
Citation: Sideris, A.; Dasygenis, M.

Enhancing the Hardware Pipelining

Optimization Technique of the SHA-3

via FPGA. Computation 2023, 11, 152.

https://doi.org/10.3390/

computation11080152

Academic Editor: Simeone Marino

Received: 31 May 2023

Revised: 5 July 2023

Accepted: 31 July 2023

Published: 3 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Enhancing the Hardware Pipelining Optimization Technique of
the SHA-3 via FPGA
Argyrios Sideris * and Minas Dasygenis

Department of Electrical and Computer Engineering, University of Western Macedonia, 50131 Kozani, Greece;
mdasyg@ieee.org
* Correspondence: asideris@uowm.gr; Tel.: +30-246-105-6534

Abstract: Information is transmitted between multiple insecure routing hops in text, image, video,
and audio. Thus, this multi-hop digital data transfer makes secure transmission with confidentiality
and integrity imperative. This protection of the transmitted data can be achieved via hashing algo-
rithms. Furthermore, data integrity must be ensured, which is feasible using hashing algorithms.
The advanced cryptographic Secure Hashing Algorithm 3 (SHA-3) is not sensitive to a cryptanalysis
attack and is widely preferred due to its long-term security in various applications. However, due to
the ever-increasing size of the data to be transmitted, an effective improvement is required to fulfill
real-time computations with multiple types of optimization. The use of FPGAs is the ideal mechanism
to improve algorithm performance and other metrics, such as throughput (Gbps), frequency (MHz),
efficiency (Mbps/slices), reduction of area (slices), and power consumption. Providing upgraded
computer architectures for SHA-3 is an active area of research, with continuous performance im-
provements. In this article, we have focused on enhancing the hardware performance metrics of
throughput and efficiency by reducing the area cost of the SHA-3 for all output size lengths (224,
256, 384, and 512 bits). Our approach introduces a novel architectural design based on pipelining,
which is combined with a simplified format for the round constant (RC) generator in the Iota (ι) step
only consisting of 7 bits rather than the standard 64 bits. By reducing hardware resource utilization
in the area and minimizing the amount of computation required at the Iota (ι) step, our design
achieves the highest levels of throughput and efficiency. Through extensive experimentation, we have
demonstrated the remarkable performance of our approach. Our results showcase an impressive
throughput rate of 22.94 Gbps and an efficiency rate of 19.95 Mbps/slices. Our work contributes
to advancing computer architectures tailored for SHA-3, therefore unlocking new possibilities for
secure and high-performance data transmission.

Keywords: hardware accelerator; SHA-3; hardware optimization; cryptography; FPGA; round
constant (RC) generator

1. Introduction

The transmission of sensitive data in a highly dependable, highly secure, and highly
reliable way has become urgent in the last few years. Cryptography is an important
technique used to store information, protect it, and secure it against unauthorized access
while it is being transmitted. These three goals may all be accomplished using cryptography.
For example, the healthcare sector, the military, the government, industry, educational
institutions, and private businesses collect a vast amount of personally identifiable digital
information stored in a network environment. Therefore, cryptographic algorithms have
seen an increased amount of application in recent years due to their ability to ensure a
high level of security for various digital media formats, such as photos, text, video, and
audio [1–3].

A binding domain of cryptography consists of hashing. Hashing is computing a
fixed-length string using a standard algorithm, regardless of the input size. The output

Computation 2023, 11, 152. https://doi.org/10.3390/computation11080152 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation11080152
https://doi.org/10.3390/computation11080152
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-6252-426X
https://orcid.org/0000-0002-2180-9752
https://doi.org/10.3390/computation11080152
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation11080152?type=check_update&version=1

Computation 2023, 11, 152 2 of 15

string will be the same length for the same hashing algorithm, no matter the input size.
Each output string is unique for a specific input, and vice versa; even one byte altered
results in a very different output. This property makes hashing a cornerstone in our ICT
infrastructure, and algorithms have become essential in every aspect of our lives [4–6].
Hashing is used in every authentication scheme, from our local operating system to cloud
banking or web email services. Hashing is also used in integrity verification, from the local
file system like Zettabyte File System (ZFS) [7], which stores a hash for every block, to the
operating system that keeps hashes for every critical file. Windows, Linux, FreeBSD, and
other popular file systems keep a database with hashes for core components, up to the
intrusion detection systems that inspect every file and compute its hash compared to a
golden reference. Hashing is also used in data transmission to guarantee integrity, from
the IP protocol up to the secure web browsing of the HTTPS/TLS protocol. Hashing is
also used in indexing databases, allowing queries to execute faster, which is essential in
our modern era with the humongous amounts of data created and processed. Everyone
interacts with multiple hashing techniques, even if they do not know it. For this reason, it
is a lucrative target for malicious individuals to exploit. They are utilizing, implementing,
and accelerating new, more robust, and secure hashing algorithms [8].

Today, old standards of hash functions are vulnerable to attacks. Up today, many
successful attacks have been recorded against the SHA-1 [9] and the SHA-2 hashing algo-
rithms [10–12]. Thus, the National Institute of Standards and Technology (NIST) decided
to investigate new, more secure hashing algorithms and adopted the SHA-3 (Keccak),
which offers a higher level of security [13–15]. These new hash functions use larger hash
values and more complex algorithms, making it much more difficult for attackers to find
collisions or other vulnerabilities. Hash functions are widely used in the Hashed Message
Authentication Code (HMAC) [16], network security [17], in the Digital Signatures [18], in
Secure Electronic Transactions (SET) [19], and in Public Key Infrastructure (PKI) [20].

