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Abstract: We present a new regularization method called Weights Reset, which includes period-
ically resetting a random portion of layer weights during the training process using predefined
probability distributions. This technique was applied and tested on several popular classification
datasets, Caltech-101, CIFAR-100 and Imagenette. We compare these results with other traditional
regularization methods. The subsequent test results demonstrate that the Weights Reset method
is competitive, achieving the best performance on Imagenette dataset and the challenging and un-
balanced Caltech-101 dataset. This method also has sufficient potential to prevent vanishing and
exploding gradients. However, this analysis is of a brief nature. Further comprehensive studies
are needed in order to gain a deep understanding of the computing potential and limitations of the
Weights Reset method. The observed results show that the Weights Reset method can be estimated
as an effective extension of the traditional regularization methods and can help to improve model
performance and generalization.

Keywords: machine learning; deep learning; implicit regularization; computer vision

1. Introduction

Deep learning models have achieved remarkable success in various applications, in-
cluding image classification, speech recognition, natural language processing, etc. However,
these models are prone to overfitting. This situation occurs when a model learns to fit the
training data too well, resulting in poor performance on new, unseen data. Regularization
techniques are applied to prevent overfitting by adding constraints, even implicit, to the
model parameters during training. The development of regularization methods has a long
history, the main milestones of which are:

• L1/L2 regularization. Originally, the idea of regularization was proposed by Tikhonov
(it is known as Tikhonov regularization [1]), and was developed for the solution of
ill-posed problems. It is effective as a method of estimating the coefficients of multiple-
regression models in scenarios where the input variables are highly correlated which
commonly occurs in models with large numbers of parameters (Ridge regression).
Later the idea of regularization, particularly L1/L2 regularization, was applied to the
solution of machine learning problems.

• The concept of weight decay, which involves adding a penalty term to the error
function to discourage large weights. It was first proposed in the context of neural
networks in [2]. While this is not an implicit regularization method, it serves as a
useful benchmark for later methods.

• The trade-off between model complexity and generalization performance, which is
an important theme in regularization. In [3], Lecun et al. proposed a technique
called “optimal brain damage” that involves pruning the weights in a neural net-
work to improve its generalization performance. It can be considered as a form of
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regularization since it reduces the number of parameters in the model and can help
prevent overfitting.

• Early stopping. Prechelt in [4] provided an analysis of the effectiveness of early
stopping for neural network training, including an exploration of the optimal stopping
point based on a validation set. Caruana in [5] explored the effects of early stopping
on different optimization algorithms for neural networks, and provided a detailed
analysis of the trade-off between overfitting and underfitting.

• Dropout is a regularization technique proposed by Srivastava et al. in [6]. It involves
randomly dropping out some of the neurons in a layer during training, which has the
effect of preventing the network from overreliance on any one feature. Dropout is an
implicit regularization technique because it introduces noise into the training process,
which has a regularizing effect.

• Batch normalization is a technique proposed by Ioffe and Szegedy in [7] that normal-
izes the inputs to each layer to have zero mean and unit variance. This has the effect
of stabilizing the distribution of activations and gradients, which makes training more
robust to hyperparameter choices and reduces the need for explicit regularization.

• Data augmentation is a technique that involves generating new training examples
by applying random transformations to the existing examples. This has the effect of
increasing the size of the training set and making the model more robust to variations
in the input. One of the earliest papers to introduce data augmentation in the context
of image classification using neural networks was [8].

• Implicit bias of optimization algorithms. The concept of implicit bias of optimization
algorithms was introduced in [9]. This paper showed that the choice of an optimization
algorithm can have a significant impact on the generalization performance of a neural
network, even when the data are linearly separable. Specifically, the authors showed
that gradient descent with weight decay implicitly imposes a bias towards solutions
that have smaller L2 norm, which can explain the generalization performance of neural
networks trained with this algorithm. The paper also introduced a framework for
analyzing the implicit bias of optimization algorithms on different classes of data.

