
Citation: Hajji, M.K.; Hadda, H.;

Dridi, N. Makespan Minimization for

the Two-Stage Hybrid Flow Shop

Problem with Dedicated Machines: A

Comprehensive Study of Exact and

Heuristic Approaches. Computation

2023, 11, 137. https://doi.org/

10.3390/computation11070137

Academic Editor: Francesco

Cauteruccio

Received: 15 June 2023

Revised: 5 July 2023

Accepted: 6 July 2023

Published: 10 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Makespan Minimization for the Two-Stage Hybrid Flow Shop
Problem with Dedicated Machines: A Comprehensive Study of
Exact and Heuristic Approaches
Mohamed Karim Hajji 1,*, Hatem Hadda 2 and Najoua Dridi 2

1 College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
2 Oasis, Ecole Nationale d’Ingénieurs de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia;

hatem.hadda@esti.rnu.tn (H.H.); najoua.dridi@enit.rnu.tn (N.D.)
* Correspondence: mohammad.hajji@aum.edu.kw

Abstract: This paper presents a comprehensive approach for minimizing makespan in the challenging
two-stage hybrid flowshop with dedicated machines, a problem known to be strongly NP-hard. This
study proposed a constraint programming approach, a novel heuristic based on a priority rule, and
Tabu search procedures to tackle this optimization problem. The constraint programming model,
implemented using a commercial solver, serves as the exact resolution method, while the heuristic
and Tabu search explore approximate solutions simultaneously. The motivation behind this research
is the need to address the complexities of scheduling problems in the context of two-stage hybrid
flowshop with dedicated machines. This problem presents significant challenges due to its NP-hard
nature and the need for efficient optimization techniques. The contribution of this study lies in the
development of an integrated approach that combines constraint programming, a novel heuristic, and
Tabu search to provide a comprehensive and efficient solution. The proposed constraint programming
model offers exact resolution capabilities, while the heuristic and Tabu search provide approximate
solutions, offering a balance between accuracy and efficiency. To enhance the search process, the
research introduces effective elimination rules, which reduce the search space and simplify the search
effort. This approach improves the overall optimization performance and contributes to finding
high-quality solutions. The results demonstrate the effectiveness of the proposed approach. The
heuristic approach achieves complete success in solving all instances for specific classes, showcasing
its practical applicability. Furthermore, the constraint programming model exhibits exceptional
efficiency, successfully solving problems with up to n = 500 jobs. This efficiency is noteworthy
compared to instances solved by other exact solution approaches, indicating the scalability and
effectiveness of the proposed method.

Keywords: scheduling; two-stage flowshop problem; dedicated machines; constraint programming;
tabu search; heuristic; Johnson’s rule (Johnson’s algorithm)

1. Introduction

In the current economic context, the optimization of operations (such as purchasing,
production, transportation, and even financial operations) has found a significant place
in the concerns of industries. Making money and/or saving time is no longer an option
but rather a necessity that enables the company to survive and face an open and highly
competitive international market on one hand, and increasingly demanding customers
with a multitude of choices on the other hand. Several approaches have been designed
and developed by specialists with the aim of better utilizing resources and eliminating
any kind of waste while maintaining an acceptable level of quality. Their scope of action
has particularly focused on tactical and operational levels where everything can change
at any moment, and where the overall performance of the company depends on the level
of mastery of functions such as production and planning. This is where the scheduling

Computation 2023, 11, 137. https://doi.org/10.3390/computation11070137 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation11070137
https://doi.org/10.3390/computation11070137
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://doi.org/10.3390/computation11070137
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation11070137?type=check_update&version=2

Computation 2023, 11, 137 2 of 25

function comes into play, serving as a function “that consists of organizing the timing
of interdependent operations using limited available resources to carry out a production
plan” [1].

Indeed, scheduling is considered one of the most studied branches of operations
research in specialized literature, with a significant portion dedicated to flow shop problems.
These problems present an intermediate level of complexity, making them a favorable
ground for testing new solution approaches. However, researchers aim to approach real-
life cases as closely as possible, which has motivated recent work recommending the
consideration of increasingly realistic industrial models.

As a result, different configurations of these problems have been considered. Among
these configurations is the case of scheduling problems with dedicated machines, which
exist in various industries such as the construction industry [2], electronic systems manufac-
turing [3], paper industry [4], and many others including painting and printing workshops,
chemical laboratories, and pharmaceutical industries. Although common in different in-
dustries, the problem of scheduling workshops with dedicated machines has not been
extensively studied and has been limited to cases with a single machine on one of the stages.

In this paper, we considered the two stages flow shop problem with dedicated ma-
chines. We assumed that the dedicated machines are located on both manufacturing stages.
These problems are generally NP-hard, which raises several questions: are there any special
polynomial cases? Can we find sets of dominant solutions? Up to what sizes can we achieve
exact solutions? Beyond this size, what can be proposed?

Firstly, we conducted a literature review on flow shop problems with dedicated
machines. Three main observations can be mentioned. Firstly, we noticed the scarcity of
works exclusively dedicated to dedicated machines. Secondly, almost all of these works
considered the configuration where one of the stages consists of a single machine. We also
highlight the lack of specific resolution techniques that exploit the specificity of dedicated
machines. This literature review motivated us to undertake more in-depth analyses on
both theoretical and empirical levels.

On the theoretical analysis front of the problems considered in this paper, we have
put forward elimination rules. These rules were designed to effectively decrease the size of
the search space, resulting in substantial time savings during calculations, enabling more
efficient and faster computations. Regarding the approximate solution, a metaheuristic has
been introduced, which has yielded highly competitive results, often reaching optimality.
This work also focused on developing a constraint programming model, which was tested
using the Cp Optimizer (IBM). The results were highly satisfactory, and instances of
significantly larger sizes (over 500 jobs) were successfully solved.

The motivation behind addressing the two-stage hybrid flow shop problem with
dedicated machines using both exact and approximate methods arises from its practical
significance in real-life industrial settings. However, limited literature exists on this specific
problem configuration, particularly with a focus on cases involving dedicated machines
on both stages. Our aim was to fill this research gap and provide insights and solutions
that can optimize scheduling and resource allocation in industrial environments effectively.
By employing a combination of exact and approximate methods, we can explore the
problem’s complexity, identify special cases, and develop efficient solution approaches
that strike a balance between computational tractability and solution quality. Ultimately,
our goal was to offer practical and effective scheduling strategies for industries dealing
with two-stage hybrid flow shop problems with dedicated machines, leading to improved
operational efficiency and resource utilization.

Throughout this paper, we emphasize the scarcity of research dedicated to dedicated
machines and the lack of specific resolution techniques for this configuration. Our compre-
hensive literature review highlights the need for more in-depth analysis, both theoretically
and empirically. We contribute to the field by proposing elimination rules that reduce
the search space and improve computational efficiency. Additionally, we introduced a
metaheuristic approach that yields highly competitive results. Furthermore, we present a

Computation 2023, 11, 137 3 of 25

constraint programming model capable of successfully solving instances with significantly
larger sizes. In summary, our work not only advances the understanding of scheduling
problems with dedicated machines in real-life industrial scenarios but also provides novel
solution methods to tackle these challenges.

This paper is organized as follows: In Section 2, we conduct a literature review to
explore the existing research and related works in the field and we present the studied
problem in Section 3. Then, we introduce certain fundamental features, namely the elimina-
tion rules in Section 4 and Lower bounds in Section 5 . Section 6 focuses on the constraint
programming modeling of the problem. In Sections 7 and 8, we also present approximated
solution approaches by establishing new heuristics and by adapting meta heuristic proce-
dures. Section 9 focuses on the experimental results and Section 10 concludes the paper.

2. Literature Review

Many researchers have focused on flow shop scheduling. The interest in this problem
is largely motivated by the particularity of its configuration, which is increasingly found in
real workshops, and by the wealth of work on these problems. The objective of this section
is to review the existing literature on the flow shop scheduling problems and to identify
the gaps between the different works in order to properly place our study in relation to the
existing literature.

The two-stage hybrid flow shop problem with dedicated machines is considered as a
generalization of other more basic problems such as the serial flow shop with two machines
(F2||Cmax). The latter is considered one of the most studied problems in the literature for
which an optimal solution is known. Therefore, we present the works and results that are
related to our research and particularly those concerning the two-machine flow shop and
the two-stage hybrid flow shop with dedicated machines.

We note that this problem is also known in the specialized literature under the names
“flow shop with multiple processors” and “flexible flow line” [5]. We can represent the
hybrid flow shop problem as a workshop with several stages, each containing one or more
machines. If we have only one stage, then the problem is reduced to a parallel machine
problem, and if we have only one machine on each stage, then we return to a serial flow
shop problem.

Hybrid two-stage flow shop problems are known to be NP-hard in the strong sense as
soon as the number of machines on one of the two stages exceeds one, even if preemption
is allowed. The research on these problems can be distinguished according to the interest
it provides. In what follows, we propose to present results of theoretical interest such as
lower bounds, polynomial cases and worst case analyses in the first place, and resolution
results (exact and approximate) in the second place.

The techniques used for the exact resolution are in the majority of the cases the branch
and bound algorithms (B&B) and mathematical programming. In addition, constraint
programming and dynamic programming are used.

A B&B for scheduling problems consists of an implicit enumeration of the solutions by
creating partial sequences of jobs one by one and creating a tree structure that expands into
complete solutions [6]. The B&B method for scheduling problems was initially introduced
in [7], making it the earliest known instance of this approach. Despite the relative success
of B&B, they are still unable to solve medium and large size problems, and seem too
complex for real world problems. On the other hand, B&B can be used implicitly in
mathematical models, in particular to solve sub-problems such as assignment problems.
In this context, a mathematical program is proposed for the FSH problem with availability
constraints while implicitly using a B&B. In [8] a mathematical model is presented for
the 2FHD|sj, mj|Cmax that was implemented with Clpex and was only able to solve small
instances (25 jobs). In [9], the authors give a mixed programming formulation (MILP)
and three heuristics for the m machine flow problem with the objective of minimizing the
makespan and maximizing the total net revenue. In [10], the authors proposed an MILP for
the non-permutation flow shop problem with availability constraints.

Computation 2023, 11, 137 4 of 25

Another approach that frequently draws comparisons to MILP is constraint pro-
gramming. This approach focuses on formulating and solving problems by defining a
set of constraints that must be satisfied. Over the 2010s, some papers have put forward
the utilization of Constraint Programming (CP) as a means to tackle flowshop problem.
In [11–13] a constraint programming approaches are proposed and compared to MILP
formulations in terms of effeciency. According to [6], to this day, no comparison has yet
been made between CP modelling and the B&B algorithm, and the techniques have not
been applied together. An exact alternative method to modeling and solving the Nurse
Scheduling Problem (NSP) using the Constraint Satisfaction Problem (CSP) framework is
proposed in [14]. The Weighted Constraint Satisfaction Problem (WCSP) was employed
to capture working requirements and nurses’ preferences over shift patterns. A variant
of the Branch and Bound (B&B) algorithm, enhanced with constraint propagation and
ordering heuristics, was developed to solve the WCSP. Experimental results demonstrate
the time efficiency of the proposed algorithm, which returns optimal schedules within
acceptable running times for several NSP instances. In [15], the authors considered the
makepsan minimization for the construction scheduling projects with temporal and re-
newable resource constraints. Experimental analysis using the IBM ILOG CP Optimizer
on generated test instances shows that solving the problem with converging material
flows requires significantly more computation time compared to solving the problem with
diverging material flows. In [16], the authors studied the task scheduling problem on
multicore architectures. They proposed scheduling methods that utilized constraint pro-
gramming to determine the number of threads for each task and schedule them on the
multicore system, with the objective of minimizing the overall schedule length. Through
experimental results, the authors demonstrated the superiority of their proposed methods
compared to existing approaches based on integer linear programming. In [17] , the au-
thors investigated the performance of different constraint programming solvers for the
flexible job shop scheduling problem. They compared five solvers, including commercial
and non-commercial software, and analyzed their relative performance on various prob-
lem instances. The results show that the IBM ILOG CPLEX CP Optimizer and Google’s
OR-Tools perform the best, with complementary strengths in finding optimal solutions
and quickly determining high-quality feasible solutions. Based on this complementarity,
the authors proposed algorithm selection approaches using machine learning techniques.
Computational analysis confirms the superiority of these approaches compared to using
a single solver. The multi-resource-constrained unrelated parallel machine scheduling
problem was considered in [18], aiming to minimize the maximum completion time of jobs.
The study incorporated various operational constraints and develops an exact solution
approach based on constraint programming (CP). The proposed CP model, enriched with
lower bound restrictions and redundant constraints, outperforms existing solutions with
an average gap of 15.52%. Computational experiments validate the effectiveness of the
proposed approach in handling real-world manufacturing environments.

Approximate resolution is certain cases the only way to solve the NP-hard problems,
especially when the instances are very large. For this reason, most specialists have oriented
their research towards the development of heuristic methods. We present in what follows a
non-exhaustive review of the methods that are related to our work.

We obviously start with the heuristics based on Johnson’s rule. We note that this rule
is considered the most used in this field of research. We also present Herrmann’s heuristic
and Lee [19], which present a very interesting priority rule.

S.M. Johnson [20] proposed a decision rule allowing for a solution to the two-machine
problem F2||Cmax in a polynomial time. It can be described as follows: let ai and bi be the
process times of job i, respectively, on the first and second machines. If for two jobs i and
j we have min(ai, bj) ≤ min(aj, bi) then there exists an optimal solution where the job i
precedes j. We note that this article has motivated scheduling researchers to accept the
makespan as an optimization criterion. [21].

Computation 2023, 11, 137 5 of 25

An alternative approach to solving this type of problems is to use metaheuristic
methods. Meta-heuristic resolution of the flow shop problems often involves the Tabu
Search (TS), Simulated Annealing (SA), the Genetic Algorithms (GA), and the Ant Colony
Algorithms. We will briefly present some works dealing with GA and then discuss works
involving TS and SA.

A genetic algorithm was proposed in [22] to deal with the m stage flow shop problem.
A three-stage hybrid flow shop problem inspired by a real problem in the electronic circuit
manufacturing industry was studied in [3] by presenting an AG.

The results have been satisfactory considering the relative complexity of the addressed
problems. It is important to mention that implementing a genetic algorithm is not as
complicated as it may seem, as it involves only a few rules for crossover and selection.
However, we believe that this procedure may not allow for an ideal exploration of the
search space, which limits the discovery of new points that could contain global minima
especially for the flow shop with dedicated machines.

Regarding TS and SA, a two-stage hybrid flow shop problem with m parallel machines
in each stage was considered in [23]. The authors presented two meta-heuristics, a tabu
search procedure, and a simulated annealing procedure. A similar comparative study was
also presented in [24,25] for the problem F2(Dm, 1) | ri, qi | Cmax. A tabu search method for
Fm||Cmax that uses an insertion operator to generate the neighborhood was also proposed
in [26]. In [27], the authors proposed a constructive method in a Tabu search procedure.
For this same problem, two simulated annealing procedures are presented in [28] with
alternative methods for assigning jobs to separate stages.

In [29], the authors presented a tabu search for the problem Fm||Cmax, where the gen-
eration of the neighborhood relies on the computation of lower bounds to evaluate the
movements. In this procedure the tabu list had a dynamic length that is modified cyclically.
The authors claimed that it provides significantly better results than other procedures in
the literature. A tabu search for the two-stage flexible flow shop was also implemented
in [30]. Another tabu search was also presented in [2] for a hybrid no-wait flow shop
problem inspired by a real industrial problem. In [31], the authors presented a novel hybrid
algorithm that combines tabu search with a genetic algorithm for flow shop scheduling to
minimize makespan. The algorithm incorporates a new population initialization technique,
balancing global and local search. Empirical results demonstrate its superior performance,
outperforming six other hybrid algorithms, showcasing its effectiveness in achieving higher-
quality solutions. In a similar context, a comprehensive approach to the general distributed
flexible job shop scheduling problem (DFJSP) in [32] by considering operation outsourcing
and multiple optimization objectives. The proposed hybrid genetic algorithm and tabu
search (H-GA-TS) outperforms simple GA and TS algorithms, combining global search
capabilities with efficient local search. Experimental comparisons confirm the effectiveness
and performance advantages of the hybrid algorithm, demonstrating its ability to improve
solution quality. In [33] the authors addressed a proactive resource-constrained project
scheduling problem with skill-switching resources to maximize schedule robustness. An in-
teger linear programming model was formulated and a tabu search algorithm embedded
with two specialized algorithms (TS-IM1 and TS-IM12) was developed. Computational
experiments confirmed the effectiveness of the designed algorithms and improvement
measures, with TS-IM12 outperforming a commercial solver and demonstrating higher
efficiency in solving the problem. In [34], the authors considered a material transportation
optimization in mining operations by utilizing autonomous mining trucks. The study
proposed a mixed-integer programming model to jointly optimize truck trips and speeds,
aiming to minimize energy consumption. A novel tabu search algorithm was developed,
consisting of an improved flow allocation model and a guided tabu search procedure.
The effectiveness of the proposed model and real-time scheduling approach was validated
through a case study in a coal mine in Inner Mongolia, China. The results demonstrated the
acceleration of the tabu search procedure and the computational feasibility of the real-time
scheduling system for short-term decisions.

Computation 2023, 11, 137 6 of 25

The literature review we have carried out tells us about the paucity of work on hybrid
flow shops containing several dedicated machines on both stages at the same time. The aim
of our study was to somewhat reduce this gap and to offer a contribution to the study and
resolution of the two-stage problem with dedicated machines, including the proposition of
elimination rules.

Indeed, our interest in tabu search was mainly motivated by the rarity of this type of
approach, given that the vast majority of research focuses on genetic algorithms. We also
believe that we have not come across a study that presents a tabu search that is accurately
and suitably configured.

Therefore, we believe that there is an opportunity to improve the current state-of-the-
art by conducting a thorough analysis of the effects of different parameter settings on the
performance of tabu search. This would provide insights into how to effectively apply tabu
search to various optimization problems and make it a more widely used technique in
the field.

3. Problem Description F2(DP, DM)||Cmax

In scheduling problems, various codifications have been proposed to standardize
notation and facilitate problem description. One widely used notation is the three-field
coding scheme: α | β | γ. The α field describes workshop characteristics, such as the type
of machines and their arrangement. The β field captures job-specific details, including
constraints and properties such as preemption, deadlines, and release dates. The γ field
represents the chosen optimization criterion, such as minimizing completion times, delays,
or penalties. This notation was proposed by Graham [35], providing a standardized
approach for representing scheduling problems.

The two-stage hybrid flow shop problem with dedicated machines denoted by
F2(DP, DM)||Cmax describes a workshop that consists of two stages, where there are P
machines on the first stage and M machines on the second stage. The problem consists in
scheduling a set J = {J1, J2, ..., Jn} of n jobs on the different machines of the workshop in
order to minimize the maximum completion time “makespan”. The machines of the work-
shop are dedicated in two stages, which means that each machine executes only a given
type of job. Each job has two operations to complete (one on each stage) before leaving
the workshop; it can only start the second operation if the first operation is completed. We
note that a machine can only execute one job at a time. Figure 2 describes an example of a
workshop for the F2(DP, DM)||Cmax. In what follows, we used the following notations.

n > 0 Number of jobs to schedule;
J = {J1, J2, . . . , Jn} Set of all the jobs;
Cmaxπ Makespan of the solution π;
π∗ an optimal solution ;
C∗max Optimal makespan;
P Number of machines on the first stage (p ∈ {1 . . . P});
M Number of machines on the second stage (m ∈ {1 . . . M});
aj > 0 Process time of the job j on the first stage;
bj > 0 Process time of the job j on the second stage;
C1

j,p completion time of job j on machine p on the first stage, p ∈ {1 . . . P};
C2

j,m completion time of job j on machine m on the second stage, m ∈ {1 . . . M};
T1

p Set of jobs to be executed on the machine p, p ∈ {1 . . . P};
T2

m Set of jobs to be executed on the machine m, m ∈ {1 . . . M};
n1,p = |T1

p | Number of jobs to be executed on the machine p, p ∈ {1 . . . P};
n2,m = |T2

m| Number of jobs to be executed on the machine m, m ∈ {1 . . . M};
π

p
u The job at position u (1 ≤ u ≤ n1,p) on machine p, p ∈ {1 . . . P};

σm
v The job at position v (1 ≤ v ≤ n2,m) on machine m, m ∈ {1 . . . M};

Computation 2023, 11, 137 7 of 25

We denote by Rp,m the set of jobs passing on machine p at the first stage and then on
machine m at the second stage, Rp,m is called the jobs route. We also denote by np,m the
number of jobs following the route Rp,m. Note that we have a total of P×M routes for the
F2(DP, DM)||Cmax.

For a given solution, let Ju and Jv be two jobs of the same route possibly separated
by other jobs of different types on a dedicated machine, we denote by tuv the sum of the
process times of the jobs (belonging to the other types) which are scheduled between Ju and
Jv on this dedicated machine. For a given type Tα

k , k′ ∈ {1, . . . , P} (resp. k′ ∈ {1, . . . , M})
and α = {1, 2} for the first and second stage, we note by Tα

k = {Ji ∈ Tα
k |ai ≤ bi} and Tα

k =

{Ji ∈ Q|ai > bi}. Moreover, for any given set of jobs Q ⊆ J we denote by a(Q) = ∑Ji∈Q ai
and b(Q) = ∑Ji∈Q bi. Recall that the two-machine flow shop problem (F2||Cmax) can be
solved by applying Johnson’s rule (JR) [20]: Ji precedes Jj if

min{ai, bj} ≤ min{aj, bi}

Moreover, for a given type Tα
k , k ∈ {1, . . . , m}, we denote by zk the optimal makespan

if we consider the F2||Cmax problem for the jobs of Tα
k . We note that zk ≤ C∗max, ∀ k ∈

{1, . . . , m}.

In Figure 1, we present a visual representation of the workshop under consideration.

Figure 1. Example of a workshop for the F2(DP, DM)||Cmax.

Structure of an F2(DP, DM)||Cmax Solution

A solution for the F2(DP, DM)||Cmax problem is determined by giving several permu-
tations which specify the order of appearance of the jobs, respectively, on P machines on
the first stage and on M machines on the second stage. It is then necessary to describe the
solution in terms of sub-permutations on each of the machines. Thus, the relevant matter
in the π permutation, for example, is the order in which the jobs of the same type appear,
independently of their positions in relation to the jobs of other types. As an illustration,
let us consider the sequence π =≺ J1 J2 J3 J4 � for an instance with P = 2 machines on
the first stage where J1 and J2 will pass on M1 and J3 and J4 on M2. The permutation
π leads to the sub-sequence π1 =≺ J1 J2 � on M1 and π2 =≺ J3 J4 � on M2. Note that

Computation 2023, 11, 137 8 of 25

any other permutation π′ in which J1 precedes J2 and J3 precedes J4 will return the same
subsequences π1 and π2.

Therefore, it is convenient to represent a solution of the F2(DP, DM)||Cmax problem
by giving P permutations πα(α ∈ 1..P}) of the jobs on each machine of the first stage,
and M permutations σβ(β ∈∈ 1..M}) of the jobs on the second stage. We will also retain
the combination of these permutations π = π1π2....πP and σ = σ1σ2...σM and the solution
will be denoted (π, σ).

The makespan Cmax for a given solution is calculated by finding a critical path on
both stages. This path is defined as the longest path on the set of possible paths. A path
can be defined by giving a job π

p
u = σm

v with 1 ≤ u ≤ n1,p which will define a sequence
of operations of the jobs on the machines Mp and Mm. The formula of calculation of the
length of a path l(u, v, p, m) is given by Equation (1).

Cl(u, v, p, m) = (
u

∑
i=1

aπ
p
i
+

nkm

∑
i=v

bσm
i
) (1)

with
1 ≤ p ≤ P
1 ≤ u ≤ n1,p
π

p
u = σm

v .

The makespan of a given solution (π, θ) is defined as the maximum on all possible
paths as given by Equation (2).

Cmax(π, θ) = max
p∈{1..P},m∈{1..M},u∈{1..n1,p},π

p
u=σm

v

Cl(u, v, p, m). (2)

Note that, for the critical path (see Figure 2), the finishing execution time of π
p
u on Mp

coincides with the start time of its execution on Mm.

Figure 2. Makespan calculation.

4. Dominant Solutions for the F2(DP, DM)||Cmax)

In this section, we identify a set of dominant solutions for F2(DP, DM)||Cmax.
As we have several machines on each stage, we cannot accurately talk about permuta-

tion solutions (see Section 3). We keep the same output order of the jobs on the first stage;
the jobs are thus executed according to the first-in-first-out (FIFO) rule. The following result
establishes the dominance of these solutions.

Computation 2023, 11, 137 9 of 25

Theorem 1. For F2(DP, DM)||Cmax, there exists an optimal solution that follows the FIFO rule
at the second stage.

Proof. By fixing the jobs on the dedicated machines of the first stage, the minimization of
the makespan on the second stage comes down to consider M problems of 1|ri|Cmax where
the availability date ri of Ji, ∀Ji ∈ T2

k and k ∈ 1 . . . M}, corresponds to its completion date
on the first stage. The optimal solution of 1|ri|Cmax is given by the scheduling of the jobs in
the increasing order of their availability dates [36,37].

This result reduces the effort of scheduling to the first stage only since the FIFO rule is
dominant for the second stage. Thus, the θ permutation (the second stage order) is entirely
defined by the FIFO rule. In what follows, we will only consider this type of solution and
we will only refer to π (sequence of jobs on the first stage) to designate a given solution
(instead of (π, θ)).

Theorem 1 outlines an efficient approach for achieving a comprehensive solution
using the provided sub-permutations P on the first stage machines. This method effectively
reduces the search space, enabling significant compression.

Theorem 1 proposes an alternative approach where, rather than seeking the optimal
solution for the n jobs across both stages, the focus is placed on identifying the best
sub-permutation specifically for the dedicated machines in the first stage (with a total of
Π1≤k≤Pn1,k! solutions).

Note also that, given a π solution, it is always possible to construct a π′ solution by
rearranging the jobs on the second stage according to Theorem 1 so that Cmaxπ′ ≤ Cmaxπ.

We now introduce the Corollary 1 for F2(DP, DM)||Cmax.
Let u and v be two π jobs with the same route and consecutive on the first stage. Let

πuv (respectively, θuv) be the set of jobs of the other routes that separates u and v on the
first stage (respectively, on the second stage) (see Figure 3) and let tπuv and tθuv be their
respective process times.

Figure 3. Construction of π′ based on π.

Corollary 1. Given a solution π to the problem F2(DP, DM)||Cmax, if the relation

min{tπuv + av; bu + tθuv} ≤ min{au; bv} (3)

is satisfied, then the solution π′ obtained from π in which ≺ πuv, v � precedes u at the first stage,
and the job v precedes precu, θuv � on the second stage, has a makespan value less than or equal to
that of π (i.e., Cmax(π′) ≤ Cmax(π)).

Proof. Consider the problem F2||Cmax with the two machines that constitute the route
of u and v, with the fictive jobs u′ and v′ where au′ = au, bu′ = bu + tθuv , av′ = tπuv + av,
and bv′ = bv.

Equation (3) corresponds to Johnson’s rule applied to the jobs u′ and v′. Hence, their
inversion will not deteriorate the makespan. On the other hand, the forward scheduling of
the πuv will not affect the execution dates of the other jobs. Hence, Cmax(π′) ≤ Cmax(π).

Computation 2023, 11, 137 10 of 25

Note that, by using the Corollary 1, it is possible to demonstrate the existence of an
optimal solution in which the couples of consecutive jobs of the same type satisfy the
relation (3).

5. Lower Bounds

In this section, we present five lower bounds as a point of reference with which to
assess the efficiency of heuristic solutions.

For the first lower bound, it is clear that we cannot avoid the maximum of the sums of
the process times of each type (T1

p) on the first stage with the minimum value of the process
time bi (i ∈ T1

p) on the second stage. This bound is given by the following formula:

LB1 = max
i∈T1

p ,p∈{1...P}
(∑ ai + min bi).

Symmetrically, we considered the following lower bound:

LB2 = max
i∈T2

m ,m∈{1...M}
(∑ bi + min ai).

We also established two lower bounds based on Johnson’s rule (JR) [20]. We first
separated each subgroup of jobs with the same route. The application of Johnson’s rule
gives for each route Rp,m a subpermutation πp,m whose makespan value is C Joh

max(πp,m). We
retained the maximum value over all routes.

LB3 = max
1≤p≤P, 1≤m≤M

(Cjoh
max(πp,m)).

For the LB4 bound, we considered the last route of jobs that appears for the first time
on a given machine on the second stage. These jobs were preceded by at least one job from
each other route that shares that machine. We then considered the following bound:

LB4 = min
1≤p≤P,1≤m≤M

(Cjoh
max(πp,m) + ∑

1≤k≤M,k 6=m
min
Rpk

ai).

Symmetrically, we considered the following lower bound:

LB5 = min
1≤p≤P,1≤m≤M

(Cjoh
max(πp,m) + ∑

1≤k≤P,k 6=p
min
Rkm

bi).

We finally retained
LB = max

1≤i≤5
{LBi}

6. Modeling and Exact Resolution

In this section, we proposed an exact resolution approach using constraint program-
ming, which has been less commonly utilized compared to other techniques such as linear
programming models. This relative scarcity of research employing constraint programming
as the primary approach may be attributed to the extensive exploration and familiarity
with other methods, such as linear programming or heuristic algorithms.

The utilization of constraint programming offers several advantages. Firstly, it has
proven highly effective in optimizing diverse domains and handling intricate optimization
challenges. Furthermore, the modeling process in constraint programming is simplified,
as the problem can be expressed as a set of constraints. This simplification reduces the
problem’s complexity, making it more comprehensible and solvable.

Through further research and exploration of constraint programming, new insights
and more efficient solutions can be discovered for such complex scheduling problems.
Therefore, we have chosen constraint programming as our preferred approach for solving

Computation 2023, 11, 137 11 of 25

the two-stage hybrid flowshop problem with dedicated machines, leveraging its strengths
to contribute to the advancement of the field.

It is crucial to highlight that formulating the problem as a Constraint Satisfaction
Problem (CSP) is imperative for effectively leveraging constraint programming. A CSP is a
specific type of mathematical problem that involves finding a solution satisfying a given set
of constraints. According to Baptiste et al. [38], a CSP is described by the triplet {Variables,
Values, Constraints }, where each variable relates to a set of possible values called “domain
of variable”, and each constraint designates the possible and allowed combinations of the
various values of these variables. For constraint programming, we recognize different types
of variables including intervals and sequences. An interval for a scheduling problem is
characterized by the triplet { Process time, Start date, End date} (Size, Start value, End
Value). A sequence is a set of non-overlapping intervals. The constraints involve the start
value (startOf) and the end value (endOf) of the domain of each variable. The satisfaction
of these constraints depends on the respect of these start and end times. In other words,
a job can only start its second operation if its first operation is finished. Moreover, given
the constraint of the capacity of the machines, a job can only be executed if its predecessor
has finished its execution, hence the constraint of non-overlapping of the intervals in a
sequence.

CSP Model
Variables

Intervals
C1[p, j, aj]: interval of job j on the machine p (j ∈ T1

p , p ∈ {1, . . . , P}) of size aj;
C2[m, j, bj]: interval of job j on the machine m (j ∈ T2

m, m ∈ {1, . . . , M}) of size bj;
Sequences

αp : Sequence of size n1,p containing the completion times of the jobs j ∈ T1
p , p ∈ {1, . . . , P};

βm : Sequence of size n2,m containing the completion times of the jobs j ∈ T2
m, m ∈

{1, . . . , M};

Model

min Cmax
Under constraints

noOverlap (αp), p ∈ {1, . . . , P} (4)

noOverlap (βm), m ∈ {1, . . . , M} (5)

startO f (C1[p, j, aj]) ≥ 0 , j ∈ T1
p , p ∈ {1, . . . , P} (6)

startO f (C2[m, j, bj]) ≥ endO f (C1[p, j, aj]) , j ∈ T1
p ∩ T2

m, p ∈ {1, . . . , P}, m ∈ {1, . . . , M} (7)

Cmax ≥ endO f (C2[m, j, bj]) , j ∈ T2
m, m ∈ {1, . . . , M}. (8)

The constraints (4) (resp. (5) prevent the overlapping of the intervals containing the
process times of the jobs on the first (resp. second) stage. The constraint (6) indicates that all
the starting dates of the intervals on the first stage are positive. The constraint (7) indicates
that a job can only start its execution on the second stage once its operation on the first
stage is finished. The constraint (8) defines the makespan to be minimized.

7. Heuristic Resolution

In this section, we present a new heuristic named the Johnson-Indexed Priority Algo-
rithm (JIPA) for the F2(DP, DM)||Cmax.

The idea is to Initially schedule the jobs of the same route according to Johnson’s
rule to obtain πpm. We then calculate a PSI (Priority Scoring Index) that will define the
appearance order of these jobs on the first stage. In other words, the PSI will define the

Computation 2023, 11, 137 12 of 25

priority on the first stage between two jobs of different routes. Similar ideas have been
proposed for similar problems in [19,39].

We considered two possibilities for computing the PSI. Let u be a job in the subsequence
πp,m, the first PSI is given by PSIu = ∑

np,m
i=w bπp,m(i), where πp,m(i) is the i th job in πp,m

and w represents the position of job u in πp,m. This index only considers the remaining
workload on the second stage.

Note that when the machines on the second stage are heavily loaded, Johnson’s
rule tends to sort the jobs in ascending order of their process times on the first stage.
To better adjust and use this rule in such cases, we considered the inclusion of the process
times of both stages in the calculation of the PSI. We thus introduced a second index
PSI′u = ∑

Np,m
i=w

aPip,m(i)
bPip,m(i)

.

The jobs were then scheduled according to the decreasing order of their indexes PSIu
or PSI′u. The Johnson-Indexed Priority is described by Algorithm 1.

Algorithm 1 Johnson-Indexed Priority Algorithm

Start
Step 1. Apply JR for all sub-sequences πp,m, p ∈ {1 . . . P}, m ∈ {1 . . . M}.
Step 2. Calculate the indexes PSI and PSI′.
Step 3. Schedule the jobs in the decreasing order of PSI
Step 4. Return πPSI and πPSI′

Step 5. Return Cmax = min(CπPSI
max , CπPSI′

max).
END.

The application of the Johnson-Indexed Priority Algorithm is illustrated by the follow-
ing instance.

Let there be an instance of F2(D2, D2)||Cmax with n = 8 jobs, P = 2 machine on
the first stage and M = 2 machines on the second stage. Let T1

1 = {J1, J3, J5, J7} and
T1

2 = {J2, J4, J6, J8} be the sets of jobs passing respectively on the first and second machine
of the first stage. Let T2

1 = {J2, J3, J6, J7} and T2
2 = {J1, J5, J4, J8} be the sets of jobs passing,

respectively, on the first and second machines of the second stage. The process times are
presented in Table 1.

Table 1. Example of instance for the F2(D2, D2)||Cmax.

Jobs J1 J2 J3 J4 J5 J6 J7 J8

ai 4 7 2 5 3 1 4 6
bi 6 3 5 3 4 4 6 2

According to the types of jobs on the different stages, we can obtain the routes which
are as follows: R11 = {J3, J7}, R12 = {J1, J5}, R21 = {J2, J6} and R22 = {J4, J8}.

Applying the Johnson rule to these routes separately gives the following sub-sequences:
≺ J3, J7 �, ≺ J5, J1 �, ≺ J6, J2 � and ≺ J4, J8 �.

To schedule the sets ≺ J3, J7 � and ≺ J5, J1 � on M1
1, then ≺ J6, J2 � and ≺ J4, J8 � on

M1
2, we calculate the index PSIu = ∑

np,m
i=w bπp,m(i). For the job J3, for example, the calculation

of the index is based on ≺ J3, J7 � giving PSI3 = b3 + b7 = 11 and PSI7 = b7 = 6. For the
set≺ J5, J1 � ,we have PSI5 = 10 and PSI1 = 6. The decreasing order of the indices returns
the sequence≺ J3, J5, J7, J1 � to be scheduled on M1

1. Similarly, for M1
2, we get the sequence

≺ J6, J4, J2, J8 �.
As a result, the application of the J IPA returns the solution πH =≺ J3, J5, J7, J1 �,≺

J6, J4, J2, J8 �with C J IPA
max = 21, which coincide with the lower bound LB1 = maxi∈T1

p ,p∈{1...P}
(∑ ai + min bi), i.e., that an optimal solution is obtained.

Computation 2023, 11, 137 13 of 25

It should be noted that this index does not modify the order given by the Johnson rule
at each sub-sequence πp,m, it only sets the priority order between the jobs not belonging to
the same route.

8. Metaheuristic Resolution

To tackle this complex problem, we turn to metaheuristics, which are global optimiza-
tion techniques that aim to find high-quality solutions by exploring a large solution space.
One promising metaheuristic for this problem is the tabu search algorithm. Specifically
tailored for combinatorial optimization problems, the tabu search algorithm utilizes a
search strategy that avoids revisiting previously explored solutions, which can help in-
crease the efficiency of the search process and improve the likelihood of finding a good
quality solution. By applying tabu search to the two-stage hybrid flowshop problem, we
can more effectively navigate the large solution space and find solutions that are close
to optimal.

To assess the effectiveness of tabu search in solving the two-stage hybrid flowshop
problem, we introduced and tested five different variants of this metaheuristic. Each variant
was applied to various classes of problem instances, and the generated solutions were later
compared to an optimal solution if one was available, or to a lower bound if an optimal
solution cannot be found. By using these measures, we can assess the effectiveness of each
variant of the tabu search algorithm and identify which one(s) perform best.

Additionally, comparing the solutions generated by tabu search to an exact or lower
bound solution will give us insight into the quality of the tabu search solutions and
how close they are to optimal. Through these tests, we hope to gain a comprehensive
understanding of the relative competitiveness of tabu search in solving the two-stage
hybrid flowshop problem.

In order to effectively cover the research space of the two-stage hybrid flowshop
problem, the tabu search algorithm relies on two key components: neighborhood operators
and tabu list management. Neighborhood operators are used to generate new candidate
solutions by making incremental changes to the current solution. These operators allow
tabu search to explore the solution space more thoroughly, and can be designed to prioritize
certain types of changes over others. The management of tabu lists is another critical
component of tabu search. The tabu list is a memory structure that keeps track of recently
visited solutions and prevents the algorithm from revisiting those solutions in the imme-
diate future. By managing the tabu list, tabu search can effectively balance exploration
and exploitation, avoiding getting stuck in local optima and continuing to search for better
solutions. These two components work together to allow tabu search to systematically and
effectively search the solution space of the two-stage hybrid flowshop problem.

8.1. Neighborhood Operators

For our proposed tabu search method, we carefully selected and implemented three
different neighborhood operators:

8.1.1. Operator (NeighborSwap)

The first operator is the swap operator; the idea is to swap two adjacent jobs. The set
of neighbor solutions generated by this operator, and which constitutes the neighborhood
of the starting solution S0, is bounded by (n1,p − 1) neighbors.

Example

For n = 4 and S0 =≺ J2 J3 J1 J4 �, we have a neighborhood VS0 = { S′1 =≺ J3 J2 J1 J4 �,
S′2 =≺ J2 J1 J3 J4 �, S′3 =≺ J2 J3 J4 J1 � }.

The advantage of this operator is that it allows for the exploration of a large portion
of the search space while preserving the initial structure of the starting solution. This is
because it only switches the position of two jobs within the same machine, thus it prevents
the destruction of the starting solution’s structure by slightly modifying it at each step.

Computation 2023, 11, 137 14 of 25

However, it should be noted that the swap operator may not be sufficient on its own
to fully explore the search space and identify the optimal solution. Therefore, it is often
used in conjunction with other neighborhood operators, such as the insertion and inversion
operators, to ensure a more comprehensive search of the solution space.

8.1.2. Operator (NonNeighborSwap)

The idea of this operator is to swap two jobs which are not necessarily neighbors.
the NonNeighborSwap operator is designed to work with non-adjacent elements. This
approach allows the algorithm to explore a wider range of potential solutions that may be
overlooked by more traditional operators that are limited to adjacent jobs. This operator

gives a neighborhood of
n1,p(n1,p−1)

2 feasible solutions.

Example :

For n = 4 and S0 =≺ J2 J3 J1 J4 � we have a neighborhood VS0 = { S′1 =≺ J3 J2 J1 J4 �,
S′2 =≺ J1 J3 J2 J4 �, S′3 =≺ J4 J3 J1 J2 �, S′4 =≺ J2 J1 J3 J4 �, S′5 =≺ J2 J4 J1 J3 �, S′6 =≺
J2 J3 J4 J1 � }.

Note that the neighborhood generated by the NeighborSwap operator is entirely con-
tained in the neighborhood generated by the operator NonNeighborSwap.

8.1.3. Operator (InsrtShi f t)

The main idea of this operator is to insert a job at a given position and to shift the other
jobs while keeping their starting order, i.e., this operator involves removing a job from its
current position and inserting it into a different position within the same machine. This can
be useful for exploring new solutions and potentially improving the overall quality of the
generated sequence.

The InsrtShi f t operator gives a neighborhood of n1,p(n1,p − 2) + 1 feasible solutions.

Example

For n = 3 and S0 =≺ J1 J2 J3 �, the neighbourhood of S0 is :
VS0 = { S′1 =≺ J2 J1 J3 �, S′2 =≺ J3 J1 J2 �, S′3 =≺ J1 J3 J2 �, S′4 =≺ J2 J3 J1 � }.

Given the particularity of our problem and the fact that a starting solution contains P
sub-sequences, the number of solutions generated by these different change operators will
decrease since we only swap jobs that belong to the same type on the first stage.

We note that one of the key advantages of using neighborhood operators in the tabu
search algorithm is that they allow for small modifications to be made to the starting
solution at each step, without completely destroying its underlying structure. This is
particularly important in the context of the two-stage hybrid flowshop problem, where the
starting solution is often already a good approximation of the optimal solution.

Another advantage of these operators is that they are relatively easy to implement
and computationally efficient. They can be applied to any pair of jobs within the same
machine, and the resulting solutions can be quickly evaluated to determine their makespan.
This makes these operators a good choice for use in large-scale optimization problems such
as our studied problem, where computational efficiency is critical. Table 2 represents the
number of generated solutions by operators.

Table 2. Number of solutions generated per operator.

Operator Number of Solutions

NeighborSwap ∑P
p=1(n1,p − 1)

NonNeighborSwap ∑P
p=1

n1,p(n1,p−1)
2

InsrtShi f t ∑P
p=1 n1,p(n1,p − 2) + 1

Computation 2023, 11, 137 15 of 25

8.2. Management of Tabu Lists

In addition to the neighborhood operators, our tabu search method also places great
importance on the management of tabu lists. The tabu list is a critical component of the
algorithm, as it stores information about previously visited solutions and helps guide the
search towards new and unexplored regions of the solution space. Specifically, our approach
employed two distinct methods for managing the tabu list and it involves capturing and
storing the recent movements and objective function values.

8.2.1. Movement Restriction Mode

In order to efficiently manage the search space, our algorithm records the jobs whose
permutation led to the current solution at each iteration. This information is then used to
update the tabu list, which keeps track of recent movements to avoid revisiting previously
explored solutions. By capturing this trace of movements, our algorithm can more effec-
tively explore the search space and avoid getting stuck in local optima. We illustrate the
approach with the following example.

Given an initial solution S0 =≺ J3 J2 J1 J4 �, if we execute the change operator
NeighborSwap (swap two neighboring jobs) and retain the neighboring solution S′1 =≺
J2 J3 J1 J4 �, the tabu list of length Lliste = 3 being initially empty will be filled as follows :

tabumvt

(
3 . .
2 . .

)
.

For the generation of the next neighbors, if the two jobs to be swapped are present
in the list then the change is prohibited. Once all the cells of the list are filled, the oldest
element is overwritten. Note that, for the operator InsrtShi f t, the couple (job, position)
is registered.

8.2.2. Objective Function Restriction Mode

Our tabu search method updates the tabu list by taking into account objective function
values. As multiple solutions can have the same makespan value, we used the makespan
as a parameter to prohibit the adoption of a neighbor if its makespan is already in the tabu
list. By doing so, we effectively prevent the adoption of neighboring solutions that have
makespan values included in the tabu list. This approach helps in exploring new solutions
while avoiding cycling through solutions with similar makespan values.

As illustration, let S′1 be a selected neighbor with a makespan = 560. The tabu list
is then:

tabumakespan = (560).

In order to prevent the algorithm from revisiting previously explored solutions, any
neighbor with a makespan equal to 560 will be excluded from consideration as long as this
value is present in the tabu list. To update the tabu list, we utilized a simple overwrite
approach where the oldest element is replaced with the newest element as new solutions
are generated.

By combining these techniques, our proposed tabu search method is able to more effec-
tively navigate the search space and converge to high-quality solutions in a computationally
efficient manner.

8.3. Diversification

During the initial tests for our tabu search, we encountered a recurring issue every 40
to 60 iterations, where the same solutions would reappear, accompanied by a stagnation
of the makespan, such that the value of Cmax remained constant from the initial iterations
onwards. To tackle this issue, we attempted to introduce a diversification strategy after a
predetermined number of iterations, aimed at discovering previously unexplored regions of
the search space and thereby avoiding getting trapped in local optimum. This was achieved
through the introduction of random permutations of the current solution, which added an

Computation 2023, 11, 137 16 of 25

element of stochasticity to the algorithm and allowed for a more thorough exploration of
the solution space. By incorporating this diversification strategy, we were able to mitigate
the issue of the algorithm cycling through previously visited solutions and improve the
overall quality of the solutions obtained.

8.4. Selected Versions of the Tabu Search

The following Algorithm 2 describes the retained tabu search procedure.

Algorithm 2 Tabu Search Procedure

Let Scurrent be a starting solution.
Set Nbriteration;
Initialize BestCmax , BestSolution, tabulist ;
i← 1;
while (i ≤ Nbriteration) do

Find Snext such that (Cmax(Snext) ≤ Cmax(Sneighbor)) ∀ Sneighbor ∈ VScurrent \ tabulist;
Update tabulist;
Scourante ←− Snext ;
if Cmax(Snext) ≤ Cmax(Scurrent) then

BestCmax ←− Cmax(Snext);
BestSolution ←− Snext);
i← i + 1 ;

end if
end while
return BestSolution.

We implement five distinct versions of the tabu search algorithm, each incorporating
a unique combination of neighborhood operators and tabu list management strategies.
An overview of these five versions is presented in Table 3.

Table 3. Tabu search versions.

Tabu List/Operators NeighborSwap NonNeighborSwap InsrtShi f t

Movement restriction mode TS1 TS2 TS4

Makespan restriction mode . TS3 TS5

For example, the neighborhood of the first version (TS1) is generated using the change
operator NeighborSwap and the tabu list is managed using the method of restriction of the
movements already made.

Stop Criteria

The stop criteria in tabu search is a crucial aspect of the algorithm and must be well
defined to achieve the desired results. In our study, we set two stop criteria for the algorithm.
The first criterion is based on the number of iterations Iter, where we stop the process if it
reaches a predefined limit of 200 iterations. This limit is determined by empirical analysis
and ensures that the algorithm does not run indefinitely, especially in cases where it is
unable to find an optimal solution within a reasonable time.

The second stop criterion is based on the quality of the obtained solution. Specifically,
we compared the makespan value of the obtained solution to a known lower bound. If the
makespan value is equal to the lower bound, the algorithm is stopped since it has achieved
an optimal solution. This approach was motivated by the fact that finding the optimal
solution is often the primary objective of optimization problems, and the lower bound
provides a reference point to evaluate the quality of the solution.

Computation 2023, 11, 137 17 of 25

By combining these two stop criteria, we can ensure that the algorithm terminates
within a reasonable time while also still allowing for sufficient opportunity to obtain
optimal solutions.

9. Computational Results

Before presenting the computational results of the exact and heuristic solutions, we will
provide a detailed description of the classes of instances and the various configurations of
the workshops that were considered, such as problem size, number of machines, and other
relevant factors.

9.1. Classes of Instances

In order to test the different approaches already presented, we generated several
random instances belonging to different classes, and sizes ranging from n = 20 jobs to
n = 500 jobs. For each size, 20 instances were generated and the jobs were (except for some
classes) equally distributed between the different types of jobs.

We tested essentially the configuration where we had two machines on each stage (i.e.,
P = M = 2). For the exact and meta heuristic simulation, we tested a second configuration
with P = 3 and M = 4. The operating times of the different jobs are randomly generated
following a uniform distribution.

For the classes Cl1 and Cl2, the process times ai and bi were generated in the same
range: [1, 20] for Cl1 and [1, 100] for Cl2.

For Cl3, the process times ai and bi were generated in [1, 100] and [1, m× 100], respec-
tively.

For the class Cl4, the process times were generated in the [1, 20] but the jobs are not
equally distributed on the different machines of the two stages. Indeed, and in order to
create a bottleneck route, we tried to load a machine on each stage by making n

2 jobs pass
on two randomly chosen machines (one on the first and the other on the second stage).

The idea of the Cl5 class is similar to that in Cl4, except that it loads a route not
with a large number of jobs but with very large process times compared to the others.
These process times are generated in [1, 100] for n

2 jobs, and in [1, p× 100] and [1, m× 100],
respectively, for the rest of the jobs on two machines randomly chosen on the first and
second stages.

The generated classes are summarized in Table 4.

Table 4. Classes of instances.

Class ai bi

Cl1 [1, 20] [1, 20]

Cl2 [1, 100] [1, 100]

Cl3 [1, 100] [1, m× 100]

Cl4 [1, 20] [1, 20]

Cl5 [1, 100], [1, p ×100] [1, 100], [1, m ×100]

In order to maintain consistency and accuracy throughout the experimentation pro-
cess, all procedures were implemented in the programming language C++. The use of this
programming language allowed for efficient and robust implementation of the various
metaheuristics and algorithms used in this study. Additionally, all tests and computa-
tions were performed on a processor with a clock speed of 3.20 GHz. It is important
to note that the choice of hardware can have a significant impact on the performance
and results obtained in computational experiments. Therefore, all tests were performed
on the same hardware to ensure that the results obtained were consistent and could be
accurately compared.

Computation 2023, 11, 137 18 of 25

9.2. Exact Resolution Results

In this study, we implemented a constraint programming technique using the Clpex Cp
Optimizer solver. This solver was specifically designed for solving constraint satisfaction
problems and provides efficient and powerful algorithms for finding optimal solutions.

Table 5 presents a summary of the average, minimum, and maximum computation
time for the 20 generated instances, for each configuration and problem size. Additionally,
it indicates the percentage of instances that were successfully solved. The tests were
conducted using instances from the Cl1 class. It is worth mentioning that a time limit of
60 s is set, and any instance that remains unsolved beyond this limit is deemed unsolvable.

Table 5 shows that the constraint programming model was very efficient and was able
to solve problems up to n = 500 jobs, which is a significant size compared to instances
solved by other exact solution approaches. Nevertheless, we notice that, for sizes of n = 200
and n = 500 jobs, our model failed to solve some instances.

Table 5. Resolution results for constraint programming.

F2(D2, D2)||Cmax

n Average Computation Time in s {Min, Max} Times in s % Resolution

20 0.5 {0.1 , 1} 100%
50 0.5 {0.1 , 2} 100%

100 4 {3 , 6} 100%
200 10 {5 , 17} 94%
500 20 {18 , 52} 95%

F2(D3, D4)||Cmax

20 0.5 {0.1 , 1} 100%
50 0.5 {0.1 , 2} 100%

100 3 {3 , 5} 100%
200 8 {5 , 14} 98%
500 22 {18 , 43} 98%

It is interesting to note that the solver is able to solve larger problems when there
are more machines available. This is because the number of possible solutions decreases
with an increase in the number of machines, which is given by (n

max(P,M)
!)max(P,M) for P

machines on the first stage and M machines on the second stage for jobs equally distributed
on the different machines. This reduction in the search space makes it easier for the solvers
to find an optimal solution.

9.3. Heuristics Testing

We have proposed basic lower bounds and other lower bounds based on the Johnson’s
rule. These lower bounds have been presented for this same problem in [40]. The tests
conducted on these lower bounds have shown great promise, making them suitable as a
reference for evaluating the performance of the heuristics and metaheuristics proposed in
this article.

Table 6 presents the deviations observed for the heuristic (PSI and PSI’-based variants)
from the best lower bound. Table 7, on the other hand, presents the number of cases in
which the heuristic approach achieves optimality, as indicated by its ability to return a
solution that matches with the lower bound.

Table 6 shows that the heuristic approach achieved complete success in solving all
instances for some classes. Even in cases where optimal solutions were not available,
the PSI-based variant displayed an average worst-case deviation of 0.50% from the best
lower bound, while the PSI′-based variant exhibited an average worst-case deviation of
2.45%. Moreover, the difference was less than 0.01% for the majority of tested instances
in both versions. Notably, for the Cl3 class, the PSI′-based variant , which incorporates
the load of the first stage, outperformed the other heuristic. This supports the conclusion

Computation 2023, 11, 137 19 of 25

that, for this type of class, the computation of the priority index should include the process
times of the first stage.

In contrast, both heuristic versions tended to become more efficient as the problem size
increased. These results corroborate the findings reported in [41,42] for a simpler configuration.

Table 6. JIPA results, Workshop F2(D2, D2)||Cmax.

n 20 50 100 150 200 500

Cl1

PSI 0.50 0.05 0.00 0.00 0.00 0.00
PSI′ 2.00 0.30 0.00 0.05 0.00 0.00

Cl2

PSI 0.40 0.00 0.00 0.00 0.00 0.00
PSI′ 1.85 0.30 0.00 0.00 0.00 0.00

Cl3

PSI 0.15 0.00 0.00 0.00 0.00 0.00
PSI′ 0.00 0.00 0.00 0.00 0.00 0.00

Cl4

PSI 0.00 0.00 0.00 0.00 0.00 0.00
PSI′ 0.45 0.00 0.00 0.00 0.00 0.00

Cl5

PSI 0.35 0.00 0.00 0.00 0.00 0.00
PSI′ 1.35 0.35 0.00 0.00 0.00 0.00

Table 7. JIPA’s Optimal solutions, Workshop F2(D2, D2)||Cmax.

n 20 50 100 150 200 500

Cl1

PSI 19 19 20 20 19 20
PSI′ 11 18 20 19 16 20

Cl2

PSI 16 17 19 20 19 20
PSI′ 4 14 12 19 17 17

Cl3

PSI 11 16 18 19 19 11
PSI′ 15 16 16 17 17 13

Cl4

PSI 19 19 20 20 20 20
PSI′ 16 19 19 19 20 20

Cl5

PSI 16 19 20 17 18 19
PSI′ 9 11 14 15 16 14

Table 7 shows that both variants of the Priority Score Index (PSI and PSI’) are able to
achieve optimal solutions most of the time. Indeed, the PSI gives an average of 15.6 optimal
solutions for n = 20 jobs and 18.2 for n = 500 jobs on the 20 instances tested for all classes
of instances. The heuristic PSI4 gives an average of 10.4 optimal solutions for n = 20 jobs
and 16.6 for n = 500 jobs.

The results presented in Table 7 indicate that both variants of the Priority Score Index
(PSI and PSI’) demonstrate a high level of effectiveness in generating optimal solutions.
Specifically, for all classes of instances tested, the average number of optimal solutions

Computation 2023, 11, 137 20 of 25

generated by PSI is 15.6 for 20 jobs and 18.2 for 500 jobs across the 20 instances tested.
Meanwhile, the PSI’-based variant generates an average of 10.4 optimal solutions for 20 jobs
and 16.6 optimal solutions for 500 jobs. The results of the experiment indicate that the
JIPA heuristic is a dependable and effective approach for solving the given problem. These
findings imply that JIPA can be considered a promising solution for scheduling problems,
which can potentially be implemented in real-world applications.

9.4. Meta Heuristic Tests

Our study evaluated different versions of tabu search on five classes of instances with
four different problem sizes (n ∈ {20, 50, 150, 300}). To assess their performance, we used
random starting solutions and a tabu list of length 10 to avoid revisiting recently explored
solutions. We also implemented a diversification mechanism to prevent the algorithm from
getting stuck in a suboptimal solution. The diversification process was triggered when we
observed a stagnation of the makespan value for 15 consecutive iterations.

It is important to note that these testing protocols were designed to ensure the reli-
ability and robustness of the results. The reported findings regarding the effectiveness
of the tabu search heuristics were obtained through a thorough experimental evaluation.
Therefore, these results provide valuable insights into the potential applications of tabu
search for solving complex scheduling problems.

In the first configuration, where P = M = 2, we evaluated the performance of the TS2
version (which employs the NonNeighborSwap change operator and the movement-based
mode of the tabu list management, as shown in Table 3) across 20 instances. Tables 8–12
present the results of this evaluation, indicating that the TS2 version produced 20 op-
timal solutions with 0% deviation from the lower bound on all the 20 instances tested
(Cmax(πTS2) = LB).

The procedures TS3 and TS5 performed equally well with a maximum deviation
recorded that does not exceed 0.2% from the lower bound. On the other hand, procedure
TS1 did not show the same performance with a deviation that amounts to 9.3% from the
lower bound and 0 optimal solution obtained. This can be explained by the nature of
the neighborhood operator used by this procedure, namely the NeighborSwap operator,
which does not allow an important exploration of the search space and is restricted to a
neighborhood limited to ∑P

p=1(n1,p − 1) (See Table 2).
The evaluation of the procedures TS3 and TS5 revealed that their performance was

comparable, with a maximum deviation from the lower bound of no more than 0.2%.
However, procedure TS1 did not perform as well, with a deviation from the lower bound
of 9.3% and no optimal solutions obtained.

The reason behind the suboptimal performance of the TS1 procedure can be attributed
to the use of the NeighborSwap operator in its neighborhood search. This operator only
permits local moves in the solution space and is limited to a small neighborhood size
(∑P

p=1(n1,p − 1)), as indicated by Table 2. Consequently, the procedure’s ability to explore
the search space is limited and it may become trapped in a suboptimal region of the solution
space. This limitation may prove insufficient for solving more complex optimization
problems where larger, non-local moves are necessary to escape local optima. As a result, it
may be necessary to employ more advanced change operators that can facilitate larger and
more diverse moves in the solution space to improve the optimization performance.

Workshop 1 : F2(D2, D2)||Cmax

Computation 2023, 11, 137 21 of 25

Table 8. Meta heuristics results for Cl1, F2(D2, D2)||Cmax.

Class Cl1

n = 20 n = 50 n = 150 n = 300

Deviation Opt Deviation Opt Deviation Opt Deviation Opt

TS1 6.95 4 8.96 0 5.27 0 4.56 0
TS2 0.00 20 0.00 19 0.00 18 0.00 20
TS3 0.05 19 0.00 19 0.00 18 0.00 19
TS4 0.61 15 0.92 6 0.82 5 0.15 5
TS5 0.00 19 0.00 19 0.00 18 0.00 16

Table 9. Meta heuristics results for Cl2, F2(D2, D2)||Cmax.

Class Cl2

n = 20 n = 50 n = 150 n = 300

Deviation Opt Deviation Opt Deviation Opt Deviation Opt

TS1 6.71 2 9.52 1 5.17 0 4.56 1
TS2 0.00 20 0.00 19 0.00 18 0.00 17
TS3 0.21 15 0.00 17 0.00 16 0.00 16
TS4 0.87 12 0.71 5 0.41 4 0.15 4
TS5 0.05 18 0.00 18 0.00 16 0.00 12

Table 10. Meta heuristics results for Cl3, F2(D2, D2)||Cmax.

Class Cl3

n = 20 n = 50 n = 150 n = 300

Deviation Opt Deviation Opt Deviation Opt Deviation Opt

TS1 1.59 1 1.18 1 0.31 1 0.05 0
TS2 0.00 20 0.00 19 0.00 20 0.15 17
TS3 0.00 20 0.00 20 0.00 20 0.15 17
TS4 0.00 17 0.00 17 0.00 11 0.05 19
TS5 0.00 20 0.00 19 0.00 19 0.00 20

Table 11. Meta heuristics results for Cl4, F2(D2, D2)||Cmax.

Class Cl4

n = 20 n = 50 n = 150 n = 300

Deviation Opt Deviation Opt Deviation Opt Deviation Opt

TS1 3.18 5 3.07 2 2.25 1 1.38 1
TS2 0.00 20 0.00 19 0.00 20 0.00 20
TS3 0.00 18 0.00 18 0.00 18 0.00 20
TS4 0.05 18 0.00 17 0.00 19 0.00 19
TS5 0.00 20 0.00 19 0.00 20 0.00 20

Table 12. Meta heuristic results for Cl5, F2(D2, D2)||Cmax.

Class Cl5

n = 20 n = 50 n = 150 n = 300

Deviation Opt Deviation Opt Deviation Opt Deviation Opt

TS1 6.81 2 6.49 0 2.77 0 2.82 0
TS2 0.00 20 0.00 17 0.00 17 0.20 15
TS3 0.10 15 0.00 19 0.00 14 0.10 15
TS4 0.25 15 0.71 9 0.00 6 0.00 5
TS5 0.00 20 0.00 17 0.00 19 0.10 15

Workshop 2 : F2(D3, D4)||Cmax

For the second considered configuration, where P = 3 and M = 4, Tables 13–17
show that the procedure TS1 failed to perform with a deviation that reaches 18.7% for
the instance class Cl5 and n = 20 jobs. Other procedures, such as TS2, TS3, and TS5,

Computation 2023, 11, 137 22 of 25

performed well with a maximum deviation recorded of 0.65% for TS2 with instance class
Cl1 and n = 20 jobs.

Table 13. Meta heuristics results for Cl1, F2(D3, D4)||Cmax.

Class Cl1

n = 20 n = 50 n = 150 n = 300

Deviation Opt Deviation Opt Deviation Opt Deviation Opt

TS1 15.60 1 10.38 0 4.50 0 3.58 0
TS2 0.67 16 0.51 13 0.10 15 0.00 18
TS3 0.41 16 0.10 17 0.00 19 0.00 20
TS4 1.74 10 0.20 11 0.10 11 0.00 10
TS5 0.10 18 0.00 20 0.00 20 0.00 19

Table 14. Meta heuristics results for Cl2, F2(D3, D4)||Cmax.

Class Cl2

n = 20 n = 50 n = 150 n = 300

Deviation Opt Deviation Opt Deviation Opt Deviation Opt

TS1 13.30 1 10.49 1 6.10 0 3.38 0
TS2 0.46 16 0.51 12 0.15 13 0.00 12
TS3 0.15 19 0.05 15 0.00 14 0.00 14
TS4 0.97 12 0.10 13 0.15 5 0.00 5
TS5 0.15 19 0.00 20 0.00 17 0.00 20

Table 15. Meta heuristics results for Cl3,F2(D3, D4)||Cmax.

Class Cl3

n = 20 n = 50 n = 150 n = 300

Deviation Opt Deviation Opt Deviation Opt Deviation Opt

TS1 2.05 6 0.82 3 0.46 0 0.05 0
TS2 0.00 20 0.00 20 0.00 20 0.15 17
TS3 0.00 20 0.00 20 0.00 20 0.15 17
TS4 0.05 18 0.00 17 0.00 15 0.15 15
TS5 0.00 20 0.00 20 0.00 20 0.15 16

Table 16. Meta heuristics results for Cl4, F2(D3, D4)||Cmax.

Class Cl4

n = 20 n = 50 n = 150 n = 300

Deviation Opt Deviation Opt Deviation Opt Deviation Opt

TS1 7.48 2 2.61 2 1.23 1 0.36 2
TS2 0.00 20 0.00 17 0.00 17 0.00 19
TS3 0.15 16 0.00 19 0.00 19 0.00 20
TS4 0.00 20 0.00 18 0.00 19 0.00 19
TS5 0.00 20 0.00 20 0.00 20 0.00 20

Table 17. Meta heuristics results for Cl5, F2(D3, D4)||Cmax.

Class Cl5

n = 20 n = 50 n = 150 n = 300

Deviation Opt Deviation Opt Deviation Opt Deviation Opt

TS1 19.09 2 12.16 0 9.02 0 6.71 0
TS2 0.00 20 0.05 17 0.05 19 0.05 16
TS3 0.15 18 0.00 20 0.00 19 0.00 15
TS4 3.69 11 0.46 14 0.00 4 0.05 7
TS5 0.05 19 0.00 20 0.00 20 0.00 16

Computation 2023, 11, 137 23 of 25

We also note that, for all problem sizes and for all instance classes, we have an average
of 19.3 optimal solutions among the 20 instances tested (with 16 optimal solutions at
worst case for Cl3, TS5, n = 300) which represents an overall performance of 96.5% for a
workshop of P = 3 and M = 4.

It is worth noting that the choice of the neighborhood operator can have a significant
impact on the performance of the tabu search procedure. In particular, our experiments
show that the NonNeighborSwap operator is well-suited for the movement-based manage-
ment mode employed by the TS2 procedure, while the InsrtShi f t operator is better suited
for the makespan-based management mode used by the TS5 procedure (as illustrated
in Table 3). This suggests that the choice of neighborhood operator should be carefully
considered in the design of a tabu search algorithm, and should be tailored to the specific
search strategy employed by the algorithm. Furthermore, it highlights the importance of
investigating the compatibility between different components of a metaheuristic algorithm,
as this can significantly affect its performance.

The influence of instance diversity on the performance of different tabu search versions
was investigated. Our results show that changes in process times and job distribution did
not have a significant impact on the performance of the tabu search procedures. However,
altering the workshop configuration had a noticeable effect on the performance of these
procedures. For instance, in the case of class Cl1 and n = 20 jobs, procedure TS4 saw an
increase in deviation from the lower bound from 0.60% to 1.70%, while procedure TS2
increased from 0.00% to 0.65%. These findings suggest that diversification techniques
may be particularly useful for optimizing scheduling problems in which the workshop
configuration is subject to change.

10. Conclusions

In this study, we conducted a comprehensive analysis of the two-stage flow shop prob-
lem with dedicated machines, specifically the F2(DP, DM)||Cmax problem. Our research
explored fundamental properties, including elimination rules, and investigated various
resolution techniques.

For exact resolution, we employed a constraint programming approach, which proved
to be a powerful tool for solving the problem efficiently. However, we also identified
limitations in certain instances, indicating the need for further research and improvement
in this area.

Furthermore, we explored approximate solution methods, including heuristics and
variations of the tabu search metaheuristic. Our simulation results demonstrated the
effectiveness of these approaches, particularly in the context of constraint programming
and the tabu search procedure.

While our findings highlight the potential of constraint programming and the tabu
search metaheuristic, addressing the identified limitations and enhancing the metaheuristic
approach should be a priority. This can involve improving constraint programming tech-
niques, exploring advanced metaheuristic algorithms, and integrating machine learning
and artificial intelligence approaches. These research directions aim to enhance the resolu-
tion of the two-stage flow shop problem with dedicated machines, ultimately advancing
scheduling techniques in real-life industrial scenarios.

In conclusion, this study contributes to the understanding of the two-stage flow shop
problem by showcasing the strengths of constraint programming and the tabu search
metaheuristic. Our findings provide a foundation for future investigations to build upon
these methodologies and advance the field further.

Author Contributions: Conceptualization and methodology, M.K.H., H.H. and N.D.; software,
M.K.H.; validation, H.H. and N.D.; formal analysis, M.K.H.; investigation, M.K.H. and H.H.; data
curation, M.K.H. and H.H.; writing—original draft preparation, M.K.H.; writing—review and editing,
M.K.H.; visualization, M.K.H.; supervision, H.H. and N.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Computation 2023, 11, 137 24 of 25

Data Availability Statement: The data is available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Esswein, C. Un Apport de Flexibilité Séquentielle pour L’ordonnancement Robuste. Ph.D. Thesis, Tours, France, 2003.
2. Grabowski, J.; Pempera, J. Sequencing of jobs in some production system. Eur. J. Oper. Res. 2000, 125, 535–550. [CrossRef]
3. Jin, Z.; Ohno, K.; Ito, T.; Elmaghraby, S. Scheduling hybrid flowshops in printed circuit board assembly lines. Prod. Oper. Manag.

2002, 11, 216–230. [CrossRef]
4. Lin, H.-T.; Liao, C.-J. A case study in a two-stage hybrid flow shop with setup time and dedicated machines. Int. J. Prod. Econ.

2003, 86, 133–143. [CrossRef]
5. Hadda, H. Contribution à L’étude et à la Résolution des Problèmes D’ordonnancement de Flow Shops D’assemblage et de Flow

Shops Hybrides à Machines Dédiées. Ph.D. Thesis, École Nationale d’ingénieurs de Tunis, Tunis, Tunisia, 2009.
6. Tomazella, C.P.; Nagano, M.S. A comprehensive review of branch-and-bound algorithms: Guidelines and directions for further

research on the flowshop scheduling problem. Expert Syst. Appl. 2020, 158, 113556. [CrossRef]
7. Ignall, E.; Schrage, L. Application of the branch and bound technique to some flow-shop scheduling problems. Oper. Res. 1965,

13, 400–412. [CrossRef]
8. Besbes, W.; Loukil, T.; Teghem, J. A two-stage flow shop with parallel dedicated Machines. In Proceedings of the 8th International

Conference of Modeling and Simulation—MOSIM, Hammamet, Tunisia, 10–12 May 2010.
9. Lei, D.; Guo, X. A parallel neighborhood search for order acceptance and scheduling in flow shop environment. Int. J. Prod. Econ.

2015, 165, 12–18. [CrossRef]
10. Ramezanian, R. Milp formulation and genetic algorithm for non-permutation flow shop scheduling problem with availability

constraints. Int. J. Appl. Oper. Res. 2014, 4, 11–26.
11. Zeballos, L.J.; Castro, P.M.; Mendez, C.A. Integrated constraint programming scheduling approach for automated wet-etch

stations in semiconductor manufacturing. Ind. Eng. Chem. Res. 2011, 50, 1705–1715. [CrossRef]
12. Samarghandi, H.; Behroozi, M. On the exact solution of the no-wait flow shop problem with due date constraints. Comput. Oper.

Res. 2017, 81, 141–159. [CrossRef]
13. Samarghandi, H. Minimizing the makespan in a flow shop environment under minimum and maximum time-lag constraints.

Comput. Ind. Eng. 2019, 136, 614–634. [CrossRef]
14. Said, A.B.; Mouhoub, M. A constraint satisfaction problem (csp) approach for the nurse scheduling problem. In Proceedings of

the 2022 IEEE Symposium Series on Computational Intelligence (SSCI), Singapore, 4–7 December 2022; pp. 790–795.
15. Gehring, M.; Volk, R.; Braun, N.; Schultmann, F. Scheduling projects with converging and diverging material flows using

ibm ilog cp optimizer—An experimental performance analysis. In International Conference on Operations Research; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 341–346.

16. Nishikawa, H.; Shimada, K.; Taniguchi, I.; Tomiyama, H. A constraint programming approach to scheduling of malleable tasks.
Int. J. Netw. Comput. 2019, 9, 131–146. [CrossRef] [PubMed]

17. Müller, D.; Müller, M.G.; Kress, D.; Pesch, E. An algorithm selection approach for the flexible job shop scheduling problem:
Choosing constraint programming solvers through machine learning. Eur. J. Oper. Res. 2022, 302, 874–891. [CrossRef]

18. Yunusoglu, P.; Topaloglu Yildiz, S. Constraint programming approach for multi-resource-constrained unrelated parallel machine
scheduling problem with sequence-dependent setup times. Int. J. Prod. Res. 2022, 60, 2212–2229. [CrossRef]

19. Herrmann, J.W.; Lee, C.-Y. Three-Machine Look-Ahead Scheduling Problems; Department of Industrial and Systems Engineering,
University of Florida: Gainesville, FL, USA, 1992.

20. Johnson, S.M. Optimal two-and three-stage production schedules with setup times included. Nav. Res. Logist. Q. 1954, 1, 61–68.
[CrossRef]

21. Conway, R.W.; Maxwell, W.L.; Miller, L.W. Theory of Scheduling; Addison-Wesley Publishing Company: Boston, MA, USA, 1967.
22. Xiao, W.; Hao, P.; Zhang, S.; Xu, X. Hybrid flow shop scheduling using genetic Algorithms. In Proceedings of the 3rd World

Congress on Intelligent Control and Automation (Cat. No. 00EX393), Hefei, China, 26 June–2 July 2000; Volume 1, pp. 537–541.
23. Haouari, M.; M’Hallah, R. Heuristic algorithms for the two-stage hybrid flowshop problem. Oper. Res. Lett. 1997, 21, 43–53.

[CrossRef]
24. Hajji, M.K.; Hadda, H. Contribution à la Résolution des Problèmes de Flow Shops avec Mechines Dédiées, Dates de Disponiblité

et Délais de Livraison. Master’s Thesis, Institut Supèrieur de Transport et de la Logistique, Sousse, Tunisia, 2012.
25. Hajji, M.K.; Hadda, H.; Dridi, N. The two-stage hybrid flow shop problem with dedicated machines under release dates and

delivery times. Int. J. Adv. Oper. Manag. 2015, 7, 300–316. [CrossRef]
26. Nowicki, E.; Smutnicki, C. The flow shop with parallel machines: A tabu search approach. Eur. J. Oper. Res. 1998, 106, 226–253.

[CrossRef]
27. Wardono, B.; Fathi, Y. A tabu search algorithm for the multi-stage parallel machine problem with limited buffer capacities. Eur. J.

Oper. Res. 2004, 155, 380–401. [CrossRef]
28. Jin, Z.; Yang, Z.; Ito, T. Metaheuristic algorithms for the multistage hybrid flowshop scheduling problem. Int. J. Prod. Econ. 2006,

100, 322–334. [CrossRef]

http://doi.org/10.1016/S0377-2217(99)00224-6
http://dx.doi.org/10.1111/j.1937-5956.2002.tb00492.x
http://dx.doi.org/10.1016/S0925-5273(03)00011-2
http://dx.doi.org/10.1016/j.eswa.2020.113556
http://dx.doi.org/10.1287/opre.13.3.400
http://dx.doi.org/10.1016/j.ijpe.2015.03.013
http://dx.doi.org/10.1021/ie1016199
http://dx.doi.org/10.1016/j.cor.2016.12.013
http://dx.doi.org/10.1016/j.cie.2019.07.048
http://dx.doi.org/10.15803/ijnc.9.2_131
http://www.ncbi.nlm.nih.gov/pubmed/37403117
http://dx.doi.org/10.1016/j.ejor.2022.01.034
http://dx.doi.org/10.1080/00207543.2021.1885068
http://dx.doi.org/10.1002/nav.3800010110
http://dx.doi.org/10.1016/S0167-6377(97)00004-7
http://dx.doi.org/10.1504/IJAOM.2015.075026
http://dx.doi.org/10.1016/S0377-2217(97)00260-9
http://dx.doi.org/10.1016/S0377-2217(02)00873-1
http://dx.doi.org/10.1016/j.ijpe.2004.12.025

Computation 2023, 11, 137 25 of 25

29. Grabowski, J.; Wodecki, M. A very fast tabu search algorithm for the permutation flow shop problem with makespan criterion.
Comput. Oper. Res. 2004, 31, 1891–1909. [CrossRef]

30. Chen, L.; Bostel, N.; Dejax, P.; Cai, J.; Xi, L. A tabu search algorithm for the integrated scheduling problem of container handling
systems in a maritime terminal. Eur. J. Oper. Res. 2007, 181, 40–58. [CrossRef]

31. Umam, M.S.; Mustafid, M.; Suryono, S. A hybrid genetic algorithm and tabu search for minimizing makespan in flow shop
scheduling problem. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 7459–7467. [CrossRef]

32. Xu, W.; Hu, Y.; Luo, W.; Wang, L.; Wu, R. A multi-objective scheduling method for distributed and flexible job shop based on
hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission. Comput. Ind. Eng. 2021,
157, 107318. [CrossRef]

33. Ma, Y.; He, Z.; Wang, N.; Demeulemeester, E. Tabu search for proactive project scheduling problem with flexible resources.
Comput. Oper. Res. 2023, 153, 106185. [CrossRef]

34. Zhang, X.; Guo, A.; Ai, Y.; Tian, B.; Chen, L. Real-time scheduling of autonomous mining trucks via flow allocation-accelerated
tabu search. IEEE Trans. Intell. Veh. 2022, 7, 466–479. [CrossRef]

35. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.R. Optimization and approximation in deterministic sequencing and scheduling:
A survey. Ann. Discret. Math. 1979, 5, 287–326.

36. Lawler, E.L. Optimal sequencing of a single machine subject to precedence Constraints. Manag. Sci. 1973, 19, 544–546. [CrossRef]
37. Brucker, P.; Knust, S. Complexity Results for Scheduling Problems. 2009. Available online: http://www.mathematik.uni-

osnabrueck.de/research/OR/class (accessed on 14 June 2023).
38. Baptiste, P.; Le Pape, C.; Nuijten, W. Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems; Springer

Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 39.
39. Huang, T.-C.; Lin, B.M. Batch scheduling in differentiation flow shops for makespan minimization. Int. J. Prod. Res. 2013, 51,

5073–5082. [CrossRef]
40. Hajji, M.K.; Hadda, H.; Dridi, N. Une heuristique pour le flow shop hybride à deux étages avec machines dédiées. In Proceedings

of the ROADEF 2016: 17eme Congré Annuel de le Société Française de Recherche Opérationnelle et d’Aide à la Décision,
Compiègne, France, 10–12 February 2016.

41. Dridi, N.; Hadda, H.; Hajri-Gabouj, S. Méthode heuristique pour le problème de flow shop hybride avec machines dédiées.
RAIRO-Oper. Res. 2009, 43, 421–436. [CrossRef]

42. Hadda, H.; Dridi, N.; Hajri-Gabouj, S. Exact resolution of the two-stage hybrid flow shop with dedicated machines. Optim. Lett.
2014, 8, 2329–2339. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/S0305-0548(03)00145-X
http://dx.doi.org/10.1016/j.ejor.2006.06.033
http://dx.doi.org/10.1016/j.jksuci.2021.08.025
http://dx.doi.org/10.1016/j.cie.2021.107318
http://dx.doi.org/10.1016/j.cor.2023.106185
http://dx.doi.org/10.1109/TIV.2022.3166564
http://dx.doi.org/10.1287/mnsc.19.5.544
http://www.mathematik.uni-osnabrueck.de/research/OR/class
http://www.mathematik.uni-osnabrueck.de/research/OR/class
http://dx.doi.org/10.1080/00207543.2013.784418
http://dx.doi.org/10.1051/ro/2009024
http://dx.doi.org/10.1007/s11590-014-0741-y

	Introduction
	Literature Review
	Problem Description F2(DP,DM)||Cmax
	Dominant Solutions for the F2(DP,DM)||Cmax)
	Lower Bounds
	Modeling and Exact Resolution
	Heuristic Resolution
	Metaheuristic Resolution
	Neighborhood Operators
	Operator (NeighborSwap)
	Operator (NonNeighborSwap)
	Operator (InsrtShift)

	Management of Tabu Lists
	Movement Restriction Mode
	Objective Function Restriction Mode

	Diversification
	Selected Versions of the Tabu Search

	Computational Results
	Classes of Instances
	Exact Resolution Results
	Heuristics Testing
	Meta Heuristic Tests

	Conclusions
	References