The new SHA-3 emerged during a competition organized by NIST in 2011 for the
new Secure Hash Algorithm (SHA). Open competitions have been used as methods of
selection for cryptographic standards worldwide. Therefore, in 2012, NIST announced that
the Keccak hash function would represent SHA-3. The new hashing algorithm, SHA-3,
provides high efficiency and throughput in hardware, both in Graphics Processing Unit
(GPU) and in Field-Programmable Gate Array (FPGA) [21]. The FPGA-based embedded
processing systems provide significant computing resources as security requirements
grow [22]. FPGAs are also well-known for their high-performance capabilities and low
energy consumption, making them ideal for embedded applications where space and
power are limited [23,24]. With the growing need for secure systems, FPGAs have become
attractive for implementing security features such as encryption, authentication, and
intrusion detection. Therefore, the cryptography community concentrates on the SHA-3
(Keccak algorithm), which provides high performance in hardware and flexibility [25,26].

The following is a summary of the contributions given in this article:

• We propose a new method optimization technique based on pipelining for the algo-
rithm SHA-3. This method places the additional register after step Theta (θ) in the
function f . The newly presented optimization technique can operate as the policy for
the hardware optimization technique of the SHA-3. Our design performs significant
advancements in performance metrics and reduces the area cost of FPGA devices.

• We suggest a novel format for the RC generator that is more straightforward to increase
performance (throughput and efficiency) while simultaneously decreasing the amount
of hardware resources available in the area. The new, more straightforward structure
RC generator only consists of 7-bits rather than the previous 64-bits, which helps
minimize the amount of computation required at the Iota (ι) step, where the number
of necessary XORs is decreased to 7.

• We confirmed the accuracy of the whole design with reliable examples provided by
NIST. At the same time, we performed extensive evaluation and analysis to compare

Computation 2023, 11, 152 3 of 15

the proposed architecture’s area (slices), throughput (Gbps), frequency (MHz), and
efficiency (Mbps/slices) to other similar methods in the published literature.

The rest of the article is organized as follows: In the following Section 2, we briefly
introduce the SHA-3 overview. In Section 3, we present the related works in the literature.
Section 4 defines our new proposed hardware optimization techniques of the SHA-3 algo-
rithm on FPGA. In Section 5, we show the experimental outcomes of our study. In Section 6,
we discuss the effects of our optimization technique and the comparisons with other
relevant studies. Finally, Section 7 summarizes our article’s conclusions and future work.

2. The SHA-3 Overview

In 2012, after a contest conducted by the NIST, the Keccak hash function was the
next SHA-3 standard. However, unlike the SHA-1 and SHA-2 standards, SHA-3 primarily
depends on the sponge functions (absorb/squeeze), as presented in Figure 1.

Figure 1. Sponge function of the SHA-3.

The sponge procedure is a state matrix of b = r + c bits, where c bits is the capacity and
r bits are the bit rate. In the beginning, this state matrix is initialized from zero values. Kec-
cak hash function manages the state b as a three-dimensional matrix 5× 5× (word− size).
An input message is padded to form its total size, a multiple of r bits. Then the padded
message is split into blocks of equal size Pi. At the absorbing step, r bits XOR with each
block and permutation function f . The f function is the central processing part and includes
24 rounds with procedures. The five distinct steps of the function f are Theta (θ), Rho (ρ),
Pi (π), Chi (χ) and Iota (ι) on a 1600-bit state matrix A [27].

The process’s Theta (θ) step includes a parity computation, rotated by one position,
then bitwise XOR. The Rho (ρ) step rotates by an offset that depends on the word assign-
ment, and the Pi (π) step is a permutation. The Chi (χ) step operates bitwise XOR, NOT,
and AND gates to modify the process. Lastly, the Iota (ι) step involves adding a constant
value to the sequence at each round. The steps Theta (θ), Rho (ρ), Pi (π), Chi (χ) and Iota (ι)
are detailed in Equations (1)–(4).

Step Theta (θ):

C[x] = A[x, 0]⊕ A[x, 1]⊕ A[x, 2]⊕ A[x, 3]⊕ A[x, 4],
x = 0, 1, 2, 3, 4
D[x] = C[x− 1]⊕ ROT(C[x + 1], 1),
x = 0, 1, 2, 3, 4
A[x, y] = A[x, y]⊕ D[x],
x = 0, 1, 2, 3, 4

(1)

The state array A is also used to calculate a serviceable 5× 5 array B in the following
two steps. Interestingly, the array B[i, j] describes a bit stream with w bits.

Computation 2023, 11, 152 4 of 15

Steps Rho (ρ) and Pi (π):

B[y, 2x + 3y] = ROT(A[x, y], r[x, y]),
(x, y) = 0, 1, 2, 3, 4

(2)

Step Chi (χ):

A[x, y] = B[x, y]⊕ (NOTB[x + 1, y])AND(B[x + 2, y]),
(x, y) = 0, 1, 2, 3, 4

(3)

Step Iota (ι):
A[0, 0] = A[0, 0]⊕ RC[i] (4)

The round constants are produced by the RC generator that is used in Iota (ι) step. The
RCi function is present in Table 1, and it is made up of 24 different value permutations that
may assign 64-bit data to the SHA-3 function [15].

Table 1. The RCi generator in Iota (ι) step.

RC0 0000000000000001 RC8 000000000000008A RC16 8000000000008002

RC1 0000000000008082 RC9 0000000000000088 RC17 8000000000000080

RC2 800000000000808A RC10 0000000080008009 RC18 000000000000800A

RC3 8000000080008000 RC11 000000008000000A RC19 800000008000000A

RC4 000000000000808B RC12 000000008000808B RC20 8000000080008081

RC5 0000000080000001 RC13 800000000000008B RC21 8000000000008080

RC6 8000000080008081 RC14 8000000000008089 RC22 0000000080000001

RC7 8000000000008009 RC15 8000000000008003 RC23 8000000080008008

According to Table 2, the NIST has determined four different variants of the SHA-3
hashing algorithm based on the message M and the output length size d.

Table 2. The four forms of the SHA-3.

Message (M)
Output Length Size

(d)
Rate (r)

(Block Size) Capacity (c)

224 224 1152 448
256 256 1088 512
384 384 832 768
512 512 576 1024

3. Related Work

The community of cryptography has done substantial research on optimizing models
and techniques for the SHA-3 in FPGA devices [28]. Each of these models aims to improve
the throughput of the FPGA while simultaneously decreasing the amount of area and the
amount of power it needs [29–32]. Despite this, there is still an urgent need to increase
performance measures related to throughput and area reduction. In this part, we will
discuss other research studies comparable to ours.

The paper’s authors [33], suggested a pipelining technique for the SHA-3 512 bits. The
proposed design was implemented in the FPGA Virtex-5. The proposed architecture needs
2.326 slices (area), achieves the highest frequency rate of 306 MHz, and demonstrates a
throughput rate of 5.56 Gbps and a rate of efficiency of 2.40 Mbps/slices. In [34], the authors
proposed a two-staged pipelined technique for the SHA-3 256. The proposed design was
implemented in FPGA Virtex-5. They achieved a maximum frequency of 317.11 MHz,
throughput of 12.68 Gbps, area (slices) of 4.793, and efficiency of 2.71 Mbps/slices.

Computation 2023, 11, 152 5 of 15

The authors [35] suggested a pipelining design for the SHA-3 512. The proposed
method was implemented in the FPGA Virtex-5. The proposed architecture achieves the
highest frequency rate of 273 MHz, needs 1.163 slices (area), demonstrates a throughput
rate of 7.80 Gbps, and an efficiency rate of 6.06 Mbps/slices. In [36], the writers proposed a
two-stage pipelined design for the SHA-3 512 on three FPGA devices. The proposed archi-
tecture was implemented in FPGA boards, Virtex-4, Virtex-5, and Virtex-6. The outcomes
demonstrate that the suggested method for the SHA-3 512 performs more promising effects
with Virtex-6. They reached a maximum frequency rate of 391 MHz, throughput rate of
18.76 Gbps, area (slices) of 2.296, and efficiency of 8.17 Mbps/slices.

In a study by [37], the authors proposed a two-staged pipelined technique for the
SHA-3 256. The VHDL programing language is used and implemented in the Virtex-5,
Virtex-6, and Virtex-7 FPGA boards. Outcomes indicate that the suggested design achieves
better results with Virtex-7. They gained a throughput rate of 20.8 Gbps, the highest fre-
quency rate of 434 MHz, an area rate of 1618 slices, and an efficiency of 12.90 Mbps/slices.
The authors [38] suggested a pipelining design for the SHA-3 256 and SHA-3 512. The
proposed method was implemented in the Virtex-5 and Virtex-6 FPGA boards. The pro-
posed method for SHA-3 256 needs 1.456 slices (area) and demonstrates a throughput rate
of 14.942 Gbps and an efficiency rate of 10.26 Mbps/slices with Virtex-6, and for SHA-3
512 needs 1.263 slices (area) and demonstrates a throughput rate of 8.114 Gbps and an
efficiency rate of 6.42 Mbps/slices with Virtex-6.

In [39] they proposed an architecture that supports all output size lengths (224, 256,
384, and 512 bits) of the SHA2 and SHA-3 cryptographic hash functions. The proposed
design was implemented and verified on a Stratix IV FPGA, utilizing the NIOS II processor.
The proposed architecture for the SHA-3 needs 5.363 slices (area) and achieves the highest
frequency rate of 110 MHz. The authors of [40] presented a design for the SHA-3 512
algorithm. This design was implemented in the Virtex-5 FPGA boards. In Virtex-5, the
proposed architecture required 1.680 slices and a frequency of 387 MHz. The proposed
architecture achieves a throughput of 8.06 Gbps and 4.91 Mbps/slices efficiency.

Table 3 summarizes the techniques thought with the two-staged pipelined method for
the SHA-3 algorithm. Most of the study has focused on the register’s placement after the
Pi step (π) and used the classic RC generator with 64 bits. This work aims to compare the
performance metrics efficiency (Mbps/slices) and throughput (Gbps) when we insert the
register after step Pi (π) or step Theta (θ) in the hash permutation f function with the new
format of the RC generator with 7-bits for all output lengths 224, 256, 384 and 512 bits. Our
extensive experiments reveal that the outcomes obtained are directly affected by the critical
path of the f function, which decreases significantly when the register is inserted after
step Theta (θ) with the new simplified structure RC generator. The proposed optimization
technique surpasses previous investigations in performance measures and can be applied
as a strategy for FPGA boards.

Table 3. Summary of the approaches in the publications of pipelined technique for the SHA-3 algorithm.

Work Output
Length

Register’s
Placement

RC
Generator

Provelengios et al. [33] SHA-3 512 - 64-bit

Mestiri et al. [34] SHA-3 256 after step Pi (π) 64-bit

Sunda et al. [35] SHA-3 512 after step Pi (π) 64-bit

Ioannou et al. [36] SHA-3 512 after step Pi (π) 64-bit

Athanasiou et al. [37] SHA-3 256 after step Pi (π) 64-bit

Gaj et al. [38] SHA-3 256 after step Pi (π) 64-bit

Gaj et al. [38] SHA-3 512 after step Pi (π) 64-bit

Nannipieri et al. [39] SHA-3 - 64-bit

Mestiri et al. [40] SHA-3 512 - 64-bit

Computation 2023, 11, 152 6 of 15

4. Proposed Pipelining Optimization Technique of the SHA-3

The main goal of our work is to attain a higher rate of throughput (Gbps) and efficiency
(Mbps/slices) in our system without further hardware resources. This objective is achieved
by introducing the register after the Theta (θ) step and with the new simplified format of
the proposed RC generator.

In Figure 2, we present the system design of the proposed pipelining optimization
technique. The first unit is the padding unit, which pads the input message to ensure that
it is of the appropriate length. Next, the mapping unit maps the input message into a
state array that is compatible with the Keccak round. The Keccak round is the core of the
design and performs the bulk of the processing. It is responsible for executing the sponge
function, which converts the input message into a hash value. The truncating unit is then
responsible for truncating the hash value to the desired output length. The control unit is
an essential system component as it manages and coordinates data flow throughout the
architecture. The input message to our system is 64 bits, and the selected output length can
be varied according to the requirements. The possible values for the select output length
are presented in Table 4.

Figure 2. The proposed approach of the SHA-3.

Table 4. Select output length.

Value 00 01 10 11

Hash Output 224 256 384 512

The padding scheme ensures that the input message has a fixed size and is processable
by the algorithm. In the case of SHA-3, the padding scheme involves appending the input
message with a certain number of bits such that the total message size is a multiple of a fixed
number of bits denoted by r (576, 832, 1088, or 1152). To achieve this, the input message of
64-bits is first appended with a “1”-bit, followed by as many “0”-bits as necessary to bring
the total message size to r− 64-bits, and then appended with a “1”-bit. This ensures that
the final message size is a multiple of r-bits [41].

The padding scheme used in SHA-3 consists of a 4-to-1 multiplexer. The output length
of the algorithm determines which padding scheme is used. For example, if the output
length is set to 224 bits, then the padding scheme for r = 1152 bits is used. The padding
scheme is shown in Figure 3.

Computation 2023, 11, 152 7 of 15

Figure 3. Padding scheme of the SHA-3.

Once the message has been padded, it is passed to the mapping scheme, which is
XORed with the initial r-bits. This ensures that the padded message is different from the
initial message. The result is then appended with the initial c-bits, where c is a constant
value that depends on the value of r. This completes the padding scheme and prepares the
message for processing by the hashing algorithm.

A data transformation that includes truncating the digits of a state depending on the
desired output length is shown in Equation (5). The specific digits chosen depend on the
output length selected (576, 832, 1088, or 1152). This process is achieved using a truncating
unit consisting of a 4-to-1 multiplexer.

State[x, y, z] = ((Padded data r⊕ r)||c)∗[64∗(5∗y + x) + z] (5)

In addition, the Iota (ι) step includes modifying a few bits of the state array A, as
shown in Equation (6).

A′[x, y, z] = A[x, y, z]⊕ RC[iw] (6)

The RC is calculated as shown in Equation (7), which can be found in the SHA-3
specifications [15] and all other values of RC[iw][x][y][z] are set to zero. It can be seen from
Equation (7) that only 7 of the 64 bits may have the value 1.

RC[iw][0][0][2q − 1] = wc[q + 7iw] for all 0 ≤ q ≤ m (7)

In accordance with the specifications of the SHA-3, Table 5 details the precise place-
ments of the 7 bits when the value of m = 6. Therefore, the only bit locations with the value
“1” are 0, 1, 3, 7, 15, 31, and 63; all other bit places have the value “0”.

Table 5. The places for each of the 7-bits where have the value 1.

q 0 1 2 3 4 5 6

[z] 0 1 3 7 15 31 63

Table 6 shows an example of the simplified format that was used for RC[6] of Table 7.
As a result, the XOR gate in state array A can have 7 particular bits set.

Computation 2023, 11, 152 8 of 15

Table 6. Example of the new format of the RC[6] in Iota (ι) step.

Hexadecimal Binary Places with Value 1

8081 1000 0000 1000 0001

0th = 1
1st = 0
3rd = 0
7th = 1
15th = 1

8000 1000 0000 0000 0000 31st = 1

0000 0000 0000 0000 0000 -

8000 1000 1000 1000 1000 63th = 1

Table 7. The new format of the RCi in Iota (ι) step.

RC0 1000000 RC8 0111000 RC16 0100101

RC1 0101100 RC9 0011000 RC17 0001001

RC2 0111101 RC10 1010110 RC18 0110100

RC3 0000111 RC11 0110010 RC19 0110011

RC4 1111100 RC12 1111110 RC20 1001111

RC5 1000010 RC13 1111001 RC21 0001101

RC6 1001111 RC14 1011101 RC22 1000010

RC7 1010101 RC15 1100101 RC23 0010101

The pipelined architecture is a popular design approach for achieving low power
consumption, high security, and increased performance [42]. In our system, we aim to
optimize the two-stage pipelined architecture to achieve higher frequency (MHz), efficiency
(Mbps/slices), and throughput (Gbps) for all output lengths. We designed two strategies for
optimizing a two-stage pipelined architecture to achieve that goal. Improving performance
is directly related to reducing the crucial path of the f operation. The f operation consists
of a total of 24 rounds and five special operations: Theta (θ), Rho (ρ), Pi (π), Chi (χ) and
Iota (ι). Therefore, the registry pipeline must be appropriately positioned to decrease the
crucial path to the f procedure.

The first proposed pipelined architectural design of the Keccak is shown in Figure 4.
In this architecture, the first pipeline is placed between the Pi (π) and Chi (χ) steps, while
the second is at the end of the round. The second proposed pipelined architectural design
of the Keccak round is presented in Figure 5. In this design, the first pipeline is placed
between the Theta (θ) and Rho (ρ) steps, while the second is at the end of the round. In both
proposed pipelined architectures (Figures 4 and 5), the control signs of the two registers are
the reset and the clock. The component counter provides the control signal of the round
constant.

Figure 4. First proposed pipelined (dark blue) optimization technique where the first pipeline is
placed after step Pi (π).

Computation 2023, 11, 152 9 of 15

Figure 5. Second proposed pipelined (dark blue) optimization technique where the first pipeline is
placed after step Theta (θ).

5. Experimental Results

We use the Virtex-5, Virtex-6, and Virtex-7 FPGA boards to compare the suggested
strategy to other existing studies fairly. The methods were implemented in the Virtex-
5/Virtex-6 using Xilinx ISE, and the designs in the Virtex-7 using Xilinx Vivado.

5.1. Validating the Modified Construction

The modified construction is based on the SHA-3 specifications [15], especially
Equation (7). According to Equation (7), only 7 of the 64 bits in the RC format can have
the value 1; by strictly adhering to the SHA-3 specification and relying on the established
security properties of SHA-3, the modified construction benefits from the security guaran-
tees provided by SHA-3. Simulation examples provided by NIST [43], a reputable source
for cryptographic standards, are employed to validate the modified construction’s imple-
mentation further and ensure its correct functioning. This validation process ensures that
the modified construction behaves as intended and consistently produces the expected
results when tested against valid examples. Therefore, the combination of adhering to the
SHA-3 specification and validating the modified construction through simulation using
NIST-provided examples collectively contributes to confidence in the system’s security.

5.2. Efficiency and Throughput Performance Measures

Standard evaluation measures, such as efficiency and throughput, are used to conduct
the metrics of SHA-3 when implemented on FPGA [28,44]. The term “throughput” refers
to the number of bits that are processed in a certain amount of time and may be expressed
in either Gbps or Mbps. The throughput is determined with Equation (8).

Throughputpipeline =
A message block’s bits

Cycles of the clock for each message block
× Frequency (8)

In Equation (8), a message block’s bits are the bitrate size r (576, 832, 1088, 1152),
frequency is the maximum clock periodicity, and cycles of the clock for each message block
characterize the number of resumptions needed for the five unique processes: Theta (θ),
Rho (ρ), Pi (π), Chi (χ) and Iota (ι) to generate the hash value. The efficiency is determined
with Equation (9).

E f f iciencypipeline =
Throughputpipeline

Areapipeline
(9)

Computation 2023, 11, 152 10 of 15

5.3. Results of Our Two Architectures

To enhance the performance of the algorithm SHA-3, it is crucial to identify the most
computationally costly steps in the algorithm and focus on optimizing those steps. In
traditional construction, the computation of parity bits across the columns of the state array
requires accessing the entire array, resulting in significant data movement and computa-
tional overhead. This increases resource utilization and hinders the algorithm’s overall
throughput and efficiency. We introduce a register immediately after the Theta (θ) step to
address this challenge because this step is the most computation-costly in the permutation
function, consuming over 50% of the total computation time. This register is a temporary
storage element that retains the computed parity bits, eliminating the need to access the en-
tire state array repeatedly. By storing the parity bits in the register, subsequent steps within
the algorithm can directly access these data without requiring extensive data movement or
recomputation. Therefore, introducing the register significantly reduces the computation
load and resource requirements in subsequent steps, improving throughput and efficiency.
Second, it streamlines the data flow within the algorithm, enabling faster and more effi-
cient processing. Last, it minimizes the overall area cost of the SHA-3 implementation by
optimizing resource utilization.

On the other hand, inserting a pipeline after the Pi (π) step may also improve the
throughput of the algorithm, but to a lesser extent. The Pi (π) step is mainly responsible
for rearranging the order of the bits in the state array, and its computation is less intensive
than that of the Theta (θ) step. Therefore, inserting a pipeline after the Theta (θ) step has a
more significant improvement in the throughput of the SHA-3 algorithm than inserting a
pipeline after the Pi (π) step.

Table 8 displays the results of our two pipelined optimization techniques with Virtex-5,
Virtex-6, and Virtex-7 FPGA boards. The proposed design with the first pipelined opti-
mization technique requires 1102 slices operating at 374 MHz, while the second pipelined
design requires 998 slices operating at 402 MHz in Virtex-5. On the FPGA board Virtex-6,
the proposed design with the first pipelined architecture requires 1146 slices operating
at 392 MHz, while the second pipelined optimization technique requires 1042 slices op-
erating at 422 MHz. Finally, on the FPGA board Virtex-7, the proposed design with the
first pipelined optimization technique requires 1288 slices operating at 446 MHz, while the
second pipelined design requires 1150 slices operating at 478 MHz.

