2
.
=

lx

l0
(l0)

2 .
= lx

The orientation of derived physical variables, such as kinetic energy, can be determined
by properly assigning orientation to primitive variables and applying the corresponding
multiplication rules:

KE =
mv2

x
2

+
mv2

y

2
+

mv2
z

2
, KE .

= l0lxlx + l0lyly + l0lzlz, KE .
= l0l0 + l0l0 + l0l0

.
= l0

We considered the orientation of an angle α in the x-y plane. Because tan(α) .
=

ly
lx

and

lim
α→0

(tan(α)) = α we deduced that α
.
=

ly
lx

.
= lz and an angular velocity of ωxy = ∆α

∆t
.
= lz.

Let us take the following series:

sine(α) = α− α3

3!
+

α5

5!
. . ., cosine(α) = 1− α2

2!
+

α4

4!
. . .

If α has any orientation, then sine (α) would also have that orientation, while the
cosine (α) would be a quantity without orientation. This is because the sine function
involves the odd powers of α, while the cosine function involves the even powers of α.
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Siano demonstrated that orientational symbols have an algebra defined by the multi-
plication table for the orientation symbols [31,32], which is as follows:

l0 lx ly lz
l0 l0 lx ly lz
lx lx l0 lz ly
ly ly lz l0 lx
lz lz ly lx l0

and rules :
lo = 1

lo
lx = 1

lx
ly = 1

ly
lz = 1

lz

Based on the above, the product of two orientated physical quantities has an orienta-
tion as follows:

lolx = lxlo = lx, loly = lylo = ly, lolz = lzlo = lz, lxlx = lyly = lzlz = l0

If a source code contains variables that represent physical quantities with orientations,
we can use the property of orientational homogeneity as a software invariant. By apply-
ing orientational homogeneity, we can transform the source code into a set of lemmas.
Multiplicative operations, such as multiplication and division, introduce new physical
orientations. On the other hand, additive operations such as addition, subtraction, and
relational operators (e.g., =, <, ≤, >, ≥, !=) serve as checkpoints for verifying orientational
homogeneity.

2.3. Examples of Software Formal Verifications

Example 1. Consider the expression F = ma, where F is a force with physical units of (kg m s−2),
m is the mass in (kg), and a is the acceleration in (m s−2). This expression allows us to derive the
orientation and dimension of the product ma. If m is without orientation (denoted by m .

= l0) and a
is in the x-direction (denoted by a .

= lx), then F has the x-orientation. If m has units of (kg) and a
has units of (m s−2), then the dimensions of the result are (kg m s−2). The assignment operation
“=“, which is also known as the equality operator, acts as a checkpoint for our software invariants.
It ensures that the physical orientation of F is equal to the physical orientation of ma and that the
physical dimensions of F are equal to the physical dimensions of the result.

Example 2. Consider the expression S = S0 + vt + 0.5at2, where S represents the total distance,
S0 is the initial distance, v is the velocity, a is the acceleration, and t is the time. This expression
generates two new physical dimensions and orientations. The second “+” operation checks the
dimensions and orientations of vt and 0.5at2. The first “+” operation checks the homogeneity
of S0 and the result of the previous operation. Finally, the assignment operator “=“ checks the
homogeneity of S and the result of the previous operation. By checking the homogeneity of these
variables and operations, we can ensure that the physical dimensions and orientations are consistent
throughout the expression.

Example 3. When calling procedures and functions, it is not always possible to check the physical
dimensions and orientation of the arguments. However, for function signatures such as Type1
and some Function2 (Type2 x . . . ), where Type1 and Type2 have information about the physical
dimensions and orientations of their arguments, it is possible to check the physical dimensions and
orientations of the arguments. Each argument of a function generates a special lemma that can be
used to prove dimensional and orientational homogeneities. Only after proving all the lemmas can we
prove the correctness of the function call. It is important to note that real arguments of exponential
and logarithmic functions must be dimensionless and without orientation to preserve dimensional
and orientational homogeneities. On the other hand, arguments of trigonometric functions such
as sine(x), cosine(x), and tan(x) must be orientated to preserve orientational homogeneity, while
also being dimensionless to preserve dimensional homogeneity. The proposed method allows for the
checking of physical dimensions and orientations in software statements and units. Repeating this
check helps to ensure the correctness of the software system.
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Example 4. Let us examine Euler’s rotation equations, as described in [35], which find numerous
applications in fields such as cyber-physical systems (CPS) and the Internet of Things (IoT). These
equations are utilized in various contexts, including unmanned cars, helicopters, and other aerial
vehicles.

The general vector form of the equations is I
.

ω + ω× (Iω) = M, where M represents
the applied torques and I is the inertia matrix. The vector

.
ω represents the angular

acceleration.
In orthogonal principal axes of inertia coordinates the equations become

Ix
.

ωx +
(

Iz − Iy
)
ωyωz = Mx

Iy
.

ωy + (Ix − Iz)ωzωx = My
Iz

.
ωz +

(
Iy − Ix

)
ωxωy = Mz

(1)

where Mx, My, Mz are the components of the applied torques (kg m2 s−2); Ix, Iy, and Iz are
the principal moments of inertia (kg m2); ωx, ωy, and ωz are the components of the angular

velocities (s−1); and
.

ωx = dωx
dt ,

.
ωy =

dωy
dt , and

.
ωz =

dωz
dt have dimension (s−2). However,

Mk, Ik, ωk, and
.

ωk have different orientations lk, where k = x, y, z.
We can verify the dimensional homogeneity of Equation (1), but it is not possible

to identify all defects. This is because certain quantities have the same dimensions and
cannot be distinguished solely based on their units. For example, the dimensions of the
moments of inertia (Ix, Iy, Iz) are (kg m2) and angular velocities (ωx, ωy, ωz) are (s−1), and
the dimensions of the angular acceleration components (

.
ωx,

.
ωy,

.
ωz) are (s−2) since angles

are dimensionless. Therefore, while dimensional analysis can help identify some potential
issues with the equation, it may not be able to catch all possible defects. For example, we
cannot detect a defect if the expression S = S0 + vt + 0.5 at2 does not include the initial
position S0.

In the context of Equation (1), the parameters (Mx, My, Mz, etc.) may have different
orientations or values, which can help in detecting defects.

Furthermore, checking both the dimensional and orientational homogeneities of an
equation can improve our ability to detect defects and ensure their correctness. This
approach can be useful in the formal verification of CPS and IoT software, as it can help
identify potential issues before they lead to real-world problems.

Let us assess the probability of detecting a software defect using both dimensional
analysis and orientational analysis.

2.4. Software Defect Detection Models
2.4.1. General Software Defect Detection Model

To simplify the analysis, we assume that the software statement can only have one
defect with a probability of Pde f . The model starts with the initial event state of ‘Software’
and branches out into two possible outcomes at the next level: ‘Software has a defect’ and
‘Software does not have a defect’, with probabilities of Pde f and 1− Pde f , respectively.

Decision trees, as described in [36], are visual representations utilized in decision
analysis and machine learning. They illustrate decisions or events along with assigned
probabilities or outcomes. Decision trees offer a structured approach to analyzing intricate
decision-making processes. They can be applied to predict software defect detection,
facilitating the identification and prevention of software issues, as demonstrated in Figure 2.

In the state ‘Software has a defect’, our focus shifts to detecting the defect. At the third
level, the model branches out into two possible outcomes: ‘Defect detected’ and ‘Defect not
detected’, with probabilities of PDD and 1− PDD, respectively.

The revised sentence maintains clarity and correctness in grammar.
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To define the conditional probability of software defect detection, we used the follow-
ing formula:

η =
Pde f PDD

Pde f PDD + Pde f (1− PDD)
= PDD,
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Here Pde f represents a probability of a software defect in the code; PDD represents a
probability of a software defect detection.

We can also introduce a more complex general software defect detection model (see
Figure 3), which accounts for two types of defects: variable defects (uncorrected usage of a
variable with incorrect dimension or orientation) and operation defects (incorrect usage of
an operation). Despite the presence of multiple types of defects, the model still assumes
that there is only one defect present in the software statement at any given time.
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In this more complex model, the software statement can have two types of defects:
variable defects and operation defects. A ‘Variable defect’ occurs when there is an incorrect
usage of a variable in the code, such as using the wrong variable name. An ‘Operation
defect’ occurs when there is an incorrect usage of an operation in the code, such as using
the wrong operator symbol. Despite the presence of these two types of defects, the model
still assumes that only one defect is present in the statement at any given time.

In this more complex model, the initial event state is ‘Software’. At the branching
point, the model expands into two possible outcomes: ‘Variable’ and ‘Operation’, with
probabilities of Pvar and 1− Pvar, respectively.

The ‘Variable’ state has two potential outcomes at the next level: ‘Correct use of
variable’ and ‘Incorrect use of variable’, with probabilities of 1− Pde f and Pde f , respectively.

The ‘Incorrect use of variable’ state then branches out into two possible outcomes at the
next level: ‘Variable defect detected’ and ‘Variable defect not detected’, with probabilities of
PVD and 1− PVD, respectively. Here, PVD represents the probability of detecting a variable
defect in the source code.

In addition to the ‘Variable’ state, the model also has an ‘Operation’ state, which has
two possible outcomes at the next level: ‘Correct use of operation’ and ‘Incorrect use of
operation’, with probabilities of 1− Pde f and Pde f , respectively.

The ‘Incorrect use of operation’ state then branches out into two possible outcomes
at the next level: ‘Operation defect detected’ and ‘Operation defect not detected’, with
probabilities of POD and 1− POD, respectively. Here, POD represents the probability of
detecting an operation defect in the source code.

The conditional probability of a software defect can be defined as follows:

η =
PvariableDe f ectDetected + PoperationDe f ectDetected

PvariableDe f ectDetected + PvariableDe f ectNotDetected + PoperationDe f ectDetected + PoperationDe f ectNotDetected

Here PvariableDe f ectDetected= PvarPde f PVD, PoperationDe f ectDetected = (1− Pvar)Pde f POD
PvariableDe f ectNotDetected = PvarPde f (1− PVD), PoperationDe f ectNotDetected = (1− Pvar)Pde f (1− POD)

After substitution PvariableDe f ectDetected . . . . . . PoperationDe f ectDetected in the source expres-
sion:

η =
PvarPde f PVD + (1− Pvar)Pde f POD

PvarPde f PVD + PvarPde f (1− PVD) + (1− Pvar)Pde f POD + (1− Pvar)Pde f (1− POD)

η = PvarPVD + (1− Pvar)POD (2)

As per Expression (2), the conditional probability of software defect detection depends
on the probability of the software variables used in the source code and the conditional
probabilities of detecting defects (defects of operations and defects of variables). We can
determine the value of Pvar by analyzing the software code statically, i.e., without executing
the code. However, to determine the values of PVD and POD, we would need to build
additional software defect detection models.

2.4.2. Simple Model for Detection of Incorrect Use of Variables Based on Dimensional
Analysis

Next, we introduce the simple model for the detection of incorrect use of variables
based on dimensional analysis, as depicted in Figure 4.

This model has an initial state of ‘Variable’. The initial state has two transitions to
states ‘OK’ and ‘Check Dimension’, with probabilities 1− Pde f and Pde f , respectively. In the
state ‘Check Dimension’, we can evaluate the required physical dimension of the variable
using dimensional analysis, such as length, mass, time, thermodynamic temperature, etc.

If the actual physical dimension is equal to the required physical dimension, we cannot
detect the software defect. However, if they differ, we can identify the software defect. In



Computation 2023, 11, 135 14 of 31

this case, the probabilities are Pdim and 1− Pdim, where Pdim represents the probability of
two random variables having the same physical dimension.
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Let us define the conditional probability of defect detection of incorrect use of a
program variable as follows:

PVD =
Pde f ectDetected

Pde f ectDetected+Pde f ectNotDetected
.

Here Pde f ectDetected = Pde f (1− Pdim) and Pde f ectNotDetected = Pde f Pdim

PVD = 1− Pdim (3)

Let us consider a set of distinct software variables {var1 · · · varNv} and a set of diverse
physical dimensions {dim1 · · ·dimNd}, where NV represents the cardinality of set {vari}
and ND represents the cardinality of set

{
dimj

}
.

To depict the relationship between these variables and dimensions, we can make use
of an N-matrix (4):

dim1 dim2 dim3 dim4 dim5 dim6 · · · dimND−1 dimND
var1 n11 0 0 0 0 0 · · · 0 0
var2 n21 0 0 0 0 0 · · · 0 0
var3 0 n31 0 0 0 0 · · · 0 0
var4 0 0 n43 0 0 0 · · · 0 0
var5 0 0 0 n54 0 0 · · · 0 0
var6 0 0 0 n64 0 0 · · · 0 0

...
...

...
...

...
...

...
. . .

...
...

varNV−1 0 0 0 0 0 0 0 0 nNV−1,ND
varNV 0 0 0 0 0 0 0 0 n NV , ND

(4)

The equation for the total quantity of usages of all software variables that have the
same j dimension can be written as follows:

NVARj =
NV

∑
i=1

nij (5)
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where nij represents the total quantity usage of i-variable which has a j-physical dimension,
and NV is the cardinality set of software variables.

Equation (5) shows the total number of variable usages in the code:

NVAR =
NV

∑
i=1

ND

∑
j=1

nij (6)

To define the probability of choosing i-variable and j-variable with the same dimen-
sions, we can use the total number of usages of variables with the j-physical dimension
and the total number of usages of all variables in the code:

Dij =
nij

NVAR

(
NV
∑

i=1
nij

)
− nij

NVAR − nij
(7)

According to (7), the probability of choosing two random variables that have the same
physical dimension is given by the following equation:

Pdim =
NV

∑
i=1

ND

∑
j=1

 nij

NVAR

(
NV
∑

k=1
nkj

)
− nij

NVAR − nij

 (8)

Here nij represents the element of the N matrix representing the quantity of usage for
the i-variable with the j-physical dimension; NVAR represents the total number of variable
usages in the code; ND represents the total number of different dimensions of variables in
the code; and NV represents the total number of variables in the code.

For increasing the conditional probability detection of incorrect use of software vari-
ables we need to use other independent properties of variables. Using additional inde-
pendent properties of variables can help increase the conditional probability detection
of incorrect use of software variables. This is because using multiple properties helps to
reduce the chance of false positives and increase the reliability of the detection model.

2.4.3. Simple Model for Detection of Incorrect Use of Variables Based on Orientational
Analysis

In many cases, variables in CPS or the IoT have not only physical dimensions but also
orientation information, which can be utilized to enhance the software quality of these
systems. Therefore, we introduce a simple model for the detection of incorrect variable use
based on orientational analysis (see Figure 5).

According to Figure 5, the initial state of the model is ‘Variable’. This state has
two transitions to states ‘OK’ and ‘Check orientation’ with probabilities 1 − Pde f and
Pde f , respectively. In the state ‘Check orientation’, we can evaluate the required physical
orientation of the variable using orientation analysis, such as l0, lx, ly, and lz. If the physical
orientation of the variable matches the required orientation, we cannot detect a software
defect. However, if the physical orientation is different from the required orientation, we
can detect a software defect. These cases have probabilities Porient and 1− Porient, where
Porient is the probability that two randomly selected variables have the same physical
orientation.

Now we need to define Porient.
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This defect model is similar to the dimension defect model of variables. However, in
this case, we have four different orientations and NV different variables. We can describe
the relationship between variables and their orientations using an M matrix:

l0 lx ly lz
var1 m11 0 0 0
var2 m11 0 0 0
var3 0 m11 0 0
var4 0 m11 0 0
. . . . . . . . . . . . . . .

varNV 0 0 0 mNV ,4

(9)

where lk is a direction of orientation and k = 0, x, y, z.
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Figure 5. Simple model for the detection of incorrect use of variables based on orientational analysis.

Because, every software variable (as a host of a physical value) has only one orientation,
every i-row of the M matrix has only one non-zero number mik—the item of M matrix—the
number of using of i-variable which has k-orientation.

We can use Expression (8) for defining the probability of choosing two random vari-
ables that have the same physical orientation; this is given by the following Equation (10)

Porient =
NV

∑
i=1

∑
k=0,x,y,z

 nik
NVAR

(
NV
∑

n=1
mnj

)
−mik

NVAR −mik

 (10)

Here mik represents the element of the M matrix representing the quantity of usage for
the i-variable with the j-physical orientation. NVAR represents the total number of variable
usages in the code; NV represents the total number of variables in the code.

We can increase the conditional probability of software defect detection by concurrently
using both dimensional and orientational analysis. By combining these two methods, we
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can improve the accuracy of defect detection and reduce the likelihood of undetected
defects.

2.4.4. Complex Model for Detection of Incorrect Use of Variables Based on Dimensional
and Orientational Analysis

The complex model of the detection of incorrect use of variables based on both dimen-
sional and orientational analysis is described in Figure 6.
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orientational analysis.

According to Figure 6, the initial state of the model is ‘Variable’. This state has two
transitions to the states ‘OK’ and ‘Check Dimension’ with probabilities 1− Pde f and Pde f ,
respectively. In the ‘Check Dimension’ state, we evaluate the required physical dimension
of the variable using dimensional analysis, such as length, mass, time, thermodynamic
temperature, etc.

If the actual physical dimension matches the required dimension, we cannot detect
the software defect with a probability of Pdim. However, if they differ, we can identify the
software defect with a probability of 1− Pdim, where Pdim represents the probability that
two randomly selected variables have the same physical dimension.

When we cannot detect the software defect, in the state ‘Check orientation’, we
evaluate the required physical orientation of the variable using orientational analysis. If
the physical orientation matches the required orientation, we cannot detect a software
defect. However, if the physical orientation differs from the required orientation, we can
detect a software defect. These cases have probabilities Porient and 1− Porient, where Porient
represents the probability that two randomly selected variables have the same physical
orientation.

PVD =
Pde f (1− Pdim) + Pde f Pdim(1− Porient)

Pde f (1− Pdim) + Pde f Pdim(1− Porient) + Pde f PdimPorient

PVD = 1− PdimPorient (11)
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After the substitution of Expressions (8) and (10) in (11) we have

PVD = 1−
NV

∑
i=1

4

∑
j=1

 mij

NVAR

(
NV
∑

k=1
mkj

)
−mij

NVAR −mij


NV

∑
i=1

ND

∑
j=1

 nij

NVAR

(
NV
∑

k=1
nkj

)
− nij

NVAR − nij

, (12)

Here mkj represents the element of the M matrix, which represents the quantity
of usage for the k-variable with the j-physical orientation, nij represents the element of
the N matrix representing the quantity of usage for the i-variable with the j-physical
dimension, ND represents the total number of different dimensions of variables in the code,
NV represents the total number of variables in the code, and NVAR represents the total
number of variable usages in the code. Furthermore, there are four different orientations
(l0, lx, ly, lz) in the code.

According to Equation (12), PVD denotes the conditional probability of detecting the
incorrect use of software variables. The probability depends on the distribution of the
software variables according to different dimensions and orientations.

To evaluate the correctness of the conditional probability of software defect detection,
we need a model for detecting the incorrect use of operations. This model should take into
account the types of operations that are commonly used in CPS and IoT software, as well
as their potential incorrect use.

2.4.5. Model for Detection of Incorrect Use of Operations Based on Dimensional and
Orientational Analysis

Let us consider three subsets of C++ operations: “additive” (A), “multiplicative” (M),
and “other” (O) operations.

A = {“+”, “−”, “=”, “==”, “>=”, “<=”, “!=”, “<”, “>”, “++”, “--”, “.*”, “->*”, “,”, “.”, “->”, “+=”, “−=”, “**”},
M = {“*”, “/”, “%”, “*=”, “/=”, “%=”},
O = {“||”, “&&”, “&”, “|”, “ˆ”, “~”, “<<”, “>>”, “::”, “?”, “<<=”, “>>=”, “&=”, “|=”, “ˆ=”}

(13)

In addition, we are given three probabilities associated with the utilization of this
operation in the source code, namely, PA, PM, and PO. Let us define the sum of these
probabilities as the full group probability:

PA + PM + PO = 1. (14)

Let us define PA, PM, and PO as follows:

PA =
NA

NA + NM + NO
, PM =

NM
NA + NM + NO

, PO =
NO

NA + NM + NO
, (15)

Here, NA represents the total number of “additive” operations in a file, NM represents
the total number of “multiplicative” operations in a file, and NO represents the total number
of “other” operations in the file.

In this case, we can build a decision tree for the detection of incorrect use of operations
based on dimensional and orientational analysis. The model allows us to define the
conditional probability of operation defect detection (see Figure 7).

According to Figure 7, the initial state of the model is ‘Operation’. This state has
three transitions to the states ‘Additive Operation’, ‘Multiplicative Operation’, and ‘Other
Operation’ with probabilities PA, PM, and PO, respectively.

In the state ‘Additive Operation’, any ‘additive’ operation can be replaced by another
operation. This event has the probability Pde f . We then transition to the ‘Using incorrect
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operation 1’ state with this probability. In the other case, with a probability of 1− Pde f , we
transition to the ‘Using correct operation 1’ state.
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In the state ‘Using incorrect operation 1’, for a mutation where an additive operation
mutates to another additive operation, we can transition to the ‘Additive Operation 2’ state
with a probability of PAA. In this case, we cannot detect a software defect, and the full
probability for this scenario is PDND1.

For a mutation where an additive operation mutates to other operations, we can
transition to the ‘Other Operation 2’ state with a probability of PAO. In this case, we can
detect a software defect, and the full probability for this scenario is PDD1.

For a mutation where an additive operation mutates to a multiplicative operation, we
can transition to the ‘Multiplicative Operation 2’ state with a probability of PAM. In this
case, we can detect a software defect, and the full probability for this scenario is PDD2.

In the state ‘Multiplicative Operation’, any ‘multiplicative’ operation can be replaced
by another operation. This event has the probability Pde f , and we transition to the ‘Using
incorrect operation 2’ state. In the other case, with a probability of 1− Pde f , we transition to
the ‘Using correct operation 2’ state.

In the state ‘Using incorrect operation 2’, for a mutation where a multiplicative oper-
ation mutates to other additive operations, we can transition to the ‘Additive Operation
3’ state with a probability of PMA. In this case, we can detect a software defect. The full
probability for this scenario is PDD3.

For a mutation where a multiplicative operation mutates to ‘other’ operations, we can
transition to the ‘Other Operation 3’ state with a probability of PMO. In this case, we can
detect a software defect. The full probability for this scenario is PDD4.

For a mutation where a multiplicative operation mutates to other multiplicative
operations, we can transition to the ‘Multiplicative Operation 3’ state with a probability of
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PMM. In this case, we can detect a software defect. The full probability for this scenario is
PDD5.

In the state ‘Other Operation’, any ‘other’ operation can be replaced by another
operation. This event has the probability Pde f , and we transition to the ‘Using incorrect
operation 3’ state. In the other case, with a probability of 1− Pde f , we transition to the
‘Using correct operation 3’ state.

In the state ‘Using incorrect operation 3’, for a mutation where an ‘other’ operation
mutates to additive operations, we can transition to the ‘Additive Operation 4’ state with a
probability of POA. In this case, we can detect a software defect. The full probability for this
scenario is PDD6.

For a mutation where an ‘other’ operation mutates to other ‘other’ operations, we can
transition to the ‘Other Operation 4’ state with a probability of PMO. In this case, we cannot
detect a software defect. The full probability for this scenario is PDND2.

For a mutation where an ‘other’ operation mutates to multiplicative operations, we
can transition to the ‘Multiplicative Operation 4’ state with a probability of POM. In this
case, we can detect a software defect. The full probability for this scenario is PDD7.

Additionally, we can conclude, that PAA + PAM + PAO = 1, PMA + PMM + PMO = 1,
POA + POM + POO = 1. We can define the conditional probability of detecting incorrect use
of software operations as follows:

POD =

7
∑

i=1
PDDi

7
∑

i=1
PDDi + PDND1 + PDND2

.

Here, PDD1 = PAPde f PAO, PDD2 = PAPde f PAM, PDND1 = PAPde f PAA,
PDD3 = PMPde f PMA, PDD4 = PMPde f PMO, PDD5 = PMPde f PMM, PDD6 = POPde f POA,
PDD7 = POPde f POM, PDND2 = POPde f POO.

After substitution

POD =
PAPAO + PAPAM + PM + POPOA + POPOM

PA + PM + PO

According to PA + PM + PO = 1, POD = PA(1− PAA) + PM + PO(1− POO). Because
PAA ≈ PA and POO ≈ PO, then POD ≈ PA(1− PA) + PM + PO(1− PO)

POD ≈ 1− P2
A − P2

O (16)

Here, PA represents the conditional probability of ‘additive’ operations in a file and
PO represents the conditional probability of ‘other’ operations in a file.

According to Equation (16), POD denotes the conditional probability of detecting
the incorrect use of software operations. The value of POD depends on the square of
the probabilities of additional operations (such as +, −, =, <, etc.) and other operations
(such as = {“||”, “&&”, “&”, “|”, “ˆ”, “~”, “<<“, “>>“, “::”, “?” etc.) in a source file. In
order to evaluate POD, it is necessary to define the values of PA and PO. This evaluation
requires analyzing the real source code.

Using Equation (2), which defines the conditional probability of software defect de-
tection as a function of Pvar (defined by the source code of the file) and the conditional
probabilities of variable usage defect detection (PVD, defined by Equation (12)) and op-
eration usage defect detection (POD, defined by Equation (16)), allows us to evaluate the
conditional probability of software defect detection.

3. Results

After analyzing the source code of Unmanned Aerial Vehicle Systems, which had a
total volume of 2 GB and a total number of files of 20,000, saved on GitHub using our own
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statistical analyzer, we were able to determine the necessary statistical characteristics of the
C++ source code.

Distribution Nvar—total number of different variables per file (Figures 8 and 9).
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According to Figures 8 and 9 we can observe the distribution of different variables
per file in semi-logarithmic coordinates. The histogram (Figure 8) reveals that the average
number of different variables is 26, with a maximum of 64 variables observed in 4500 files.
However, there are files that contain only one variable, as well as files with 1024 variables.
The sum of the histogram columns corresponds to the total number of files, which is 20,000.

In Figure 9, presented subsequently, we can examine the probability density function
of variable distributions. It is important to note that the integral of the probability density
function should always equal one, ensuring a proper probability distribution.
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According to Figures 10 and 11 we can observe the distribution of NVF, which repre-
sents the average number of variables uses per file, in semi-logarithmic coordinates. The
histogram (Figure 10) shows that the average number of variable usages is 5. The sum of
the histogram columns corresponds to the total number of files, which is 20,000.
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In the subsequently presented Figure 11, we can analyze the probability density
function of the distributions for the average usage of variables. According to the Probability
Density Function, we can see that there are files with an average usage of 64 variables. It is
crucial to note that the integral of the probability density function should always equal one,
ensuring a proper probability distribution.

According to Equation (12) and the distributions described in Figures 8 and 10, as
well as the uniform distribution for both nij and mij, we can obtain the Probability Density
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Functions of conditional probability of detecting incorrect use of software variables PVD,
shown in Figure 12.
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Figure 12. Probability density functions of conditional probability for detecting the incorrect use of
software variables: (1) dimensional analysis (blue dash line); (2) orientational analysis (red dot line);
(3) orientational and dimensional analysis (green solid line).

According to Figure 12, when combining dimensional and orientational analysis, the
conditional probability for detecting incorrect use of software variables is greater than 0.9.

Additional statistical characters of C++ source code was evaluated: NA—total numbers
of additive operations per file; NO—total numbers of ‘other’ operations per file; NM—total
numbers of multiplicative operations per file. Corresponded distributions shown on the
Figures 13 and 14.
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Figure 14. Probability density functions of software operations for the total number of additive
operations (blue line), multiplicative operations (red line), and other operations (green line) per file
on semi-logarithmic coordinates.

In Figure 14 we can observe the distributions of NA, NM, and NO, which represent the
average number of operations per file in semi-logarithmic coordinates. The histograms
show that the average number of ‘additive’ operations is 128, observed in 2500 files. How-
ever, there are files that only contain 2 additive operations, as well as files with an average
usage of 8192 additive operations. The sum of the histogram columns corresponds to the
total number of files, which is 20,000. The histogram shows that the average number of
‘multiplicative’ operations is 16, observed in 2600 files. However, there are files that only
contain 2 multiplicative operations, as well as files with an average usage of 512 multiplica-
tive operations. The histogram shows that the average number of ‘other’ operations is 256,
observed in 3000 files. However, there are files that only contain 4 ‘other’ operations, as
well as files with an average usage of 4096 ‘other’ operations. The sum of the histogram
columns corresponds to the total number of files, which is 20,000.

In the subsequently presented, we can examine the probability density function of
the distributions for different operations per file. It is crucial to note that the integral of
the probability density function should always equal one, ensuring a proper probability
distribution.

By referring to Equation (15) and the distributions of NA (total number of additive
operations), NM (total number of multiplicative operations), and NO (total number of other
operations) (as shown in Figure 15), we can calculate the distributions of PA, PM, and PO.

In Figures 15 and 16, we can observe the distribution of conditional probabilities of
operations per file in semi-logarithmic coordinates. The histogram shows that the average
of conditional probabilities of operations per file. The value of conditional probability
of ‘additive’ operations is PA = 0.309 ± 0.161 [0.000 . . . 0.75]. The value of conditional
probability of ‘multiplicative’ operations is PM = 0.056 ± 0.056 [0.000 . . . 0.636]. The value
of conditional probability of ‘other’ operations is PO = 0.635 ± 0.155 [0.2 . . . 0.992].

In the subsequently presented, we can examine the probability density functions of
the conditional probability of different operations. It is crucial to note that the integral of
the probability density function should always equal one, ensuring a proper probability
distribution.

Based on the distributions of PA, PM, and PO we can calculate the distribution of the
conditional probability of operation defect detection POD (as depicted in Figure 17 The
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histogram reveals that the average conditional probability of operation defect detection per
file is POD = 0.45 ± 0.161 [0.000 . . . 0.8].
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Figure 16. Probability density functions of the conditional probability of additive operations (blue
solid line), multiplicative operations (red dash line), and other operations (green dash-dot line) per
file based on dimensional and orientational analysis.
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Figure 17. Histogram of the conditional probability of software operation defect detection based on
dimensional and orientational analysis.

According to Figure 18, we can see that the mean value of the conditional probability
of software operation defect detection is 0.5.
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After analyzing real C++ code statistically, we built the distributions of PO and Pvar
(as shown in Figures 19 and 20).
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Figure 19. Histogram of conditional probabilities of variables (Pvar—blue lines) and operations
(PO—red lines) per file.
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Figure 20. Probability density functions of conditional probabilities of variables (Pvar—blue dash
line) and Operations (PO—red dash-dot line) per file.

The histogram shows that the average conditional probability of operations is
PO = 0.65 ± 0.12 [0.4 . . . 0.9]. Similarly, the histogram reveals that the average condi-
tional probability of variables is Pvar = 0.35 ± 0.12 [0.000 . . . 0.55].

Figure 20, displays two distributions of the conditional probability for software op-
erations and software variables, with peaks at 0.35 and 0.65, satisfying the equation
Pvar + PO = 1.

Now, we can calculate the conditional probability of software defect detection based
on the embedded source code and the proposed defect models (see Expression (2)). Let η be
the conditional probability, then we have η = PvarPVD + (1− Pvar)POD, where Pvar is the
conditional probability of variables in the source code, PVD—is the conditional probability
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of the defects detection of variables using the defect in the source code, and POD is the
conditional probability the defects detection of operation using defect in the source code.

In the upcoming figures, Figure 21 presents a histogram of the conditional probabilities
of defect detection, while Figure 22 shows probability density functions of software defect
detection.
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Figure 21. Histogram of conditional probabilities for the detection of (1) incorrect use of software
operations and variables based on dimensional and orientational analysis (black solid lines); (2) in-
correct use of software operations (orange lines); (3) incorrect use of software variables based on
orientational analysis (red lines); (4) incorrect use of software variables based on dimensional analysis
(blue lines); (5) incorrect use of software variables based on dimensional and orientational analysis
(green lines).

According to the histogram (see Figure 21), the conditional probability for the de-
tection of incorrect usage of variables is 0.95, while the conditional probability for the
detection of incorrect usage of operations has a mean of 0.5. We can observe that the
conditional probability of the incorrect usage of variables increases after incorporating both
dimensional and orientational analysis. Using dimensional analysis alone yields a condi-
tional probability of a defect detection of 0.9, while orientational analysis alone provides
a conditional probability of a defect detection of 0.73. However, the overall conditional
probability for the detection of the incorrect usage of operations or variables has a mean
value of 0.60.

According to Figure 22, the conditional probability for the detection of the incorrect
usage of variables has a mean value of 0.95 and is distributed in the interval of 0.4 to 0.8,
while the conditional probability for the detection of the incorrect usage of operations has a
mean of 0.5 and is distributed in the interval of 0 to 0.65. It is evident that the conditional
probability of the incorrect usage of variables increases after incorporating both dimensional
and orientational analysis. The incorporation of both analysis methods narrows the interval
of distribution. When using dimensional analysis alone, the conditional probability of a
defect detection is 0.9 within the interval of 0.8 to 0.95, while orientational analysis alone
provides a conditional probability of a defect detection of 0.73 within the interval of 0.6 to
0.83. However, the overall conditional probability for the detection of the incorrect usage
of operations or variables has a mean value of 0.60 within the interval of 0.4 to 0.75.
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Figure 22. Probability density function of conditional probabilities for the detection of (1) incorrect
use of software operations and variables based on dimensional and orientational analysis (black solid
line); (2) incorrect use of software operations (orange dash-dot line); (3) incorrect use of software
variables based on orientational analysis (red dot line); (4) incorrect use of software variables based on
dimensional analysis (blue dash line); and (5) incorrect use of software variables based on dimensional
and orientational analysis (green dash-dot line).

4. Discussion

The proposed method of formal software verification based on dimensional analysis
and orientational analysis appears to be an effective approach to detecting software defects.
The fact that it can detect over 60% of software defects, including those related to the
incorrect usage of variables, operations, and functions, is noteworthy and suggests that it
could be a valuable tool in software development.

However, it is important to note that no single method can detect all types of software
defects, and different methods may be better suited for different types of defects. Thus,
while the proposed method shows promise, it should be evaluated and compared to other
approaches to determine its overall efficacy and limitations.

To fully assess its overall effectiveness and limitations, it is crucial to develop a concrete
tool that can evaluate and compare the proposed method with other existing tools.

In the future, the proposed method will demonstrate a high level of effectiveness,
detecting 90% of incorrect uses of software variables and more than 50% of incorrect uses of
operations. One of the imminent tasks is to create a type of library for the formal verification
of CPS and IoT software during compile-time.

5. Conclusions

This article focuses on a formal software verification method based on software invari-
ants derived from both dimensional and orientational analysis.

The advantages of the proposed method are as follows:

1. Early detection of software defects in compile-time.
2. Reduced testing time via formal verification in compile-time and run-time
3. By catching a large number of defects early on, the method can help minimize the

need for extensive debugging, maintenance, or post-release updates, resulting in
overall cost reduction.

4. The ability to detect over 60% of latent defects suggests that the method contributes
to improving software quality.
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5. The method can be seen as a complementary approach that focuses on detecting latent
defects based on software characteristics.

6. Continuous improvement efforts can contribute to even higher detection rates, leading
to further advancements in software quality assurance.

Overall, the high detection rate of the proposed method and its potential benefits in
reducing testing time and improving both reliability and software quality demonstrate its
value as an efficient and effective approach to software defect detection.

However, the method has certain limitations, such as the need to know the physical
dimensions and orientations of source variables at compile-time. Nonetheless, it offers
several advantages, including improved programmer productivity, as programmers no
longer need to spend time tracking down dimensional and orientational errors during
development and run-time. Additionally, the method enables a comprehensive analysis of
dimensional and orientational correctness during compile-time and run-time, including
the correct use of software variables, operations, functions, and procedures through added
argument checking.

Although the proposed method has the potential to enhance software reliability, it
requires further research and development of specialized analysis tools to realize its full
effectiveness.
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