It is worth mentioning some recently published papers addressing the regularization
problem. In [10], the authors argue that while the norm-based explanations of implicit
regularization have been successful in many cases, they may not provide a complete
picture of the phenomenon. Specifically, they propose that there may be other factors that
contribute to the implicit regularization effects in deep learning, which cannot be captured
by the norms of the weight matrices. To support this argument, the authors provide several
examples of deep learning models that exhibit implicit regularization effects that cannot
be fully explained by the norms of the weight matrices. For instance, they show that
certain architectures, such as residual networks and attention-based models, can exhibit
implicit regularization effects even when the norms of their weight matrices are relatively
large. The authors also propose several hypotheses for the underlying mechanisms that
contribute to the implicit regularization effects in deep learning, such as the geometry of
the optimization landscape and the properties of the data distributions. They suggest that a
more nuanced understanding of these mechanisms can lead to more effective and efficient
deep learning algorithms.

In [11], the authors argue that many previous works have focused on characterizing
implicit regularization using functions that are independent of the training data, such as the
norm of the weight matrix or the singular values of the data matrix. While these functions
can provide useful insights into the behavior of deep neural networks, they are limited in
their ability to capture the full complexity of the optimization landscape. To illustrate this
limitation, the authors present several examples of deep neural networks where the implicit
regularization cannot be fully explained by data-independent functions. They show that
in these cases, the optimization landscape has a non-trivial structure that depends on the
specific properties of the training data, and that cannot be captured by simple functions.
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In [12], the authors study a new optimization framework called Sharpness-Aware
Minimization (SAM) that aims to improve the generalization performance of deep learning
models. SAM is based on the idea that the optimization landscape of deep learning models
can have flat regions that lead to poor generalization, and sharp regions that lead to good
generalization. SAM aims to find a balance between the two by minimizing a combination
of the training loss and a measure of the sharpness of the optimization landscape. The
authors consider SAM through an implicit regularization lens and present a new theoretical
explanation of the generalization performance of SAM.

In [13], the authors empirically identify three phases of learning that explain the
impact of implicit regularization on the learning dynamics. They subsequently found
that bootstrapping alone is insufficient to explain the collapse of the effective rank. They
show that several other factors could confound the relationship between effective rank and
performance and conclude that studying this association under simplistic assumptions
could be highly misleading.

A large number of publications touching on various aspects of implicit regularization
show that this issue is far from being exhausted and requires new research to build effective
machine learning algorithms.

We propose a new regularization technique called Weights Reset that periodically
resets a randomly selected part of the weights of a deep neural network in the process of
training. The idea behind Weights Reset is to prevent the model from becoming stuck in
unsatisfactory local minima by exploring other parts of the optimization landscape.

According to our knowledge, Weights Reset has not been proposed or studied in the
literature before. We evaluate the effectiveness of Weights Reset by comparing it with other
traditional forms of deep learning regularization techniques on several image classification
datasets: CIFAR-100 [14], Caltech-101 [15], and Imagenette [16].

Computer vision (CV) tasks, alongside natural language processing, have long been
recognized as some of the most complex problems in machine learning. In this study, we
focus on the image classification problem, which is a widely studied and well-known task
among researchers. By investigating the effects of our proposed Weights Reset technique
on image classification, we aim to provide valuable insights and practical implications for
the research community. The results obtained from our experiments not only contribute to
the existing knowledge in CV but also serve as a starting point for future exploration of the
Weights Reset technique in other machine learning tasks.

Our experiments show that Weights Reset can improve the generalization performance
of deep neural networks, especially when the models are prone to overfitting.

The current research state of Weights Reset is still in its early stages, with limited
empirical evidence of its effectiveness and comparison to other regularization techniques.
Therefore, it is essential to evaluate the performance of Weights Reset against alternative
approaches to determine its strength in preventing overfitting.

In addition, we can express a hypothesis that the Weights Reset technique may be
associated with the phenomenon of Double Descent [17] in deep neural networks. However,
there is a lack of research that directly supports this assumption. Double Descent refers
to the counterintuitive observation that, under certain conditions, increasing the number
of model parameters can initially lead to worse generalization errors before ultimately
improving it. Despite its recent discovery, Double Descent has already become a subject of
active research in the machine learning community. It is possible that Weights Reset may
offer a new fresh perspective on this phenomenon.