Table 8. Metrics on the performance of our two pipelined optimization techniques for SHA-3 when
implemented on the Virtex-5, Virtex-6, and Virtex-7 FPGA.

Design Length

First Proposed Pipelined
Optimization Technique
Where the First Pipeline

Is Placed after Step Pi (π)

Second Proposed Pipelined
Optimization Technique
Where the First Pipeline

Is Placed after Step Theta (θ)

FPGA Virtex-5 Virtex-6 Virtex-7 Virtex-5 Virtex-6 Virtex-7

Area (slices) 1102 1146 1288 998 1042 1150

Frequency (MHz) 374 392 446 402 422 478

Throughput
(Gbps)

r = 1152 17.952 18.816 21.408 19.296 20.256 22.944

r = 1088 16.955 17.771 20.219 18.224 19.131 21.669

r = 832 12.965 13.589 15.461 13.936 14.629 16.571

r = 576 8.976 9.408 10.704 9.648 10.128 11.472

Efficiency
(Mbps/slices)

r = 1152 16.29 16.42 16.62 19.33 19.44 19.95

r = 1088 15.39 15.51 15.70 18.26 18.36 18.84

r = 832 11.77 11.86 12.00 13.96 14.04 14.41

r = 576 8.15 8.21 8.31 9.67 9.72 9.98

The power consumption of our proposed designs is evaluated using the Xilinx XPower
Analysis tool [45]. Table 9 displays the power consumption results of our two pipelined
optimization techniques with Virtex-5, Virtex-6, and Virtex-7 FPGA boards. In the first
proposed pipelined optimization technique, the power consumption on Virtex-5, Virtex-6,

Computation 2023, 11, 152 11 of 15

and Virtex-7 FPGAs, was 267 mW, 222 mW, and 179 mW, respectively. In the second pro-
posed pipelined optimization technique, the power consumption on Virtex-5, Virtex-6, and
Virtex-7 FPGAs was 242 mW, 198 mW, and 157 mW, respectively. Across all FPGA models,
the second proposed pipelined optimization technique (after step Theta (θ)) exhibits lower
power consumption than the first proposed technique (after step Pi (π)). Among the Virtex
FPGA models, Virtex-7 consistently demonstrates the lowest power consumption for both
optimization techniques. Virtex-6 generally exhibits lower power consumption than Virtex-
5 in both cases. Therefore, the second proposed pipelined optimization technique, with
the first pipeline placed after step Theta (θ), is more power-efficient across the evaluated
FPGA models.

Table 9. The power consumption of our two pipelined optimization techniques for SHA-3 when
implemented on the Virtex-5, Virtex-6, and Virtex-7 FPGA.

Design FPGA Power (mW)

First proposed pipelined optimization technique
where the first pipeline is placed after step Pi (π)

Virtex-5 267

Virtex-6 222

Virtex-7 179

Second proposed pipelined optimization technique
where the first pipeline is placed after step Theta (θ)

Virtex-5 242

Virtex-6 198

Virtex-7 157

6. Result in Discussion

The main target of our work is to attain a higher rate of throughput (Gbps) and effi-
ciency (Mbps/slices) in our system. The experimental procedure showed that the obtained
results are directly affected by the critical path of the function f , which is significantly
reduced when the register is inserted after step Theta (θ) than when the register is inserted
after step Pi (π). Tables 10 and 11 present the comparison with other similar architectures
for all output lengths (224, 256, 384, and 512 bits) of the measures of throughput (Gbps),
frequency (MHz) and efficiency (Mbps/slices) for the SHA-3 (Keccak) algorithm. Most
authors experiment only with output lengths of 256 or 512 bits. All results are reported for
single-block messages.

Table 10. Results and comparisons of throughput for the SHA-3 algorithm for each of the output
lengths (224, 256, 384, and 512 bits).

Design FPGA Area
(Slices)

Frequency
(MHz)

Throughput
(Gbps)
r = 1152

Throughput
(Gbps)
r = 1088

Throughput
(Gbps)
r = 832

Throughput
(Gbps)
r = 576

Provelengios et al. [33] Virtex-5 2326 306 - - - 5.56

Mestiri et al. [34] Virtex-5 4793 317.11 - 12.68 - -

Sunda et al. [35] Virtex-5 1163 273 - - - 7.80

Ioannou et al. [36]
Virtex-5 2652 352 - - - 8.44

Virtex-6 2296 391 - - - 9.38

Athanasiou et al. [37]

Virtex-5 1702 389 - 18.07 - -

Virtex-6 1649 397 - 19.01 - -

Virtex-7 1618 434 - 20.80 - -

Gaj et al. [38]
Virtex-5 2123 - - 12.523 - 7.380

Virtex-6 1456 - - 14.942 - 8.114

Nannipieri et al. [39] Stratix IV 5363 110 - - - -

Mestiri et al. [40] Virtex-5 1680 387 - - - 8.06

Computation 2023, 11, 152 12 of 15

Table 10. Cont.

Design FPGA Area
(Slices)

Frequency
(MHz)

Throughput
(Gbps)
r = 1152

Throughput
(Gbps)
r = 1088

Throughput
(Gbps)
r = 832

Throughput
(Gbps)
r = 576

Second proposed pipelined optimization
technique where the first pipeline is
placed after step Theta (θ)

Virtex-5 998 402 19.29 18.22 13.93 9.64

Second proposed pipelined optimization
technique where the first pipeline is
placed after step Theta (θ)

Virtex-6 1042 422 20.25 19.13 14.62 10.12

Second proposed pipelined optimization
technique where the first pipeline is
placed after step Theta (θ)

Virtex-7 1150 478 22.94 21.66 16.57 11.47

Table 11. Results and comparisons of the SHA-3’s efficiency for each output length (224, 256, 384,
and 512 bits).

Design FPGA Area
(Slices)

Frequency
(MHz)

Efficiency
(Mbps/Slices)

r = 1152

Efficiency
(Mbps/Slices)

r = 1088

Efficiency
(Mbps/Slices)

r = 832

Efficiency
(Mbps/Slices)

r = 576

Provelengios et al. [33] Virtex-5 2326 306 - - - 2.40

Mestiri et al. [34] Virtex-5 4793 317.11 - 2.71 - -

Sunda et al. [35] Virtex-5 1163 273 - - - 6.06

Ioannou et al. [36]
Virtex-5 2652 352 - - - 6.37

Virtex-6 2296 391 - - - 8.17

Athanasiou et al. [37]

Virtex-5 1702 389 - 10.98 - -

Virtex-6 1649 397 - 11.60 - -

Virtex-7 1618 434 - 12.90 - -

Gaj et al. [38]
Virtex-5 2123 - - 5.90 - 4.16

Virtex-6 1456 - - 10.26 - 6.42

Nannipieri et al. [39] Stratix IV 5363 110 - - - -

Mestiri et al. [40] Virtex-5 1680 387 - - - 4.91

Second proposed pipelined optimization
technique where the first pipeline is
placed after step Theta (θ)

Virtex-5 998 402 19.33 18.26 13.96 9.67

Second proposed pipelined optimization
technique where the first pipeline is
placed after step Theta (θ)

Virtex-6 1042 422 19.44 18.36 14.04 9.72

Second proposed pipelined optimization
technique where the first pipeline is
placed after step Theta (θ)

Virtex-7 1150 478 19.95 18.84 14.41 9.98

The researchers in the works [33–36,38,40] with the Virtex-5 FPGA board show a high
area in comparison to our implementations, and the frequency which they achieved is
lower than our practical applications. Furthermore, in the works of [36,37] with the Virtex-6
FPGA board, there is a lower frequency than we accomplished, showing significant growth
in the area. Yet, in the work of [37] with the Virtex-7 FPGA board, the investigators display
a more extensive area and frequency than we achieved with our optimization techniques.
Finally, in the work of [39] with the Stratix IV FPGA board, the investigators depict a more
extensive area and poor frequency than we achieved with our optimization techniques.

With our method in the new simplified format of the RC generator for the output
length of 256-bits with Virtex-7 FPGA, our architecture achieves better throughput, over
10%, efficiency over 14%, frequency over 11%, and reduction in the area over 14%, compared
to the immediately better implementation of [37]. Finally, for the output length of 512-bits
with Virtex-6 FPGA, our architecture achieves higher throughput, over 10%, efficiency of
over 11%, frequency of over 10%, and reduction in the area of over 22% compared to the
immediately better implementation of [36].

Computation 2023, 11, 152 13 of 15

7. Conclusions and Future Work

In today’s digital age, information is transmitted in various forms, such as image,
text, video, and audio; therefore, transmissions must be carried out with safety, confiden-
tiality, and integrity to avoid unauthorized access. Cryptography algorithms are widely
used to provide high security in digital media. Aggressions against SHA-1 and SHA-2
directed NIST to embrace a new and more secure algorithm, SHA-3. The SHA-3 (Keccak)
algorithm offers a high level of security and shows strong resistance to cryptanalysis at-
tacks. Additionally, it provides us with a suitable combination of acceleration, performance
and safety.

In this article, we concentrate our study on the optimal performance of the throughput
and efficiency measures of the SHA-3 for all output lengths (224, 256, 384, and 512 bits) on
the Virtex-5, Virtex-6, and Virtex-7 FPGA boards. We compare the innovative method we
propose to similar designs and show that our suggested method has the highest perfor-
mance in the standard evaluation criteria throughput (Gbps) and efficiency (Mbps/slices).
We achieved a throughput rate of 22.94 Gbps and an efficiency rate of 19.95 Mbps/slices
with Virtex-7. The suggested architecture works correctly with single-block messages.

In future work, we will analyze the architectural technique of more in-depth pipelines
to reduce the crucial path and enhance throughput and efficiency performance metrics per
round. Also, we intend to propose more practical experiments implementing FPGA and
entire systems-on-chip.

Author Contributions: Methodology, A.S.; formal analysis, A.S.; conceptualization, A.S.; software,
A.S.; investigation, A.S.; resources, A.S.; project administration, A.S.; visualization, A.S.; validation,
A.S.; writing—original draft preparation, A.S.; writing—review and editing, A.S.; supervision, M.D.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ALM Adaptive Logic Module
CAD Computer-aided design
CPU Central Processing Unit
DDR4 Double Data Rate 4
DSE Design Space Explorer
FPGA Field-Programmable Gate Array
GB Gigabytes
Gbps Gigabits per second
GHz Gigahertz
GPU Graphics Processing Unit
HDL Hardware Description Language
HMAC Hashed Message Authentication Code
Mbps Megabits per second
MHz Megahertz
NIST National Institute of Standards and Technology
PKI Public Key Infrastructure
PLL Phase Locked Loop
RC Round Constant
SDRAM Synchronous Dynamic Random-Access Memory
SET Secure Electronic Transactions
SHA Secure Hash Algorithm
VHDL Very High Speed Integrated Circuit HDL

Computation 2023, 11, 152 14 of 15

References
1. Abusukhon, A.; Mohammad, Z.; Al-Thaher, A. An authenticated, secure, and mutable multiple-session-keys protocol based on

elliptic curve cryptography and text-to-image encryption algorithm. Concurr. Comput. Pract. Exp. 2022, 34, e6649. [CrossRef]
2. Sideris, A.; Sanida, T.; Tsiktsiris, D.; Dasygenis, M. Image Hashing Based on SHA-3 Implemented on FPGA. In Recent Advances

in Manufacturing Modelling and Optimization: Select Proceedings of RAM 2021; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 521–530. [CrossRef]

3. Bhatia, T.; Verma, A.K.; Sharma, G. Towards a secure incremental proxy re-encryption for e-healthcare data sharing in mobile
cloud computing. Concurr. Comput. Pract. Exp. 2020, 32, e5520. [CrossRef]

4. Chi, X.; Yan, C.; Wang, H.; Rafique, W.; Qi, L. Amplified locality-sensitive hashing-based recommender systems with privacy
protection. Concurr. Comput. Pract. Exp. 2022, 34, e5681. [CrossRef]

5. Hu, H.; Dobbie, G.; Salcic, Z.; Liu, M.; Zhang, J.; Lyu, L.; Zhang, X. Differentially private locality sensitive hashing based federated
recommender system. Concurr. Comput. Pract. Exp. 2021, 35, e6233. [CrossRef]

6. Sideris, A.; Sanida, T.; Tsiktsiris, D.; Dasygenis, M. Acceleration of Image Processing with SHA-3 (Keccak) Algorithm using
FPGA. J. Eng. Res. Sci. 2022, 1, 20–28. [CrossRef]

7. Bang, J.; Kim, C.; Byun, E.K.; Sung, H.; Lee, J.; Eom, H. Accelerating I/O performance of ZFS-based Lustre file system in HPC
environment. J. Supercomput. 2022, 79, 7665–7691. [CrossRef]

8. Zhang, S.; Huang, J.; Xiao, R.; Du, X.; Gong, P.; Lin, X. Toward more efficient locality-sensitive hashing via constructing novel
hash function cluster. Concurr. Comput. Pract. Exp. 2021, 33, e6355. [CrossRef]

9. Stevens, M.; Bursztein, E.; Karpman, P.; Albertini, A.; Markov, Y. The first collision for full SHA-1. In Proceedings of the
Annual International Cryptology: 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, 20–24 August
2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 570–596. [CrossRef]

10. Sideris, A.; Sanida, T.; Dasygenis, M. Hardware acceleration of SHA-256 algorithm using NIOS-II processor. In Proceedings of the
2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 13–15 May
2019; pp. 1–4. [CrossRef]

11. Nikolić, I.; Biryukov, A. Collisions for step-reduced SHA-256. In Proceedings of the International Workshop on Fast Software
Encryption, Lausanne, Switzerland, 10–13 February 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–15. [CrossRef]

12. Sanadhya, S.K.; Sarkar, P. New collision attacks against up to 24-step SHA-2. In Proceedings of the International Conference
on Cryptology in India, Kharagpur, India, 14–17 December 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 91–103.
[CrossRef]

13. Sideris, A.; Sanida, T.; Dasygenis, M. High throughput implementation of the keccak hash function using the nios-ii processor.
Technologies 2020, 8, 15. [CrossRef]

14. Guo, J.; Liao, G.; Liu, G.; Liu, M.; Qiao, K.; Song, L. Practical collision attacks against round-reduced SHA-3. J. Cryptol. 2020,
33, 228–270. [CrossRef]

15. Dworkin, M.J. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions; National Institute of Standards and
Technology: Gaithersburg, MD, USA, 2015. [CrossRef]

16. Jiang, S.; Zhu, X.; Wang, L. An efficient anonymous batch authentication scheme based on HMAC for VANETs. IEEE Trans. Intell.
Transp. Syst. 2016, 17, 2193–2204. [CrossRef]

17. Schwenk, J. Attacks on SSL and TLS. In Guide to Internet Cryptography: Security Protocols and Real-World Attack Implications;
Springer: Berlin/Heidelberg, Germany, 2022; pp. 267–328. [CrossRef]

18. Yin, H.L.; Fu, Y.; Li, C.L.; Weng, C.X.; Li, B.H.; Gu, J.; Lu, Y.S.; Huang, S.; Chen, Z.B. Experimental quantum secure network with
digital signatures and encryption. Natl. Sci. Rev. 2023, 10, nwac228. [CrossRef]

19. Olanrewaju, R.F.; Khan, B.U.I.; Mattoo, M.M.U.I.; Anwar, F.; Nordin, A.N.B.; Mir, R.N. Securing electronic transactions via
payment gateways–a systematic review. Int. J. Internet Technol. Secur. Trans. 2017, 7, 245–269. [CrossRef]

20. Spies, T. Public key infrastructure. In Computer and Information Security Handbook; Elsevier: Amsterdam, The Netherlands, 2017;
pp. 691–711. [CrossRef]

21. Goz, D.; Ieronymakis, G.; Papaefstathiou, V.; Dimou, N.; