
Citation: Cañadas, A.M.; Mendez,

O.M.; Camacho, J.D. Algebraic

Structures Induced by the Insertion

and Detection of Malware.

Computation 2023, 11, 140.

https://doi.org/10.3390/

computation11070140

Academic Editor: Yudong Zhang

Received: 7 June 2023

Revised: 7 July 2023

Accepted: 7 July 2023

Published: 11 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Algebraic Structures Induced by the Insertion and Detection
of Malware
Agustín Moreno Cañadas 1,* , Odette M. Mendez 2 and Juan David Camacho Vega 1

1 Departamento de Matemáticas, Universidad Nacional de Colombia, Edificio Yu Takeuchi 404,
Kra 30 No. 45-03, Bogotá 11001000, Colombia

2 Departamento de Matemáticas, Universidad Nacional de Colombia, La Nubia, Manizales 170003, Colombia
* Correspondence: amorenoca@unal.edu.co

Abstract: Since its introduction, researching malware has had two main goals. On the one hand,
malware writers have been focused on developing software that can cause more damage to a targeted
host for as long as possible. On the other hand, malware analysts have as one of their main purposes
the development of tools such as malware detection systems (MDS) or network intrusion detection
systems (NIDS) to prevent and detect possible threats to the informatic systems. Obfuscation
techniques, such as the encryption of the virus’s code lines, have been developed to avoid their
detection. In contrast, shallow machine learning and deep learning algorithms have recently been
introduced to detect them. This paper is devoted to some theoretical implications derived from these
investigations. We prove that hidden algebraic structures as equipped posets and their categories of
representations are behind the research of some infections. Properties of these categories are given to
provide a better understanding of different infection techniques.

Keywords: additive functor; cybersecurity; computer virus; malware; metamorphic virus; poset;
poset representation

MSC: 68M25; 16G20; 16G30; 16G60

1. Introduction

Nowadays, the daily life of human being is significantly affected by computers and
informatic systems, making cybersecurity one of the main concerns to be addressed by
government agencies and companies to protect users from diverse threats arising from
Internet use. Such threats are mainly provoked by malware, i.e., a malicious software
designed to perform some unauthorized, often harmful or undesirable acts. Computer
viruses, trojan horses, worms, and ransomware are examples of malware [1–4].

According to Cohen [5], who is considered the pioneer researcher in computer viruses,
a virus is a program that is able to infect other programs by modifying them to include a
possibly evolved copy of itself. Cohen wrote the first program of this type which is currently
known as the Stoned boot virus. Another example of a computer virus is Stuxnet [6]
considered the first cyber-warfare weapon ever.

Perhaps the simplest kind of malware is a Trojan horse which tries to appeal to and
interest the user with some useful functionality to entice the user to run the program. In
particular, they have been used to steal passwords. Rootkits, AIDS TROJAN DISK, Qbot
(malware specialized in stealing user data) and TrickBot (malware focused on stealing
financial data) are examples of Trojan horses.

Worms are also examples of malware. They are network viruses, primarily replicating
on networks. Usually, these programs execute themselves automatically on a remote
machine with minimal user intervention. Particularly, worms do not require a host program.
SQL Slammer, Melissa (which is a macrovirus), Morris, as well as Netbus, Subseven, Deep
Throat, Back Orifice and Concept, are some of the most known worms [1].

Computation 2023, 11, 140. https://doi.org/10.3390/computation11070140 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation11070140
https://doi.org/10.3390/computation11070140
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0001-6812-5131
https://orcid.org/0000-0003-3953-2381
https://orcid.org/0000-0003-2475-6227
https://doi.org/10.3390/computation11070140
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation11070140?type=check_update&version=2

Computation 2023, 11, 140 2 of 20

Ransomware is a kind of malware which encrypts data on a computer to prevent
users from accessing their computer files or systems. Cybercriminals hold the data until
a ransom is paid. It is worth pointing out that the FBI has observed that one of the
most frequent attacks carried out over the last few years by cybercriminals is realized via
some ransomware. Wannacry, LockBit, Cryptolocker, Sodinokibi/REvil, and Phobos are
examples of this type of attack. According to Ploszek et al. [7], crypto Ransomware is
the most dangerous among the different Ransomware attacks. These attacks allow the
encryption of images, videos and any valuable user files.

At the beginning of the antivirus industry, malware detection was based on heuristic
features that identified particular malware by creating a reliable fingerprint. During the
detection, an antiviral engine checked the presence of the malware fingerprint in a file
against known malware fingerprints stored in the antivirus database. String Scanning,
Wildcards and Mismatches are examples of the first virus detection programs. Wildcards
were used to detect the metamorphic virus w32/Regswap. These techniques allowed
finding the sequence 83EB 0274 1683 EBOE 74OA 81EB 0301 0000 which identifies the
w32/Beast virus [1].

Fingerprints associated with infected files were sensitive to small changes in files.
Furthermore, malware writers invented metamorphic and polymorphic viruses, which
give rise to hundreds of thousands of new virus versions, making the previous detection
approaches ineffective. In this line, malware detection systems have been developed
based on traditional machine learning (support vector machines, decision trees, naive
Bayes classifier, etc.) and deep learning algorithms based on recurrent neural networks
(RNNs) [8,9].

It is worth pointing out that several authors need to be more convinced of the RNN’s
effectiveness for intrusion detection due to their vulnerability against adversarial attacks.
These authors have preferred the use of images and to train convolutional neural networks
to learn feature malware [10–12]. Another advancement in dealing with the use of machine
learning in NIDS was proposed by Iglesias and Criado [13], who used time series, visibility
graphs and multiplex networks to analyze the behavior of attackers’ computers. They
pointed out that tools such as Snort used to analyze network traffic and protocol have
disadvantages (e.g., no zero-day attacks detection [14]) to network intrusion detection.

Kaspersky [15] developed detection malware tools based on machine learning tech-
niques. In such a case, hash functions, and unsupervised learning confluent to extract file
features that can be computed quickly and directly retrieved from the structure of the exe-
cutable, like a file format description. Authors refer to [16,17] for good surveys regarding
recent trends of the deep learning use for malware detection, in particular, for descriptions
of cloud-based malware detection, mobile-device-based malware detection, and IoT-based
malware detection.

1.1. Motivations

Currently, there needs to be more malware investigations dealing with its relation
to the theory of representation of algebras. A comprehensive algebraic study of malware
insertion detection will give rise to a better understanding of different cyber-attacks; works
in this direction have been proposed by Webster [18]. This paper proves that attacks of
type Linux/Slapper or Scalper and some other metamorphic attacks in confluence with
detection techniques as those presented by Kaspersky based on machine learning methods
give rise to categories of representations of partially ordered sets. In particular, obfuscation
techniques associated with metamorphic attacks define categorical equivalences between
these categories.

1.2. Contributions

The main results of this paper are Theorems 2–4, and Corollary 1. Theorems 2 and 3
prove that some malware insertion-detection algorithms associated with some hierarchical
attacks define particular families of partially ordered sets (posets).

Computation 2023, 11, 140 3 of 20

Corollary 1 proves that posets introduced in Theorem 3 define hierarchical attacks
without hidden malware.

Theorem 4 proves that malware insertion-detection algorithms give rise to categorical
equivalences between categories of representations of posets.

This paper is structured as follows; Main definitions and notation are given in Section 2,
we present an overview of definitions and notation regarding malware (Section 2.1) and
posets (Section 2.2). We present the main results in Section 3. Section 4 gives an example of
the results obtained in Section 3. Concluding remarks are given in Section 5.

2. Preliminaries

This section is devoted to revising basic definitions and notation regarding malware
insertion and detection, as well as, partially ordered sets and their F-linear representa-
tions [1–4,19–22].

2.1. Malware

As explained in the introduction, malware is malicious software designed to perform
some unauthorized, often harmful or undesirable acts [1]. The development of malware
research has encouraged the introduction of sophisticated infection-detection malware
techniques. Recently discovered computer viruses and worms such as Stuxnet [6] and its
variations are examples of the research progress on the subject.

2.1.1. Computer Viruses

The typical structure of a computer virus consists of the following three subroutines [1]:

• Infect-executable. This routine finds available executable files to infect them by copying
its code.

• Do-damage or Payload. This is responsible for delivering the malicious part of the virus.
• Trigger-Pulled. Determines whether all the conditions required to deliver the payload

are satisfied.

In the earlier stages of the antivirus industry, malware detection on computers had
as a main goal to create a reliable fingerprint of a malicious file via its heuristic features.
For instance,

• Code fragments.
• Hashes of code fragments or the whole file.
• File properties.
• Combinations of these features.

The obtained fingerprint is compared with those stored in an antivirus database. How-
ever, malware writers introduced new versions of code virus for which the fingerprint
approach is inefficient. Currently, computer viruses include decryptors to hide their func-
tionality, encryption keys can be generated in different ways, such as constant, random but
fixed, sliding, and shifting, often the encryption is carried out by applying an xor operation
(e.g., W95/Memorial virus). However, other encryption techniques dealing with symmetry
key cryptography (e.g., the IDEA family of viruses) and public-key cryptography have
been used to encrypt viruses. Polymorphic and metamorphic computer viruses are examples
of the use of decryptors.

Polymorphic viruses can mutate their decryptors to a high number of different in-
stances that can take millions of different forms. The 1260 virus is an example of a poly-
morphic virus, it includes two sliding keys to decrypt its body and some junk instructions,
which are nothing but garbage in the code [1].

Metamorphic viruses create new virus generations that look different. They have one
single-code body that carries data as code.

Formally speaking a metamorphic virus can be defined as follows [4]:
Let ΨP(d, p) be a function computed by a computer program P. Then a pair v and v′ of

recursive functions are said to be a metamorphic virus if it satisfies the following identities:

Computation 2023, 11, 140 4 of 20

Ψv(δ)(d, p) =

D(d, p), if T(d, p),
Ψδ(d, p(v′(S(p)))), if I(d, p),
Ψδ(d, p) otherwise.

and

Ψv′(δ)(d, p) =

D′(d, p), if T(d, p),
Ψδ(d, p(v′(S′(p)))), if I′(d, p),
Ψδ(d, p) otherwise.

where (d, p) is a running environment consisting of data d and programs p stored on
computers. D(d, p), D′(d, p), and S(p) are recursive functions. Whereas, T(d, p) is called
the injury condition and I(d, p), I′(d, p) are called infection conditions.

The difference between polymorphic and metamorphic viruses is that each form of a
polymorphic virus has the same kernel and forms associated with metamorphic viruses
have their own kernel.

As an example, the following are two generations of the metamorphic virus W95/Regswap:

1. 5A pop edx 58 pop, eax
2. BF04000000 mov edi, 0004h BB04000000 mov ebx, 0004h
3. 8BF5 mov esi, ebp 8BD5 mov edx, ebp
4. B80C000000 mov eax, 000Ch BF0C000000 mov edi, 000Ch
5. 81C288000000 mov add, edx, 0088h 81C088000000 mov add, eax, 0088h
6. 8B1A mov ebx, [edx] 8B30 mov esi, [eax]
7. 899C8618110000 mov [δ] 89B4BA18110000 mov [δ′]
8. δ =esi+eax*4+00001118, ebx δ′ =edx+edi*4+00001118, esi.

Figure 1 shows examples of different generations produced by metamorphic viruses.

Figure 1. Generations of a complex metamorphic virus [1].

Computation 2023, 11, 140 5 of 20

Konstantinou [4] implemented a Hidden Markov Method to detect metamorphic
attacks. He implemented (via a virus construction kit) code obfuscation techniques, like
instruction reordering and garbage insertion, to produce the metamorphic versions of
a virus. We remind the readers that, instruction substitution, instruction permutation,
garbage code, variable substitution, and altering control flow are examples of obfuscation
techniques. They have been used by viruses and worms as Evol (2000), Zmist, Zperm,
Regswap, and Methaphor [1–4].

Some computer worms like Linux/Scalper develop so-called hierarchical attacks to
control remote networks. In such a case, each infected node receives crucial information,
such as the IP address of the adversary host and the addresses of the infected nodes. This
type of information is provided to the remaining nodes until all target network nodes
are infected.

Classical approaches to detect malware based on its fingerprint became ineffective
due to its vulnerability to zero-day attacks. Recently, Kaspersky [15] implemented machine
learning methods to detect packed routines. Their method consists of analyzing file features
resistant to small changes. According to this approach, the machine learns suitable hash
values h(x) associated with scanned files, and a similarity function is defined to determine
whether or not two of these files are similar.

Similar files constitute a so-called hash bucket. These hash buckets classify the scanned
files into two regions, named simple regions or hard regions. Files in simple regions of a hash
bucket are either pure benign or pure malware, and no further feature analysis is required.
Similarity pairs in these regions are of the form (h(x1), 0) or (0, h(x2)). In hard regions of a
hash bucket, the files can be benign and malware, and deep feature analysis is developed
for more precise detection. Similarity pairs in hard regions are of the form (h(x1), h(x2)).

Suppose the infection builds a hierarchical network, as in the case of a scalper attack.
Each node contains benign and malware files in simple and hard regions. If vectors
consisting of bits are used to denote such files, then a fixed node Ni has a structure c(Ni) of
the form.

c(Ni) = Si ∪Hi, 1 ≤ i ≤ si, frs, gln, hl′n ∈ {0, 1}.
Si = { f1i, f2i, . . . , fmi}.
Hi = {(gl1((ti+j)), hl′1((ti+j))), (gl1+1((ti+j)), hl′1+1((ti+j))), . . . , (gl1+ri((ti+j)), hl′1+ri((ti+j)))},

Hi,1 = {gl1((ti+j)), gl1+1((ti+j), . . . , gl1+ri((ti+j))},
Hi,2 = {hl′1((ti+j))), hl′1+1((ti+j))), . . . , hl′1+ri((ti+j)))}.

(1)

where Si (Hi) denote the set of simple (hard) files contained in Ni. It is assumed that all the
files have the same size.

Figure 2 shows the entries of the matrix c(Ni) =

Si 0
0 Hi,1
0 iHi,2

 of the node Ni, where

Si, Hi,1 and Hi,2 are matrix blocks of suitable size associated with files Si and Hi (see
identities (1)). In this case, we add as many zeroes as possible to satisfy restrictions related
to the inclusion of garbage instructions and size of the files. We also assume the notation
g + ih′ for each pair of the form (g, h′).

Obfuscation techniques as xor and row and column permutations can be applied to
the elements of the node c(Ni) to obtain new versions of the detected viruses.

A node Ni in a hierarchical attack is said to be strong (weak) if its files belong to a simple
(hard) region. Files in a strong node are either of pure benign type or pure malware type.
We let � () denote a strong (weak) node in a hierarchical attack.

Henceforth, we will assume that nodes associated with a hierarchical attack have the
structure given by the matrix shown in Figure 2.

Computation 2023, 11, 140 6 of 20

Figure 2. Matrix c(Ni) associated with a node in a hierarchical attack.

2.1.2. Using Information Theory to Detect and Insert Malware

As we have seen in previous sections, polymorphisms make infeasible static detection
of viruses. We remind the reader that there are two kinds of polymorphisms (those obtained
by data encryption and those obtained by data compressing). Machine learning methods
have been developed to detect different file features such as N-grams, statistical features,
and entropy. Particularly, entropy features are based on the entropy computation of the file
or some of its areas. Bearing in mind that benign files tend to have low entropy values,
whereas obfuscated or packed files tend to have high entropy values [23].

Lyda and Hamrock [24] introduced the idea of using entropy (over the entire file) to
classify packed malware. It is worth noting that nowadays, distinguishing between packed
and non-packed executable files is a strong line of investigation for malware analysts.
For instance, Mantovani et al. [23] implemented a machine-learning classifier based on
the union of features to identify different forms of packing. Lee et al. [25] used machine
learning to recover original files from backup system files (infected with ransomware) via
entropy techniques. Perdisci et al. [26] proposed studying specific packer features in the
portable executable file format. Whereas, Ugarte-Pedrero et al. [27] suggested that entropy
is the main feature of detecting packed files. They used the Zeus botnet, one of the first bot
families to adopt low entropy packing schemes.

Raphel et al. [28] used entropy to recognize polymorphic samples which use xor-based
encoders. Their approach is based on five steps (extraction of files or appropriated file
fragments, computation and concatenation of such fragments, computation of the entropy
for concatenated fragments and construction of a suitable similarity distance matrix).

We also recall that Lim et al. [29] proposed to analyze the different files as vectors or
streams of bytes to analyze some statistical features.

Entropy has also been used as a helpful feature to insert malicious files. In such a case,
the analyst splits a target file into shares or chunks to insert a low entropy pattern of bytes
between each share; then, the malicious file is reconstructed in memory to bypass the action
of high entropy file detectors. Menéndez et al. [30,31] used the entropy-based tools EnTS
and EEE to detect and conceal malicious files into executables. They also used VirusTotal to
reproduce the behavior of some anti-virus engines. Detect It Easy (DIE), PEiD, PackerID,
NFD, ExeScan, and Manalyze are popular tools to analyze malware. In particular, DIE and
PEiD have a component for entropy analysis [23,32].

Nowadays, an interesting problem in cryptography is proving the leakage resilience
of cryptographic implementations. Side-channel attacks (SCA) may be one of these imple-
mentations’ most significant threats [33]. In this kind of attack, a secret key implemented in
a device (e.g., a smart card) is retrieved by analyzing the side channel signals obtained from
its physical implementation. Low entropy masking schemes (LEMS) have been introduced
to guarantee high security against SCA attacks with less randomness than traditional mask-
ing schemes. Analysis of these types of schemes has been implemented by Li et al. [34],

Computation 2023, 11, 140 7 of 20

who studied leakage characteristics of multiplicative LEMS. Whereas Zhang et al. [35]
trained deep learning assisted with a new metric to improve SCA attacks. Security of LEMS
has also been studied by Grosso et al. [36], Ye et al. [37], and Zhang et al. [38].

Network security and channel capacity have been studied by Hua et al. [39], Adesso
et al. [40], And Yilmaz et al. [41], who introduced a method to estimate the maximum
amount of information leakage by some signals generated by the execution of some instruc-
tions in a processor.

2.2. Partially Ordered Sets and Their Representations

A partially ordered set or poset is a pair (P ,≤), where P is a possibly empty set endowed
with a relation ≤, which is

• Reflexive, i.e., x ≤ x, for any x ∈ P ,
• Antisymmetric, i.e., x ≤ y and y ≤ x implies x = y, for any x, y ∈ P .
• Transitive, i.e., x ≤ y and y ≤ z implies x ≤ z, for any x, y, z ∈ P .

Henceforth, if there is no confusion, we will write P instead of the pair (P ,≤) to
denote a poset.

Often, finite posets are described by their Hasse diagram, which is a system of sets
with the form {P ;Cr,L}, where r is a fixed positive real number (small enough) and for
each point p ∈ P , it is defined a unique point (x0, y0) ∈ R2 and a unique circle c ∈ Cr with
center (x0, y0) and radius r.

The set L consists of non-horizontal lines connecting circles of Cr, according to the
following rule:

• A line l connects two circles c and c′ with centers (x0, y0) and (x′0, y′0) associated with
points p and p′ in P if and only if p and p′ is a covering (i.e., if there is z ∈ P such that
x ≤ z ≤ y then x = z or y = z).

As an example, Figure 3 shows a Hasse diagram of a finite partially ordered set
P = {a, b, c, d, e, f } such that a < d, b < d, b < e, c < e, and c < f .

Computation 2023, 1, 0 8 of 21

Henceforth, if there is no confusion, we will write P instead of the pair (P ,≤) to
denote a poset.

Often, finite posets are described by their Hasse diagram, which is a system of sets
with the form {P ;Cr,L}, where r is a fixed positive real number (small enough) and for
each point p ∈ P , it is defined a unique point (x0, y0) ∈ R2 and a unique circle c ∈ Cr with
center (x0, y0) and radius r.

The set L consists of non horizontal lines connecting circles of Cr, according to the
following rule:

• A line l connects two circles c and c′ with centers (x0, y0) and (x′0, y′0) associated with
points p and p′ in P if and only if p and p′ is a covering (i.e., if there is z ∈ P such that
x ≤ z ≤ y then x = z or y = z).

As an example, Figure 3 shows a Hasse diagram of a finite partially ordered set
P = {a, b, c, d, e, f } such that a < d, b < d, b < e, c < e, and c < f .

d
a b c

d d

dd ed
@
@
@
@
@
@
@
@

fd
@
@
@
@
@
@
@
@

P =

Figure 3. Hasse diagram of the poset P = {a, b, c, d, e, f }.

A poset P is said to be a chain if for pair of points x, y ∈ P , it holds that x ≤ y or y ≤ x
(i.e., any pair of points in a chain are comparable). A poset P is an antichain if its points are
incomparable.

The width w(P) of a poset P is the size of its largest antichain (e.g. the width of a
chain is 1).

If R is a commutative ring and P is a finite poset then a P-subspace U is a system of
modules with the form

U = (U0; Ux | x ∈ P) (2)

where U0 is an R-module, Ux is a submodule of U0 for any x ∈ P , and

Ux ⊆ Uy provided that x ≤ y in P . (3)

If R is a field then a P-subspace is said to be an R-linear representation (or representation)
of the poset P [19–22].

If U = (U0; Ux | x ∈ P) and V = (V0; Vx | x ∈ P) are representations of a poset P
then their sum U ⊕V is a representation given by the following identity.

U ⊕V = (U0 ⊕V0; Ux ⊕Vx | x ∈ P). (4)

The representation 0 has 0 as ground vector space. Furthermore, a representation
U is said to be indecomposable if whenever U = U1 ⊕U2 then either U1 = 0 or U2 = 0.
Otherwise, U is said to be decomposable.

Figure 3. Hasse diagram of the poset P = {a, b, c, d, e, f }.

A poset P is said to be a chain if for pair of points x, y ∈ P , it holds that x ≤ y or y ≤ x
(i.e., any pair of points in a chain are comparable). A poset P is an antichain if its points are
incomparable.

The width w(P) of a poset P is the size of its largest antichain (e.g., the width of a
chain is 1).

If R is a commutative ring and P is a finite poset then a P-subspace U is a system of
modules with the form

U = (U0; Ux | x ∈ P) (2)

where U0 is an R-module, Ux is a submodule of U0 for any x ∈ P , and

Ux ⊆ Uy provided that x ≤ y in P . (3)

Computation 2023, 11, 140 8 of 20

If R is a field then a P-subspace is said to be an R-linear representation (or representation)
of the poset P [19–22].

If U = (U0; Ux | x ∈ P) and V = (V0; Vx | x ∈ P) are representations of a poset P
then their sum U ⊕V is a representation given by the following identity.

U ⊕V = (U0 ⊕V0; Ux ⊕Vx | x ∈ P). (4)

The representation 0 has 0 as ground vector space. Furthermore, a representation
U is said to be indecomposable if whenever U = U1 ⊕U2 then either U1 = 0 or U2 = 0.
Otherwise, U is said to be decomposable.

A morphism between two representations U = (U0; Ux | x ∈ P) and V = (V0; Vx |
x ∈ P) is an R-linear map ϕ : U0 → V0 such that ϕ(Ux) ⊆ Vx. ϕ is an isomorphism if
ϕ(Ux) = Vx, for any x ∈ P .

The composition of morphisms between representations is given by the usual compo-
sition of R-linear morphisms. The identity morphism associated with a representation U is
denoted 1U such that if ϕ : U → V is a morphism then ϕ1U = ϕ = 1V ϕ.

We let rep P denote the category of representations of a poset P , which is a Krull-
Schmidt category.

dim U denotes the dimension of a representation U of a poset P . It is an integral
vector of the form

dim U = (d0; dx | x ∈ P) (5)

where d0 is the dimension dimR U0 of the vector space U0 as vector space. Whereas,
dx = dimR Ux/ ∑

z∈xN
Uz, for any x ∈ P .

xM = {z ∈ P | z ≤ x}, xN = xM\{x}.
xO = {z ∈ P | x ≤ z}, xH = xO\{x}. (6)

One of the problems regarding the theory of representation of posets consists of giving
a complete description of the indecomposable representations of the categories rep P
defined by finite posets P .

Up-to-date, the algorithms of differentiation have been the main tool to classify posets,
the algorithm of differentiation with respect to a maximal point introduced by Nazarova
and Roiter and the algorithm of differentiation with respect to a suitable pair of points are
the most remarkable algorithms to reach such a classification. They are functors with the
main goal of reducing the dimension of the posets involved in the classification process.

The following is the definition of the algorithm of differentiation with respect to a
suitable pair of points also known as D− I or DI [19]: Let a and b be two points in a finite
poset P(a,b) then the pair (a, b) is said to be suitable for DI, if P(a,b) can be written as a sum
of the form

P(a,b) = aO + bM + C (7)

where C = c1 < c2 < · · · < cn is an n-point chain (n ≥ 0).
The derived poset P ′(a,b) is a subset of the modular lattice generated by P(a,b) such that

P ′(a,b) = (P(a,b) + C+ + C− + bM)\{C} (8)

where C+ and C− are n-point chains such that C+ = c+1 < c+2 < · · · < c+n , and C− = c−1 <
c−2 < · · · < c−n . c−i < c+i for all 1 ≤ i ≤ n, a < c+1 . Points in P\{C} inherit the relations
given by P(a,b). In particular, relations between these points and points c+i and c−i are given
by the relations between them and points ci.

Figure 4 shows Hasse diagrams of a poset P(a,b) with a suitable pair of points and its
corresponding derived poset.

Computation 2023, 11, 140 9 of 20
Computation 2023, 1, 0 10 of 21

a
c��
�
�
�

c
c1
��

cc2
��

c�� ccn
cb
�
�
�
�
�

DI−→
(a,b) c��

�
�
�

c
@@

��
c
@@ c
@@��
c�� c c

�
�
�
�
�

�� c�� �
�

c��
@@ c b

��

a c−1

c−2

c−n

c+1

c+2

c+n

Figure 4. Hasse diagrams of a poset P(a,b) with a suitable pair of points (a, b) and its corresponding
derived poset P ′(a,b).

Differentiation DI or D(a,b) : rep P(a,b) → rep P ′(a,b) is defined by the following
identities for a representation U = (U0; Ux | x ∈ P(a,b)) :

D(a,b)(U) = U′ = (U′0; U′x | x ∈ P ′(a,b)),

U′0 = U0,

U′c+i
= Uci + Ua,

U′c−i
= Uci ∩Ub,

U′x = Ux, for the remaining points x ∈ P ′(a,b),

ϕ′ = ϕ ∈ HomR(U, V), for any morphism-linear transformation ϕ : U → V ∈ rep P .
(9)

The following theorem is the main result regarding DI. For each i, 1 ≤ i ≤ n,
p(a, ci) = (U0; Ux | x ∈ P(a,b)) is an indecomposable representation for which, U0 = R is a
field. Ux = R is a field, for any x ∈ {a, ci}O. It is zero for the remaining points in the poset.

Theorem 1 (Theorem 5.6, [19]). The two-point differentiation with completion functor F(a,b) =
C(a,b)D(a,b) induces a categorical equivalence between quotient categories

rep P/〈p(a, c1), p(a, c2), . . . , p(a, cn)〉 ∼→ rep P ′(a,b)/〈p(a)〉. (10)

Where 〈p(a, c1), p(a, c2), . . . , p(a, cn)〉 (p(a)) is the ideal consisting of morphisms which pass
through direct sums of objects p(a, ci) (p(a)).

2.2.1. The Matrix Problem

The indecomposable representations of a poset P can be obtained as solutions of a
matrix problem. To do that, we note that each representation of P gives rise to a matrix
M = MP (a matrix representation) whose columns are partitioned into strips Mx labeled by
the points of the poset. Columns contained in the strip associated Mx consists of coordinates
with respect to a fixed basis B of U0 of generators of the subspace Ux. In this case, if Cx is
the set of columns in the strip Mx then span Cx = Ux.

If M and M′ are matrix representations of a poset P = {xi | 1 ≤ i ≤ n} with

M = Mx1 . . . Mxt , M′ = M′x1
. . . M′xt

then the direct sum M⊕M′ of M and M′ is given by the formula

M⊕M′ =
Mx1

... 0 . . . Mxt

... 0

0
... M′x1

. . . 0
... M′xt

Two representations M and M′ are said to be equivalent if one can be obtained from
the other using the following admissible transformations:

Figure 4. Hasse diagrams of a poset P(a,b) with a suitable pair of points (a, b) and its corresponding
derived poset P ′(a,b).

Differentiation DI or D(a,b) : rep P(a,b) → rep P ′(a,b) is defined by the following
identities for a representation U = (U0; Ux | x ∈ P(a,b)):

D(a,b)(U) = U′ = (U′0; U′x | x ∈ P ′(a,b)),

U′0 = U0,

U′c+i
= Uci + Ua,

U′c−i
= Uci ∩Ub,

U′x = Ux, for the remaining points x ∈ P ′(a,b),

ϕ′ = ϕ ∈ HomR(U, V), for any morphism-linear transformation ϕ : U → V ∈ rep P .

(9)

The following theorem is the main result regarding DI. For each i, 1 ≤ i ≤ n,
p(a, ci) = (U0; Ux | x ∈ P(a,b)) is an indecomposable representation for which, U0 = R is a
field. Ux = R is a field, for any x ∈ {a, ci}O. It is zero for the remaining points in the poset.

Theorem 1 (Theorem 5.6, [19]). The two-point differentiation with completion functor F(a,b) =
C(a,b)D(a,b) induces a categorical equivalence between quotient categories

rep P/〈p(a, c1), p(a, c2), . . . , p(a, cn)〉 ∼→ rep P ′(a,b)/〈p(a)〉. (10)

where 〈p(a, c1), p(a, c2), . . . , p(a, cn)〉 (p(a)) is the ideal consisting of morphisms which pass
through direct sums of objects p(a, ci) (p(a)).

The Matrix Problem

The indecomposable representations of a poset P can be obtained as solutions of a
matrix problem. To do that, we note that each representation of P gives rise to a matrix
M = MP (a matrix representation) whose columns are partitioned into strips Mx labeled by
the points of the poset. Columns contained in the strip associated Mx consists of coordinates
with respect to a fixed basis B of U0 of generators of the subspace Ux. In this case, if Cx is
the set of columns in the strip Mx then span Cx = Ux.

If M and M′ are matrix representations of a poset P = {xi | 1 ≤ i ≤ n} with
M = Mx1 . . . Mxt , M′ = M′x1

. . . M′xt then the direct sum M⊕M′ of M
and M′ is given by the formula

M⊕M′ =
Mx1

... 0 . . . Mxt

... 0

0
... M′x1

. . . 0
... M′xt

Two representations M and M′ are said to be equivalent if one can be obtained from
the other using the following admissible transformations:

• Elementary transformations of rows of the whole matrix.

Computation 2023, 11, 140 10 of 20

• Elementary column transformations of the columns within each vertical strip.
• Addition of columns of a strip Mxi .

Equivalent matrices give rise to isomorphic representations of the associated poset.

3. Main Results

We remind readers that an equipped poset P is a poset whose points define a partition
of the form P = P	 +P�. If x ∈ P� (x ∈ P) then x is said to be a strong point (weak
point). Relations R in equipped posets are partitioned into two sets R = R	 +R�, if a pair
(x, y) ∈ R� ((x, y) ∈ R) then we write x � y (x � y). In such a case if x ≤ y, i.e., (x, y) ∈ R
and y � z, i.e., (y, z) ∈ R◦ then x � z. Also, if x � y ≤ z then x � z [20,22].

We assume that the hierarchical attack (see Figure 2) model satisfies the following
additional condition:

1. All the files associated with the malware infecting a network belong to an isolated
strong node denoted M.

2. Each infected node x is encoded by finite sets of {0, 1}-vector columns, Sx ∪ Hx.
Columns in Sx encode either benign files or malware. Columns in Hx encode hidden
malware in hard regions.

3. The files in the malware node M are distributed among a fixed set of weak nodes
N0, N1, N2, . . . Nn, where N0 denotes the initial stage of the infection (hidden malware
associated with hard regions are contained in H0). c(Nj) = Sj ∪ Hj ⊂ Sj+1 ∪ Hj+1,
for any 0 ≤ j ≤ n− 1.

4. If a node P in the attacked network is infected by a node Nj for some 0 ≤ j ≤ n then
it holds that S0 ∪H0 ⊂ Sp, where P is encoded by Sp ∪Hp. Particularly, if P is also
infected by a weak node Nj, it holds that either Sj ∪Hj ⊂ Sp ∪Hp or Sj ∪Hj ⊂ Sp.

The following result proves that a hierarchical attack structured by matrices c(Ni)
(Figure 2) defines an equipped poset.

Theorem 2. A hierarchical attack defined by a strong node M as defined above and weak nodes
N0, N1, . . . , Nn with the structure given by a matrix c(Ni) (see Figure 2) and conditions (1)–(4)
defines an equipped poset.

Proof. We note that nodes in the infected network are the points in the equipped poset P.
Strong nodes correspond to strong points, and weak nodes correspond to weak points in
P. The stages of the infection start in N0, continue to N1 and so on. Since, for any pair of
weak nodes Ni and Nj, i < j it holds that Si ∪Hi ⊂ Sj ∪Hj with Hj 6= ∅ then Ni and Nj
are weakly related. Moreover, N0, N1, N2, . . . , Nn constitute a weak chain, in the sense that
its points and relations between them are weak, we write C = N0 � N1 � N2 ≺ · · · ≺ Nn.
Condition (3) proves that relations between weak points Nj and another point in P are
either weak or strong. Whereas, relations between N0 and points x ∈ P\C + M are strong.
Finally, we note that by definition the strong point M is incomparable with the other points
of the poset P. Therefore, P can be written as a sum with the form P = NO

0 + C + M.
Where NO

0 = {x ∈ P | N0 � x}. Figure 5 shows an example of an equipped poset
induced by a hierarchical attack. Double (single) lines denote strong (weak) relations.
In this case, N represents an arbitrary set of infected nodes related to the weak chain
N0 � N1 � · · · � Nn.

If Nx is a node infected by a hierarchical attack with files of type fij, (gkl , hmn) for
suitable indexes i, j, k, l, m, n, then spanZ2{ fij, gkl), hmn} is said to be the hull of Nx, we let
ŨNx denote the hull of the node Nx. Note that, span {Sx ∪Hx} = Ux ⊆ ŨNx . ŨNx = UNx

if and only if Nx is strong.
U−x denotes the strong subspace span{Sx} of the subspace Ux. In such a case,

Ũ−x = spanZ2+iZ2{Sx}.

Computation 2023, 11, 140 11 of 20
Computation 2023, 1, 0 12 of 21

	
	
	
	
	

��

��

��

m �N
M

N0

N1

N2

Nn−1

Nn

P =
· ··

HH
HH

HH
H

A
A
A
A
A
A
A

Figure 5. Diagram of an equipped poset P induced by a hierarchical attack.

If Nx is a node infected by a hierarchical attack with files of type fij, (gkl , hmn) for
suitable indexes i, j, k, l, m, n, then spanZ2{ fij, gkl), hmn} is said to be the hull of Nx, we let
ŨNx denote the hull of the node Nx. Note that, span {Sx ∪Hx} = Ux ⊆ ŨNx . ŨNx = UNx

if and only if Nx is strong.

U−x denotes the strong subspace span{Sx} of the subspace Ux. In such a case, Ũ−x =
spanZ2+iZ2{Sx}.

According to the definition of a hierarchical attack and its properties (1)-(5). We note
that hidden malware associated with hard regions can be pinpointed by xoring files in UN0

with files in weak nodes UNj . In such a case, it is built the span sum ŨN0 + UNj , 0 ≤ j ≤ n.

iI

I

D =
iI

I

iI

∗
∗ ∗ H1

I

Y1

X1

∗ Hn

I

Yn

Xn

∗ ∗
Q
UM

W0

I0

N0 N N1 Nn M

∗ H0

N−0
N+

0

N−1
N+

1

N−n
N+

n

Figure 6. Diagram of an equipped poset Pd induced by a malware detection.

The detection procedure determines the matrix D shown in Figure 6, labeled above
by the infected nodes (Ni, M and N) of a network. The bottom part (under the bold line)
is labeled by corresponding symbols N−i , N+

i . Such symbols denote subspaces spanned
by columns whose entries are elements over Z2 + iZ2. We let Ux denote the subspace
associated with a point x.

UN−i−1
⊂ UN−i

, 1 ≤ i ≤ n (these columns are denoted with the symbol ∗), these
subspaces encode pure malware (and weak relations) associated with nodes Ni. UN+

j
⊂

UN+
j+1

, 1 ≤ j ≤ j − 1. Columns associated with symbols Hi encode hidden malware

pinpointed by the detection process. Such malware can be inserted into the node N0 by
adding some garbage entries denoted I in the matrix D. Relations between subspaces
associated with points x ∈ P\C = {N0 � N1 � . . . Nn} keep without changes their
relations with the other points of P.

Relations between the infected files allow us giving the next result.

Figure 5. Diagram of an equipped poset P induced by a hierarchical attack.

According to the definition of a hierarchical attack and its properties (1)–(4). We note
that hidden malware associated with hard regions can be pinpointed by xoring files in UN0

with files in weak nodes UNj . In such a case, it is built the span sum ŨN0 + UNj , 0 ≤ j ≤ n.
The detection procedure determines the matrix D shown in Figure 6, labeled above

by the infected nodes (Ni, M and N) of a network. The bottom part (under the bold line)
is labeled by corresponding symbols N−i , N+

i . Such symbols denote subspaces spanned
by columns whose entries are elements over Z2 + iZ2. We let Ux denote the subspace
associated with a point x.

Computation 2023, 1, 0 12 of 21

	
	
	
	
	

��

��

��

m �N
M

N0

N1

N2

Nn−1

Nn

P =
· ··

HH
HH

HH
H

A
A
A
A
A
A
A

Figure 5. Diagram of an equipped poset P induced by a hierarchical attack.

If Nx is a node infected by a hierarchical attack with files of type fij, (gkl , hmn) for
suitable indexes i, j, k, l, m, n, then spanZ2{ fij, gkl), hmn} is said to be the hull of Nx, we let
ŨNx denote the hull of the node Nx. Note that, span {Sx ∪Hx} = Ux ⊆ ŨNx . ŨNx = UNx

if and only if Nx is strong.

U−x denotes the strong subspace span{Sx} of the subspace Ux. In such a case, Ũ−x =
spanZ2+iZ2{Sx}.

According to the definition of a hierarchical attack and its properties (1)-(5). We note
that hidden malware associated with hard regions can be pinpointed by xoring files in UN0

with files in weak nodes UNj . In such a case, it is built the span sum ŨN0 + UNj , 0 ≤ j ≤ n.

iI

I

D =
iI

I

iI

∗
∗ ∗ H1

I

Y1

X1

∗ Hn

I

Yn

Xn

∗ ∗
Q
UM

W0

I0

N0 N N1 Nn M

∗ H0

N−0
N+

0

N−1
N+

1

N−n
N+

n

Figure 6. Diagram of an equipped poset Pd induced by a malware detection.

The detection procedure determines the matrix D shown in Figure 6, labeled above
by the infected nodes (Ni, M and N) of a network. The bottom part (under the bold line)
is labeled by corresponding symbols N−i , N+

i . Such symbols denote subspaces spanned
by columns whose entries are elements over Z2 + iZ2. We let Ux denote the subspace
associated with a point x.

UN−i−1
⊂ UN−i

, 1 ≤ i ≤ n (these columns are denoted with the symbol ∗), these
subspaces encode pure malware (and weak relations) associated with nodes Ni. UN+

j
⊂

UN+
j+1

, 1 ≤ j ≤ j − 1. Columns associated with symbols Hi encode hidden malware

pinpointed by the detection process. Such malware can be inserted into the node N0 by
adding some garbage entries denoted I in the matrix D. Relations between subspaces
associated with points x ∈ P\C = {N0 � N1 � . . . Nn} keep without changes their
relations with the other points of P.

Relations between the infected files allow us giving the next result.

Figure 6. Diagram of an equipped poset Pd induced by a malware detection.

UN−i−1
⊂ UN−i

, 1 ≤ i ≤ n (these columns are denoted with the symbol ∗), these
subspaces encode pure malware (and weak relations) associated with nodes Ni. UN+

j
⊂

UN+
j+1

, 1 ≤ j ≤ j − 1. Columns associated with symbols Hi encode hidden malware

pinpointed by the detection process. Such malware can be inserted into the node N0 by
adding some garbage entries denoted I in the matrix D. Relations between subspaces
associated with points x ∈ P\C = {N0 � N1 � . . . Nn} keep without changes their
relations with the other points of P.

Relations between the infected files allow us to give the next result.

Theorem 3. The insertion-detection matrix D constitute an equipped poset Pd = C+ + C− +
M + N. Where, C+ = N+

0 � N+
1 � · · · � N+

n and C+ = N−0 � N−1 � · · · � N−n are chains,
M and N and their relations are defined as for the poset P.

Proof. By definition, point N+
0 is a strong point. Furthermore, since files associated with

the nodes N−i constitute malware satisfying the condition UN−i−1
⊂ UN−i

, 1 ≤ i ≤ n,

Computation 2023, 11, 140 12 of 20

then points N−j , 0 ≤ j ≤ n constitute a weak chain. In particular, N−j � M, for any j.
The same argument for subspaces N+

j allow us to infer that N+
0 � N+

1 . Since N+
i � N+

i+1,

1 ≤ i ≤ n− 1, it holds that N+
0 � N+

i . Moreover, N−j � N+
j � N+

j+1, for any 0 ≤ j ≤ n− 1,

N−n � N+
n . Since relations between points N−j , N+

j and points in subset N ∪ {M} are
inherited by the relations that these points have with points N0, . . . , Nn. The following
Figure 7 shows the poset Pd defined by the insertion-detection matrix D.

Computation 2023, 1, 0 13 of 21

Theorem 3. The insertion-detection matrix D constitute an equipped poset Pd = C+ + C− +
M + N. Where, C+ = N+

0 � N+
1 � · · · � N+

n and C+ = N−0 � N−1 � · · · � N−n are chains,
M and N and their relations are defined as for the poset P.

Proof. By definition, point N+
0 is a strong point. Furthermore, since files associated

with the nodes N−i constitute malware satisfying the condition UN−i−1
⊂ UN−i

, 1 ≤ i ≤ n,

then points N−j , 0 ≤ j ≤ n constitute a weak chain. In particular, N−j � M, for any j.
The same argument for subspaces N+

j allow us to infer that N+
0 � N+

1 . Since N+
i � N+

i+1,

1 ≤ i ≤ n− 1, it holds that N+
0 � N+

i . Moreover, N−j � N+
j � N+

j+1, for any 0 ≤ j ≤ n− 1,

N−n � N+
n . Since relations between points N−j , N+

j and points in subset N ∪ {M} are
inherited by the relations that these points have with points N0, . . . , Nn. The following
Figure 7 shows the poset Pd defined by the insertion-detection matrix D. �

�
	

	
	
	
	

	
	
	
	

��

��

��

��

��

��

@@

@@

@@

@@

@@��

m
�

N

M

N+
0

N+
1

N+
2

N+
n−1

N+
n

N−n
N−n−1

N−2
N−1

N−0N−0

Pd = · ··

HH
HH

HH
H

A
A
A
A
A
A
A

Figure 7. Diagram of an equipped poset Pd induced by a malware detection.

Corollary 1. The hierarchical attack defined by an equipped poset of type Pd has not hidden
malware.

Proof. The malware used in this type of attack is encoded by subspaces UN−j
and Hj

which are induced by simple regions. �

In a more general setting, we can define a functor D(N0,M) induced by a hierarchical
attack defined by an equipped poset of type P and its associated detection algorithm
defined by a corresponding equipped poset Pd. The following Figure 8 shows the poset P
and its detector Pd.

· ··

	
	
	
	
	

��

��

��

m �N
M

N0

N1

N2

Nn−1

Nn

HH
HH

HH
H

A
A
A
A
A
A
A

D(N0,M)−→

�
	

	
	
	
	

	
	
	
	

��

��

��

��

��

��

@@

@@

@@

@@

@@��

m
�

N

M

N+
0

N+
1

N+
2

N+
n−1

N+
n

N−n
N−n−1

N−2
N−1

N−0N−0

· ··

HH
HH

HH
H

A
A
A
A
A
A
A

Figure 8. Diagrams of hierarchical attacks with and without hidden malware.

If we replace the field Z2 for the real numbers field and Z2 + iZ2 for the complex
numbers field. Then (R,C)-column transformations between rows and columns of the

Figure 7. Diagram of an equipped poset Pd induced by a malware detection.

Corollary 1. The hierarchical attack defined by an equipped poset of type Pd has no hidden malware.

Proof. The malware used in this type of attack is encoded by subspaces UN−j
and Hj which

are induced by simple regions.

In a more general setting, we can define a functor D(N0,M) induced by a hierarchical
attack defined by an equipped poset of type P and its associated detection algorithm
defined by a corresponding equipped poset Pd. The following Figure 8 shows the poset P
and its detector Pd.

Computation 2023, 1, 0 13 of 21

Theorem 3. The insertion-detection matrix D constitute an equipped poset Pd = C+ + C− +
M + N. Where, C+ = N+

0 � N+
1 � · · · � N+

n and C+ = N−0 � N−1 � · · · � N−n are chains,
M and N and their relations are defined as for the poset P.

Proof. By definition, point N+
0 is a strong point. Furthermore, since files associated

with the nodes N−i constitute malware satisfying the condition UN−i−1
⊂ UN−i

, 1 ≤ i ≤ n,

then points N−j , 0 ≤ j ≤ n constitute a weak chain. In particular, N−j � M, for any j.
The same argument for subspaces N+

j allow us to infer that N+
0 � N+

1 . Since N+
i � N+

i+1,

1 ≤ i ≤ n− 1, it holds that N+
0 � N+

i . Moreover, N−j � N+
j � N+

j+1, for any 0 ≤ j ≤ n− 1,

N−n � N+
n . Since relations between points N−j , N+

j and points in subset N ∪ {M} are
inherited by the relations that these points have with points N0, . . . , Nn. The following
Figure 7 shows the poset Pd defined by the insertion-detection matrix D. �

�
	

	
	
	
	

	
	
	
	

��

��

��

��

��

��

@@

@@

@@

@@

@@��

m
�

N

M

N+
0

N+
1

N+
2

N+
n−1

N+
n

N−n
N−n−1

N−2
N−1

N−0N−0

Pd = · ··

HH
HH

HH
H

A
A
A
A
A
A
A

Figure 7. Diagram of an equipped poset Pd induced by a malware detection.

Corollary 1. The hierarchical attack defined by an equipped poset of type Pd has not hidden
malware.

Proof. The malware used in this type of attack is encoded by subspaces UN−j
and Hj

which are induced by simple regions. �

In a more general setting, we can define a functor D(N0,M) induced by a hierarchical
attack defined by an equipped poset of type P and its associated detection algorithm
defined by a corresponding equipped poset Pd. The following Figure 8 shows the poset P
and its detector Pd.

· ··

	
	
	
	
	

��

��

��

m �N
M

N0

N1

N2

Nn−1

Nn

HH
HH

HH
H

A
A
A
A
A
A
A

D(N0,M)−→

�
	

	
	
	
	

	
	
	
	

��

��

��

��

��

��

@@

@@

@@

@@

@@��

m
�

N

M

N+
0

N+
1

N+
2

N+
n−1

N+
n

N−n
N−n−1

N−2
N−1

N−0N−0

· ··

HH
HH

HH
H

A
A
A
A
A
A
A

Figure 8. Diagrams of hierarchical attacks with and without hidden malware.

If we replace the field Z2 for the real numbers field and Z2 + iZ2 for the complex
numbers field. Then (R,C)-column transformations between rows and columns of the

Figure 8. Diagrams of hierarchical attacks with and without hidden malware.

If we replace the field Z2 for the real numbers field and Z2 + iZ2 for the complex
numbers field. Then (R,C)-column transformations between rows and columns of the
matrices induced by the linear structure of posets P and Pd give rise to categories of

Computation 2023, 11, 140 13 of 20

representations of the equipped posets P and Pd. In such a case, a representation U
of an equipped poset P is a system of C-subspaces of the form U = (U0, Ux | x ∈ P),
with Ux ⊆ Uy (Ũx ⊂ U−y) provided that x � y (x � y).

A morphism ϕ : U → V between two representations U and V of an equipped poset
P is a C-linear transformation such that ϕ̃(Ux) ⊂ Vx. Note that, ϕ̃(u + iv) = ϕ(u) + iϕ(v),
for any pair of appropriated vectors. ϕ is an isomorphism if and only if ϕ̃(Ux) = Vx for
any x ∈ P.

Each representation U over the pair of fields (R,C) of an equipped poset can be
represented by a matrix M with entries over C separated into vertical strips (Mx; x ∈ P)
labeled by the points of P. Columns in Mx are generators of Ux.

The matrix problem associated with an equipped poset P is defined as follows:
Two matrix representations of an equipped poset are said to be equivalent, if one can

be obtained from the other via the following admissible transformations:

• Elementary transformations over C of rows of whole matrix.
• Elementary column transformations over C within each vertical strip.
• Additions of columns of a strip Mx to the columns of My if x � y.
• Independent additions of the real and imaginary part of the columns of a strip Mx to

the real and imaginary parts of a strip My if x � y.

Note that, if P = c1 ≺ c2 ≺ . . . cn−1 ≺ cn is a weak chain then ∅, P(ci), 1 ≤ i ≤ n,
T(ci), and T(ci, cj), 1 ≤ i < j ≤ n are its only indecomposable representations, where

• P(ci) = (C; (P(ci))x | x ∈ P), (P(ci))x = C, x = cj, i ≤ j, (P(ci))x = 0, if j < i.
• P(∅) = (C; (P(ci))x = 0 | x ∈ P).
• T(ci) = (C; (T(ci))x | x ∈ P), (T(ci))x = span{(1, i)t}, x = cj, i ≤ j, (T(ci))x = 0,

if j < i.
• T(ci, cj) = (C; (T(ci, cj))x | x ∈ P), (T(ci, cj))x = span{(1, i)t}, x = cs, i ≤ s < j,

(T(ci, cj))x = C̃ = span{(1, 0)t, (0, 1)t}, if j ≤ s ≤ n. (T(ci, cj))x = 0, if s < i.

Theorem 4. The insertion-detection matrix D defined over the pair of fields (R,C) associated
with the equipped posets P and Pd induces the functor D(N0,M) : rep P→ rep Pd such that for
U = (U0; Ux | x ∈ P) ∈ rep P it holds that

D(N0,M)(U) = (Ud
0 ; Ud

x | x ∈ P),

Ud
0 = U0,

Ud
N+

i
= ŨN0 + UNi , 0 ≤ i ≤ n,

Ud
N−i

= UNi ∩UM, 0 ≤ i ≤ n,

Ud
x = Ux, for the remaining points x ∈ P,

ϕd : Ud → Vd = ϕ : U → V, for any linear map-morphism ϕ : U0 → V0.

(11)

Moreover, D(N0,M) is a categorical equivalence between the quotient categories C = rep P/J
and Cd = rep Pd/Jd. Where, for fixed U, V ∈ rep P, J is the ideal of rep P consisting of
morphisms ϕ : U → V that pass through direct sums of the indecomposable objects P(N0), T(N0),
and T(N0, Ni)), i.e., J = 〈P(N0), T(N0), T(N0, Ni)) | 1 ≤ i ≤ n〉. The ideal Jd is defined in the
same fashion, i.e., Jd = 〈N+

0 〉.

Proof. Firstly, we note that Dd
(N0,M)

is an additive functor provided that for all morphisms

ϕ : U → V and ψ : V → W, it holds that, Dd
(N0,M)

(ψϕ)(Ux) ⊆ Wx, for any x ∈ P,

Dd
(N0,M)

(1U) = 1Ud , and for any U, V ∈ rep P, Hom(U, V) is a C-vector space by definition.

Computation 2023, 11, 140 14 of 20

Note that, for fixed U, V ∈ rep P, it holds that, J(U, V) ⊂ Hom(U, V) ⊆ Hom(Ud, Vd)
and J(U, V) ⊂ Jd(U, V). Moreover, if [X, Y] denotes the morphism-subspace of Hom(U, V)
whose elements satisfy the condition

ϕ ∈ [X, Y] if and only if X ⊇ ker ϕ and img ϕ ⊂ Y. (12)

Then it is easy to see that for fixed U, V ∈ rep P, and a morphism ϕ : U → V it holds
that

Hom(Ud, Vd) = Hom(U, V) + J(Ud, Vd),

Hom(U, V) ∩ J(Ud, Vd) = J(U, V).
(13)

Thus, any linear morphism δ : C(U, V)→ Cd(Ud, Vd) is an isomorphism.
The density of the functor D(N0,M) follows from the same ideas used to carry out a hier-

archical attack to the network defined by the equipped poset P. In such a case, we consider
that Ud

N+
0

= Ud
N+

0
∩ UM ⊕ X0, where X0 is complementary subspace,

X0 = span{z1, z2, . . . , zs}. For these vectors we define corresponding vectors w1, w2, . . . , ws.
We note that for each i, 1 ≤ i ≤ n. Any subspace Ud

N+
i

of the poset Pd ∪ {N+
0 � M}

can be written in the form

Ud
N+

i
= Ud

N+
i−1
⊕Ud

N−i
⊕ Hi ⊕Yi (14)

where Yi denotes an appropriated complementary subspace. Note that, Hi ⊂ UN+
0
∩UM

(corresponds to hidden malware) and UN−i
⊂ UM (corresponds to pure malware).

Let {hi1, hi2, . . . , hini} be a fixed basis then it is possible to define vectors of the form
ei1 + ihi1, . . . , eini + ihini , for some suitable vectors ei1, . . . , eini .

Let I0 = span{w1, . . . , ws, ei1, . . . , eini | 1 ≤ i ≤ n} and {yi1, . . . , yimi} a basis of the
subspace Yi then the representation L ∈ rep P such that

L0 = Ud
0 ⊕ I0,

LN0 = Ud
N+

0
∩UM ⊕ span{z1 + iw1, z2 + iw2, . . . , zs + iws} ⊕

ni

∑
j=1

n

∑
i=1

eij + ihij,

LNi = UNi−1 ⊕Ud
N−i
⊕ Hi ⊕

ni

∑
j=1

n

∑
i=1

eij + yij,

Lx = Ud
x for the remaining points x ∈ P.

(15)

is such that Ld = Ud ⊕ (P(N+
0))dimCI0 . We are done.

4. Experimental Data

This section applies Theorems 3 and 4 and Corollary 1 to insert and detect images.
Firstly, we show a 256 × 256 original image I extracted from specialized datasets such as
FERET and Kagle. We then create subspaces associated with a poset P = N0 ≺ N1 ≺ N2 ≺
N3 ≺ N4 ≺ N5 ∪ {M} as follows:

• The subspace UN0 associated with the weak point N0 is given by a linear combination
of images with the form

UN0 =
9

∑
i=0

DW(0,i) + A10 + 0.01M10 (16)

where DW(0,i) = αi Ai + βi Mi, 0.01 ≤ αi, βi ≤ 0.02.

Computation 2023, 11, 140 15 of 20

• For 1 ≤ j ≤ 5, each subspace UNj (associated with a weak point Nj) is given by linear
combinations of images with the form

UNj = γjNj−1 + δj M10+j + A10+j, 0.01 ≤ γj, δj ≤ 0.02. (17)

The embedded images Mj, 0 ≤ j ≤ 15 span the subspace UM (associated with the
strong point M). They are considered malware for images Aj, the construction of the
subspace UNj is considered the infection stage.

• For the detection process, we note that the subspaces UN−j
are given by the images

M10+j (i.e., UN−j
= span{M10+j}), 1 ≤ j ≤ 5. These constructions constitute the first

step for the detection process.
• The second step of the detection process consists on building subspaces UN+

j
given by

linear combinations of images with the form

UN+
j
=

10+j

∑
i=0

αj Aj +
10+j

∑
i=0

δj Mj. (18)

If t ∈ {0, . . . , 5} and for 0 ≤ j 6= t ≤ 5, it holds that 0.01 ≤ δj ≤ 0.02, δt = 1 then UN+
j

reveals Mt as a kind of malware infecting the image, Aj.

Figures 9–14 show examples of images Aj (original images), associated with subspaces
UNj , UN−j

(first step), and UN+
j

(denoted Hj in the second step) for 0 ≤ j ≤ 5. We compare

the associated histograms. We note that the histograms associated with the second step
suggest embedded malware.

Figure 9. Images associated with the subspace N0, in the first step of the malware detection process,
we extract simple malware of type Mj generating subspaces UN−j

. In the second step, the algorithm

extracts hidden (hard) malware Mj defining subspaces UN+
j

also denoted Hj.

Computation 2023, 11, 140 16 of 20

Figure 10. Images associated with subspaces UN1 , UN−1
, and UN+

1
.

Figure 11. Images associated with subspaces UN2 , UN−2
, and UN+

2 .

Computation 2023, 11, 140 17 of 20

Figure 12. Images associated with subspaces UN3 , UN−3
, and UN+

3
.

Figure 13. Images associated with subspaces UN4 , UN−4
, and UN+

4
.

Computation 2023, 11, 140 18 of 20

Figure 14. Images associated with subspaces UN5 , UN−5
, and UN+

5
.

5. Concluding Remarks and Future Work

Hierarchical attacks designed for peer-to-peer remote control via metamorphic worms
induce different algebraic structures. On the one hand, the infection process defines so-
called equipped posets. These posets constitute a mathematical model of a hierarchical
attack where the nodes are either weak or strong, accordingly of whether the node repre-
sents an infection with either hidden malware or pure malware. Pure malware is relatively
easy to detect, whereas hidden malware requires deep scanning analysis. Modeling such
an analysis gives rise to categories of representations of equipped posets over the pair of
fields (R,C), and malware insertion-detection defines a categorical equivalence between
quotient categories.

Future Work

Since this work focuses on the algebraic properties of hierarchical attacks, it remains an
open problem to determine the properties associated with more general types of infections
and NIDS based on deep learning algorithms.

Another task to develop in the future is to apply the proposed theoretical framework
to the real field of the intrusion and detection of malware.

Author Contributions: Investigation, writing, review and editing, A.M.C., O.M.M., J.D.C.V. All
authors have read and agreed to the published version of the manuscript.

Funding: Center of Excellence in Scientific Computing (CoE-SciCo) Universidad Nacional de Colombia.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Computation 2023, 11, 140 19 of 20

Abbreviations

The following abbreviations are used in this manuscript:
R (Real numbers)
C (Complex numbers)
DI (Algorithm of differentiation with respect to a suitable pair of points)
Poset (Partially Ordered Set)
P (Equipped poset)
� (Strong point)
	 (Weak point)
|| (Strong relation in an equipped poset)

References
1. Szor, P. The Art of Computer; Virus Research and Defense; Pearson Education Inc.: Hoboken, NJ, USA, 2005.
2. Venkatachalam, S. Detecting Undetectable Computer Viruses. Master’s Thesis, San José State University, San José, CA, USA, 2010;

Volume 156.
3. Alzarooni, K.M.A.Y. Malware Variant Detection. Ph.D. Thesis, University College London, London, UK, 2012.
4. Konstantinou, E. Metamorphic Virus: Analysis and Detection; Technical Report; Royal Holloway, University of London: London, UK

2008.
5. Cohen, F.B. A Short Course on Computer Viruses; Wiley Professional Computing: New York, NY, USA, 1994.
6. Matrosov, A.; Rodionov, E.; Harley, D.; Malcho, J. Stuxnet under the microscope. ESET LLC 2010, 6, 1–85.
7. Ploszek, R.; Švec, P.; Debnár, P. Analysis of encryption schemes in modern ransomware. Rad Hazu Maematičke Znanosti 2021, 25,

1–13.
8. Cannarile, A.; Carrera, F.; Galantucci, S.; Iannacone, A.; Pirlo, G. A study on malware detection and classification using the

analysis of API calls sequences through shallow learning and recurrent neural networks. In Proceedings of the TASEC’22: Italian
Conference on Cybersecurity, Rome, Italy, 20–23 June 2022; Volume 3260, pp. 1–11.

9. Amer, E.; Zelinka, I. A dynamic Windows malware detection and prediction method based on contextual understanding of API
call sequence. Comput. Secur. 2020, 92, 1–15. [CrossRef]

10. Hu, W.; Tang, Y. Black-box attacks against RNN based malware detection algorithms. In Proceedings of the AAAI Workshops,
New Orleans, LA, USA, 2–7 February 2018; pp. 245–251.

11. He, K. Malware Detection with Malware Images using Deep Learning Techniques. Bachelor’s Thesis, University of Canterbury,
Canterbury, UK, 2018.

12. Nataraj, L.; Karthikeyan, S.; Jacob, G.; Manjunath, B.S. Malware images: Visualization and automatic classification. In VizSec ’11:
Proceedings of the 8th International Symposium on Visualization for Cyber Security; ACM: Pittsburg, PA, USA, 2011; pp. 1–7.

13. Iglesias Perez, S.; Criado, R. Increasing the effectiveness of network intrusion detection systems (NIDSs) by using multiplex
networks and visibility graphs. Mathematics 2023, 11, 107. [CrossRef]

14. Kumar, J.; Subbiah, G. Zero-day malware detection and effective malware analysis using shapley ensemble boosting and bagging
approach. Sensors 2022, 22, 2798. [CrossRef]

15. Kaspersky Enterprise Cybersecurity. Machine Learning for Malware Detection. 2017. Available online: media.kaspersky.com
(accessed on 7 June 2023).

16. Tayyab, U.-E.-H.; Khan, F.B.; Durad, M.H.; Khan, A.; Lee, Y.S. A Survey of the Recent Trends in Deep Learning Based Malware
Detection. J. Cybersecur. Priv. 2022, 2, 800–829. [CrossRef]

17. Aslan, Ö.A.; Samet, R. A comprehensive review on malware detection approaches. IEEE Access 2020, 8, 1–23. [CrossRef]
18. Webster, M.; Malcom, G. Detection of metamorphic and virtualization-based malware using algebraic specification. J. Comp. Virol.

2009, 5, 221–245. [CrossRef]
19. Zavadskij, A.G. On Two Point Differentiation and its Generalization. Algebr. Struct. Their Represent. AMS Contemp. Math. Ser.

2005, 376, 413–436.
20. Zavadskij, A.G. Tame equipped posets. Linear Algebra Appl. 2003, 365, 389–465. [CrossRef]
21. Cañadas, A.M.; Gaviria, I.D.M. Categorical Properties of Some Algorithms of Differentiation for Equipped Posets. Algebra Discret.

Math. 2022, 33, 38–86.
22. Cañadas, A.M.; Vargas, V.C. On the apparatus of differentiation DI-DV for posets. São Paulo J. Math. Sci. 2019, 9, 249–286.

[CrossRef]
23. Mantovani, A.; Aonzo, S.; Ugarte-Pedrero, X.; Merlo, A.; Balzarotti, D. Prevalence and impact of low-entropy packing schemes

in the malware ecosystem. In Network and Distributed Systems Security (NDSS) Symposium; NDSS: San Diego, CA, USA, 2020;
pp. 1–15.

24. Lyda, R.; Hamrock, J. Using entropy analysis to find encrypted and packed malware. IEEE Secur. Priv. 2007, 5, 40–45. [CrossRef]
25. Lee, K.; Lee, S.-Y.; Yim, K. Machine learning based file entropy Analysis for ransomware detection in backup systems. IEEE Access

2019, 7, 110205–110215. [CrossRef]

http://doi.org/10.1016/j.cose.2020.101760
http://dx.doi.org/10.3390/math11010107
http://dx.doi.org/10.3390/s22072798
media.kaspersky.com
http://dx.doi.org/10.3390/jcp2040041
http://dx.doi.org/10.1109/ACCESS.2019.2963724
http://dx.doi.org/10.1007/s11416-008-0094-0
http://dx.doi.org/10.1016/S0024-3795(02)00412-3
http://dx.doi.org/10.1007/s40863-019-00117-8
http://dx.doi.org/10.1109/MSP.2007.48
http://dx.doi.org/10.1109/ACCESS.2019.2931136

Computation 2023, 11, 140 20 of 20

26. Perdisci, R.; Lanzi, A.; Lee, W. Classification of packed executables for accurate computer virus detection. Pattern Recognit. Lett.
2008, 29, 1941–1946. [CrossRef]

27. Ugarte-Pedrero, X.; Santos, I.; Sanz, B.; Laorden, C.; Bringas, P.G. Countering entropy measure attacks on packed software
detection. In Proceedings of the Consumer Communications and Networking Conference (CCNC) Las Vegas, NV, USA, 14–17
January 2012; pp. 164–168.

28. Raphel, J.; Vinod, P. Information theoretic method for classification of packed and encoded files. In Proceedings of the 8th
International Conference on Security of Information and Networks, SIN’15, Sochi, Russia, 8–10 September 2015; ACM: New York,
NY, USA, 2015; pp. 296–303.

29. Lim, C.; Ramli, K.; Cheng, W.; Kotualubun, Y.S. Mal-flux: Rendering hidden code of packed binary executable. Digit. Investig.
2019, 28, 83–95. [CrossRef]

30. Menéndez, H.D.; Bhattacharya, S.; Clark, D.; Barr, E.T. The arms race: Adversarial search defeats entropy used to detect malware.
Expert Syst. Appl. 2019, 118, 246–260. [CrossRef]

31. Menéndez, H.D.; Llorente, J.L. Mimicking anti-viruses with machine learning and entropy profiles. Entropy 2019, 21, 513.
[CrossRef] [PubMed]

32. Chen, S.-W.; Chuang, T.-H.; Tien, C.-W.; Chen, C.-W. An experience in enhancing machine learning classifier against low-entropy
packed malwares. Comput. Sci. Inf. Technol. 2021, 11, 4.

33. Cheng, W.; Guilley, S.; Carlet, C.; Danger, J.L.; Mesnager, S. Leakages in code-based masking: A unified quantification approach.
Iacr Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2021, 465–495. [CrossRef]

34. Li, Y.; Liu, S.; Guilley, S.; Tang, M. Analysis of multiplicative low entropy masking schemes against correlation power attack.
IEEE Trans. Inf. Forensics Secur. 2021, 16, 4466–4481. [CrossRef]

35. Zhang, Z.; Ding, A.A.; Fei, Y. A guessing entropy-based framework for deep learning-assisted side-channel analysis. IEEE Trans.
Inf. Forensics Secur. 2023, 18, 3018–3030. [CrossRef]

36. Grosso, V.; Standaert, FX.; Prouff, E. Low entropy masking schemes, Revisited. In Smart Card Research and Advanced Applications;
CARDIS 2013; Lecture Notes in Computer Science; Fr, A., Rohatgi, P., Eds.; Springer: Cham, Switzerland, 2014; Volume 8419.

37. Ye, X.; Eisenbarth, T. On the vulnerability of low entropy masking schemes. In Proceedings of the Smart Card Research and
Advanced Application Conference, Berlin, Germany, 27–29 November 2013.

38. Zhang, Z.; Dofe, J.; Yu, Q. Improving power analysis attack resistance using intrinsic noise in 3D ICs. Integration 2020, 73, 30–42.
[CrossRef]

39. Hua, J.; Zhou, Z.; Zhong, S. Flow misleading: Worm-hole attack in software-defined networking via building in-band covert
channel. IEEE Trans. Inf. Forensics Secur. 2021, 16, 1029–1043. [CrossRef]

40. Adesso, P.; Cirillo, M.; Di Mauro, M.; Matta, V. ADVoIP: Adversarial detection of encrypted and concealed VoIP. IEEE Trans. Inf.
Forensics Secur. 2020, 15, 943–958. [CrossRef]

41. Yilmaz, B.B.; Callan, R.L.; Prvulović, M.; Zajić, A.G. Capacity of the EM covert/side-channel created by the execution of
instructions in a processor. IEEE Trans. Inf. Forensics Secur. 2018, 13, 605–620. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.patrec.2008.06.016
http://dx.doi.org/10.1016/j.diin.2019.01.004
http://dx.doi.org/10.1016/j.eswa.2018.10.011
http://dx.doi.org/10.3390/e21050513
http://www.ncbi.nlm.nih.gov/pubmed/33267227
http://dx.doi.org/10.46586/tches.v2021.i3.465-495
http://dx.doi.org/10.1109/TIFS.2021.3096130
http://dx.doi.org/10.1109/TIFS.2023.3273169
http://dx.doi.org/10.1016/j.vlsi.2020.02.007
http://dx.doi.org/10.1109/TIFS.2020.3013093
http://dx.doi.org/10.1109/TIFS.2019.2922398
http://dx.doi.org/10.1109/TIFS.2017.2762826

	Introduction
	Motivations
	Contributions

	Preliminaries
	Malware
	Computer Viruses
	Using Information Theory to Detect and Insert Malware

	Partially Ordered Sets and Their Representations

	Main Results
	Experimental Data
	Concluding Remarks and Future Work
	References