Overall, our investigation contributes to the ongoing research in regularization tech-
niques in deep learning. It also provides a brief evaluation of Weights Reset against other
procedures, highlighting its potential significance as a novel approach to prevent overfitting
in deep learning models.
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2. Materials and Methods

To specify the Weights Reset procedure, we introduce a simple mathematical formula-
tion. Consider B(p) is a multivariate Bernoulli distribution with parameter p and suppose
that D is some arbitrary distribution used for model weights initialization. Then at a given
interval (after a certain specific number of training iterations, except for the last iteration),
we reset a random portion of the weights W = {wl} of selected layers in the neural network
using the following procedure:

w̃l = wl · (1−m) + ξ ·m, (1)

where · operation is an element-wise Hadamard-type multiplication, wl are current weights
for layer l, w̃l are reset weights for this layer, m ∼ B(pl) is a resetting mask, pl is a resetting
rate for a layer l, ξ ∼ D are new random weights. Further on, we considered normal
Glorot [18] or He [19] initialization as distribution D, depending on the activation function
used in the layer. We use a fixed resetting interval equal to one training epoch.

In this research, we aim to compare the performance of Weights Reset and other
regularization methods in deep neural networks. We use three popular image datasets,
CIFAR-100, Caltech-101, and Imagenette, to evaluate the performance of the different
regularization methods. Caltech-101 contains 101 object categories with 40 to 800 images
per category, split into 3060 training and 6084 testing images. CIFAR-100 possesses 100 fine-
grained classes with 600 images per class, divided into 50,000 training and 10,000 testing
images. Imagenette comprises 10 readily classifiable categories extracted from the Imagenet
dataset [20] with 9469 training and 3925 testing images. These datasets are challenging due
to variations in lighting, pose, scale, and occlusion. They are commonly used to evaluate
the performance of deep learning models in image classification tasks.

The used datasets consist of color images, but we had to preprocess them differently.
For the Caltech-101 and Imagenette datasets, we resized all images to a fixed size of
200 × 300 pixels, regardless of the original aspect ratio of the images. On the other hand,
for CIFAR-100 images, we kept their original size of 32 × 32 pixels. All pixel values
were scaled to [0; 1]. This was done to ensure consistency in the dataset preprocessing for
our experiments.

The code used in this research [21] will be publicly available upon publication. We
have used the publicly available TensorFlow Datasets (TFDS) [22] package to obtain the
datasets and predefined train/test splits.

Presented experiments were executed using the TensorFlow [23] and Keras [24] frame-
works. We implemented the deep neural network architecture as described in Table 1 and
used the Adam [25] optimizer with an initial learning rate of 10−4.

A batch size of 32 was chosen for all three datasets. This decision was made because
it allows for faster calculations, keeping sufficient exploration of the parameter space to
avoid becoming stuck in local minima during the optimization process.

Table 1. This table showcases the sequential architecture of our base model in Keras notation, as we
believe it is easily understandable for many researchers and straightforward in design. The number of
neurons in the last dense layer depends on the utilized dataset. We will use this model in subsequent
sections of this article.

Layer Name Layer Description

conv2d Conv2D(32, 5, strides=2, padding=‘same’, activation=‘relu’, kernel_initializer=‘he_normal’)
conv2d_1 Conv2D(64, 3, strides=2, padding=‘same’, activation=‘relu’, kernel_initializer=‘he_normal’)
conv2d_2 Conv2D(128, 3, strides=2, padding=‘same’, activation=‘relu’, kernel_initializer=‘he_normal’)
conv2d_3 Conv2D(256, 3, strides=2, padding=‘same’, activation=‘relu’, kernel_initializer=‘he_normal’)

flatten Flatten()
dense Dense(512, activation=‘relu’, kernel_initializer=‘he_normal’)

dense_1 Dense(num_classes, activation=‘softmax’, kernel_initializer=‘glorot_normal’)
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During the training process, we intentionally avoided the use of any data augmenta-
tion techniques. We also did not introduce data normalization layers to ensure simplicity
of comparison. By not adding any additional complexity to the model architecture, we will
obtain a better understanding of its behavior and improve its interpretability. Despite the
potential benefits of data augmentation and normalization, such as enhancing model per-
formance and generalization, we opted to rely solely on the model’s inherent capabilities.

We compared several regularization techniques commonly used in deep learning mod-
els. Specifically, we compare a non-regularized model with regularized models, including
Weights Reset, L1+L2 regularization [26], Dropout, Gaussian Dropout [6], and Gaussian
Noise [27].

To evaluate the effectiveness of each regularization technique, every model was tested
on a set of different parameters. Additionally, we examined the impact of applying Dropout
before each dense layer and only before the final dense layer.

To ensure a fair comparison between the regularization methods, we trained each
model for 80 epochs on every dataset, using the same training and validation splits and
initial model random weights values.

We did not focus on finding the best model architecture or aiming for near-zero
overfitting. Instead, we chose a simple neural network architecture prone to overfitting
and investigated the behavior of the model’s train and test losses, which in our case were
categorical cross-entropy for both. We did not examine classification metrics, as our primary
goal was to study the effect of different regularization techniques on the model’s ability to
generalize unseen data. By using a basic architecture, we were able to gain insights into
the impact of various regularization techniques on the model performance, without the
confounding effects of complex network architectures.

In machine learning frameworks such as Keras, the training loss is typically calculated
after each batch and exhibited as a moving average over the current epoch. However, this
may not be an entirely accurate representation of the real training loss, as the weights in the
model change at each iteration. Therefore, for the purpose of our experiments, we evaluated
the training loss after each epoch of training to obtain a more accurate representation of the
model performance.

Generally speaking, this research provides a comparison of different regularization
methods in deep neural networks for image classification tasks. By providing detailed
descriptions of our methods and protocols, we aim to facilitate reproducibility and further
research in this area.

3. Results
3.1. Evaluation of Various Weights Reset Configurations

To explore the effect of different configurations for Weights Reset, we conducted a
series of experiments using various combinations of layers and resetting rates. Specifically,
we considered configurations, ranging from total reset of predefined layers to no reset for
all (i.e., non-regularized model), and kept the lowest obtained test loss and corresponding
train loss for each configuration after training for 80 epochs. These experiments were
carried out independently on all three datasets.

To visualize the results, the best configuration losses for each configuration are plotted
in Figure 1 on the Y-axis against the number of configurations (ranging from 0 to the last
configuration where no Weights Reset was applied) on the X-axis. The description of used
configurations and their individual numbers on the plot are presented in Table 2.
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(a) (b)

(c)

Figure 1. Comparison of training and test losses for different Weights Reset configurations on
Caltech-101 (a), CIFAR-100 (b), and Imagenette (c) datasets.

Table 2. The table shows the configurations used for the Weights Reset experiments, where the
resetting rate per layer is specified. The first column is the configuration number. The subsequent
columns define the resetting rate per itemized layers of differently named layers.

Configuration Number
Resetting Rate Per Layer

Dense_1 Dense Conv2d_3 Conv2d_2

0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 0.5
2 1.0 1.0 0.5 0.5
3 1.0 1.0 1.0 0.0
4 1.0 1.0 0.5 0.0
5 1.0 0.5 0.5 0.0
6 1.0 1.0 0.0 0.0
7 1.0 0.5 0.0 0.0
8 0.5 0.5 0.0 0.0
9 1.0 0.0 0.0 0.0

10 0.5 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0

It is remarkable that the resulting plots for all datasets, as well as for both training
and test splits, exhibited a U-shape form. This result suggests that the best configuration
is likely to be found somewhere in the middle, between total resetting all layers and not
resetting any of them. Furthermore, these conclusions underscore the importance of finding
the optimal configuration for a specific model architecture before applying the Weights
Reset technique.

In subsequent experiments, we decided to use configuration number 6 as a baseline
for Weights Reset. This configuration showed promising results on all datasets, and seems
to strike a good balance between fully resetting numerous layers and no resetting at all.
By using this configuration as a reference point, we can compare the effectiveness of other
regularization techniques and gain insight into the behavior of the neural network.
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3.2. Comparison of Weights Reset with Other Regularization Techniques

We conducted a thorough analysis of various regularization methods and settings of
their parameters by training our model for 80 epochs and recording the lowest obtained test
loss and corresponding train loss (a form of early stopping). The results of this analysis are
shown in Table 3, which provides an overview of the relative effectiveness of each approach.

Table 3. Configurations relative to the base model architecture and the per-configuration results. The
table only includes the lowest test and corresponding train losses obtained during the 80 epochs of
training, with the best results and model regularizations highlighted in underlined text. Note: L1+L2
regularization was applied to kernel and bias weights as well as to layer activation with the same
specified rate.

Configuration
Caltech-101 CIFAR-100 Imagenette

Train
Loss

Test
Loss

Train
Loss

Test
Loss

Train
Loss

Test
Loss

Base model 0.8367 2.8035 2.0674 2.7846 0.6384 1.2371
Weights Reset for last dense layers with 1.0 rate 0.5940 1.9010 1.9595 2.4300 0.1181 0.8676

Dropout before dense_1with 0.3 rate 0.4209 2.7031 1.6716 2.6442 0.5044 1.2183
Dropout before dense_1 with 0.5 rate 0.6253 2.7438 1.5513 2.5744 0.4669 1.1713
Dropout before dense_1 with 0.8 rate 0.0117 2.4733 1.5762 2.5522 0.3444 1.0567

Gaussian Dropout before dense_1 with 0.3 rate 0.9503 2.7266 1.6395 2.6424 0.8118 1.2368
Gaussian Dropout before dense_1 with 0.5 rate 0.2304 2.6611 1.6331 2.5845 0.2959 1.1607
Gaussian Dropout before dense_1 with 0.8 rate 0.0010 2.2374 1.6096 2.5677 0.1871 1.0300

Gaussian Noise before dense_1 with 0.001 standard deviation 1.4134 2.9390 2.0551 2.7993 0.6859 1.2291
Gaussian Noise before dense_1 with 0.01 standard deviation 0.8953 2.9985 1.9171 2.7913 0.3998 1.2307
Gaussian Noise before dense_1 with 0.1 standard deviation 1.2585 3.0858 1.9524 2.7968 0.7066 1.2672
L1+L2 regularization for last dense layers with 0.01 factor 4.6247 4.6243 4.6051 4.6052 2.3020 2.3022

L1+L2 regularization for last dense layers with 0.001 factor 0.8166 2.7672 2.0337 2.6814 0.5991 1.1577
Dropout before dense_1 with 0.2 rate and before dense with 0.3 rate 0.2304 2.7733 1.2421 2.5074 0.5709. 1.1715
Dropout before dense_1 with 0.3 rate and before dense with 0.5 rate 0.1588 2.6932 1.0989 2.3516 0.1955 1.1987

3.3. Effects of the Weights Reset Method Illustrated on Loss Surfaces and Different
Training Trajectories

The proposed method is an implicit regularization technique that does not modify
the loss surface. However, it makes sense to examine how the region of the loss surface
involved in gradient optimization changes in the training phase with and without Weights
Reset. By examining how the training trajectories behave under these conditions, valuable
insights could be gained into the effects of the regularization technique.

We constructed contour plots on slices from various loss surfaces and corresponding
projections of training trajectories. These plots are depicted in Figure 2.

To construct the 2D slices of the loss surfaces, we followed a specific procedure inspired
by the methodology proposed in [28]. At each epoch during model training, we accumulate
weights of the neural network. We then perform Principal Component Analysis (PCA) to
identify two-directional vectors corresponding to the maximum variation of parameters.
Using these directional vectors, we generate a 2D grid.

On this 2D grid, we estimate the loss by evaluating the model’s performance. To
visualize training trajectories on these 2D slices, we use the least squares method to project
the trajectories onto the grid.

Based on the provided plots, we can observe that without additional regularization
techniques, the weight trajectory tends to approach a local minimum on the training dataset
while bypassing the minimum region on the test dataset. In contrast, when applying
the Weights Reset technique, the trajectory on the training loss surface does not precisely
converge to the local minimum but rather moves alongside it, indicating effective regular-
ization. However, on the test loss surfaces, the trajectory with Weights Reset is directed to
the local minimum. It is also worth noting that contrary to our expectations, at least based
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on the obtained slices, the method does not significantly introduce stochasticity to the
trajectory’s nature. Sharp jumps in the movement occur only during the initial iterations,
after which the trajectory behaves relatively smoothly.

Figure 2. Contour plots on different loss surface PCA slices and corresponding 2D projections of
training trajectories are illustrated in this figure. Each row represents a different dataset, namely from
top to bottom: Caltech-101, CIFAR-100, and Imagenette. The columns depict the following (from left
to right): slices of the loss surfaces for the train and test splits without Weights Reset regularization,
followed by slices of the loss surfaces for the train and test splits with the application of Weights
Reset. In the contour plots, red arrows represent the training trajectory. The asterisk indicates the
region with the lowest loss value. Every plot is provided in high resolution, allowing more detailed
representation. Please zoom in to view the finer details.

3.4. Analysis of the Distribution of the Weights

In our examination, we analyzed the histograms of the kernel weights in the last two
layers of our models, presented in Figure 3. Upon visual inspection, we observed that the
weight distribution in these layers closely resembles the He and Glorot normal distributions
usually used for initialization. It also should be noted that the non-regularized model does
not exhibit this resemblance. Our analysis indicates that employing the Weights Reset
method can be effective for avoiding vanishing or exploding gradients during the training
of deep neural networks. Such a positive effect from Weights Reset is clearly observed
mainly when the resetting rate is set to 1.0 which is predictable due to the formula of the
resetting procedure (1).
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Nevertheless, a more comprehensive investigation on the properties of weights distri-
bution is needed to gain a deeper understanding of the Weights Reset technique.

(a) (b)

Figure 3. Kernel weights histograms after training for 30 epochs (before reset) on Caltech-101 dataset:
(a) Histogram for the dense layer resembles appropriate He initialization distribution. (b) Histogram
for the dense_1 layer resembles appropriate Glorot initialization distribution.

3.5. Estimation of Weights Mean and Variance

For a better understanding of the Weights Reset method, it makes sense to analyze
the Procedure (1). We can execute a relatively straightforward estimation of the mean and
variance of the layer weights after applying the Weights Reset.

The distribution of ξ associated with Glorot or He initialization has zero mean and
variance that depends on the network architecture, which we denote as σ2. We start with
estimating the mean E[w̃] under the assumption of independence of the random variables:

E[w̃] = E[w · (1−m)] +E[ξ ·m] = (1− p)E[w]. (2)

It is clear that the reset weights w̃ is a scaled version of the original weights w. This
observation implies that the Weights Reset procedure reduces the magnitude of the weights
in the network and acts like implicit weights diminishing constraint. This approach can
help prevent overfitting and improve the generalization performance of the model.

To evaluate the variance of the weights, first we need to estimate E[w̃2], again under
the assumption of independence:

E[w̃2] = E[w2(1−m)2 + 2wξm(1−m) + ξ2m2]

= E[w2]E[(1−m)2] + 2E[ξ]E[wm(m− 1)] +E[ξ2]E[m2]

= (1− p)E[w2] + pσ2.

(3)

Then,
Var(w̃) = E[w̃2]− (E[w̃])2

= (1− p)E[w2] + pσ2 − (1− p)2(E[w])2

= (1− p)
(
E[w2]− (E[w])2(1− p)

)
+ pσ2

= (1− p)
(

Var(w) + p(E[w])2
)
+ pσ2

= (1− p)Var(w) + p(1− p)(E[w])2 + pσ2.

(4)

It is unclear whether the new variance value will be greater or less than the magnitude
of the variance before the resetting. It depends on the training process and the resetting
schedule. In general, the overfitting of the model leads to Var(w) ≥ σ2 so from (4) we can
deduce that Var(w̃) ≥ σ2. Considerable variance can help the network explore different
regions of the weight space and escape the local minima trap, especially in cases where the
initial weights are not well-suited for the task or the loss function landscape is complex.
At the same time, we can see that the Weights Reset procedure can also slow down the
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convergence of the network by introducing temporary disturbances or even lead to model
failure in learning meaningful representations of the data.

3.6. Experimental Analysis with Models of Various Capacities

Through our experimental analysis, we aim to explore the effectiveness of the Weights
Reset technique as a regularization method for models of various capacities. Additionally,
we attempted to investigate the potential relationship between Weights Reset and the
Double Descent phenomenon. To achieve this, we conducted a sequence of computational
experiments modifying our base model by using different numbers of neurons in the
penultimate layer dense. We execute this experiment because the dense layer is the leading
source of the large number of weights in the model. We used 128, 256, 512, 1024, 2048, and
4096 neurons in this layer, and all these configurations were trained for 35 epochs both
without additional regularization and using the Weights Reset technique with a 1.0 resetting
rate for all present dense layers in the model. We present the results in Figure 4.

The findings of this experiment demonstrate that the Weights Reset technique is
effective in the regularization of models with different capacities for every dataset used in
this examination.

Based on the results obtained from the CIFAR-100 and Imagenette datasets, we have
noticed some interesting patterns in loss values that potentially relate to the Double Descent
phenomenon. Therefore, before beginning a general discussion of these findings, we
provide a more detailed description of Double Descent.

The phenomenon of the Double Descent in machine learning models has been ob-
served in recent years and has been the subject of many hypotheses and studies [17,29–31].
This phenomenon is associated with the concept of model risk and model capacity. Model
risk usually refers to the expected model error, which can be approximated by the model’s
loss value. The model capacity concept refers to the ability of a model to capture complex
patterns and generalize well to unseen data. We can roughly estimate model capacity as the
number of parameters or degrees of freedom that determine its flexibility and expressive
power while understanding that it also depends on the model architecture and many
other factors.

One of the main features of the Double Descent is that the test risk of a model may
initially increase as the model capacity increases beyond a certain threshold and then
decrease again as the model becomes even more expressive (Figure 5). This behavior seems
to be related to the number of parameters in the model, as well as to the data distribution
and the training procedure.

One possible explanation for the Double Descent phenomenon is that the optimization
landscape of severely overparameterized models is highly non-convex and incorporates
many local minima and saddle points that can trap optimization algorithms. As the model
complexity increases, the optimization landscape becomes more complex, which induces
difficulty in navigation, leading to poor generalization performance. However, as the
model grows even more complicated, it may eventually become easier to escape from the
local minima and saddle points, leading to improved generalization performance.

Another explanation of the Double Descent is that highly overparameterized models
have a larger capacity to memorize noise in the training data, leading to overfitting. How-
ever, as the model becomes even more complicated, it may begin to focus on the underlying
patterns and structures in the data, leading to improved generalization performance.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Plots of the training and test losses for models trained on three datasets. Each model
contains a different number of neurons in the penultimate dense layer. The correspondence between
the losses and the number of neurons is indicated in the legends of the individual plots. The losses of
the models trained with the Weights Reset regularization technique are represented using solid lines,
while the losses of the models trained without additional regularization are shown using dashed
lines: (a) train and (b) test losses for Caltech-101, (c) train and (d) test losses for CIFAR-100, (e) train
and test (f) losses for Imagenette.
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Figure 5. The figure from the original work [17] shows the Double Descent phenomenon in machine
learning. The y-axis represents the risk, and the x-axis defines model capacity. The solid black line
represents test risk with two peaks, while the dashed black line illustrates training risk, which de-
creases with increasing model capacity. The empirical test risk function’s monotonicity is represented
by the three designated regions, labeled A, B, and C.

Let us consider the plot of test losses obtained on the CIFAR-100 dataset (Figure 4d).
While the test losses improved with increasing model capacity using the Weights Reset
technique, they declined for the models trained without this regularization. This consider-
ation implies that prior to applying the Weights Reset technique, the models were in the
region B (Figure 5), but after regularization, they finalized in the region A (Figure 5) or
crossed the interpolation threshold (region C, Figure 5).

Assuming the correctness of the existing representation of the Double Descent phe-
nomenon illustrated in Figure 5, we can state that the Weights Reset technique could alter
the capacity of the model. For instance, it is known that regularization techniques like
Dropout diminish model capacity [6].

However, when examining the results obtained on the Imagenette dataset, it becomes
evident that the test losses behave differently compared to the CIFAR-100 dataset. When
employing the Weights Reset technique, models with higher capacity exhibit higher test
risk, whereas without regularization, models with lower capacity experience higher test
risk. This can be interpreted as preliminary to regularization, the models were in region A
(Figure 5), while after regularization, they ended up in region B. As mentioned earlier, the
term capacity does not have a strict formal definition. When applying the Weights Reset
technique, it can be considered that the model’s capacity has changed in terms of the graph
shown in Figure 5. This is confirmed by the compression of the graph along the y-axis
based on the results of computational experiments.

To reinforce our hypothesis, we conducted an additional experiment on the Imagenette
dataset to investigate the effect of Weights Reset on models with different capacities. In this
experiment, we trained the models for a significantly longer duration, up to 350 epochs.
The results of this experiment are presented in Figure 6.

Based on the nature of train losses illustrated in Figure 6a, it is clear that training
converged for models of all capacities, both with and without regularization. Therefore,
subsequent conclusions can be considered more reliable than those drawn earlier from a
training duration of only 35 epochs.

From the plots, it becomes evident that when utilizing the Weights Reset technique,
the test risk rises in proportion to the model’s capacity. However, formulating conclusions
regarding test losses become more complex for models trained without the appropriate
regularization. A distinct periodic pattern has emerged in these losses, characterized by
sharp drops in loss value, with each model exhibiting shifted periods relative to one another.
This may indicate that the model is struggling to learn certain patterns in the data and is
oscillating between succeeding and failing to capture them.
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(a) (b)

Figure 6. Plots of the training and test losses for models trained on the Imagenette dataset. Each
model contains a different number of neurons in the penultimate dense layer. The correspondence
between the losses and the number of neurons is indicated in the legends of the individual plots.
The losses of the models trained with the Weights Reset regularization technique are represented
in solid lines, while the losses of the models trained without additional regularization are shown
using dashed lines: (a) train and (b) test losses. To enhance visual clarity, the obtained test loss values
without the use of regularization are denoted by a plus symbol.

To address this problem, we divided every individual loss vector into periods by
identifying moments of significant change. Subsequently, for every model, the obtained
vectors were averaged across these periods. Since even within a single model, the length
of periods slightly differed, the averaged loss vector has a length in epochs equal to the
lengthiest period, and the averaging accounted for the availability of the corresponding
loss values for every epoch. All averaged test losses are presented in Figure 7.

Figure 7. Averaged test losses obtained on the Imagenette dataset without employing the Weights
Reset regularization technique. These losses were averaged across periods observed on 350 epochs
models training to provide a more comprehensive overview.

According to the graphs presented in Figures 6b and 7, we can conclude that without
employing the Weights Reset technique, increasing the model’s capacity leads to a decrease
in test risk, whereas the opposite occurs when using Weights Reset. Consequently, based
on the conclusions from Figure 5, it can be stated that applying Weights Reset, at least in
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this specific experiment, on the Imagenette dataset appears to affect the model as though it
has a larger capacity than before.

In the case of the CIFAR-100 dataset, as mentioned before, we transit either from region
B to regions A or C. Based on the results obtained on the Imagenette dataset and recognizing
the relatively small size of the CIFAR-100 images, we believe that with high probability,
we have indeed transited from region B to region C. In [17] the authors demonstrated
the Double Descent effect on the CIFAR-100 dataset, and we consider that the use of the
Weights Reset technique allowed us to reach region C with fewer model parameters and
less computing resources.

This phenomenon may be considered a form of Double Descent. We claim that the
Weights Reset method offers a significant performance boost by expanding the search space
of the optimization problem, which is not feasible with local optimization methods like
gradient descent. We consider that this expansion mitigates the complexity of crossing the
complex optimization landscape, resulting in better generalization and test loss values,
similar to the results obtained by increasing model capacity in Double Descent.

However, it should be noted that this is a highly hypothetical observation, and further
dedicated comprehensive research involving more datasets and a significantly greater
number of training iterations is required to validate this assumption.

4. Discussion

In this examination, we proposed a simple yet effective implicit regularization method
called Weights Reset, which has shown promising results in improving model performance,
obtaining the best test loss function value, and avoiding vanishing and exploding gradients.

The experimental findings show that the Weights Reset can be a competitive method
compared to traditional regularization techniques, especially for challenging unbalanced
datasets such as Caltech-101, where it demonstrated the best result among other regulariza-
tion techniques.

Under the observed behavior of the Weights Reset technique on a growing number
of weights in a model, it is possible to hypothesize that this method can be related to the
Double Descent phenomenon. One possible explanation is that resetting weights prevents
the model from excessive deep trapping in local minima or saddle points, allowing it
to explore a more comprehensive range of solutions and potentially leading to better
generalization performance. Additionally, the periodic resetting of the weights may help to
prevent overfitting and improve the model’s ability to focus on the underlying patterns
and structures in the data.

It is important to note that the exact relationship between Weights Reset and the
Double Descent is not yet fully understood, and further research is needed to explore
this connection. Other factors, such as the choice of architecture, training procedure, and
data distribution, may also play a role in the observed behavior. Nonetheless, the Weights
Reset technique may represent a promising approach to improving the generalization
performance of highly overparameterized models.

However, although this analysis is insightful, it is not sufficiently comprehensive, and
further research is needed to understand the full potential of the Weights Reset. It is worth
exploring whether the Weights Reset can be replaced with explicit regularization techniques
applied to layer weights. Moreover, it would also be interesting to examine different layer
types, more complex models, and other machine learning tasks to assess the applicability
of this approach to more general deep learning architectures. Furthermore, understanding
the theoretical aspects of the Weights Reset technique, uncovering its limitations, and
determining the best configuration for a particular model are open questions that warrant
further examination. Overall, our study highlights the potential of the Weights Reset
method and opens up routes for future research in this area.
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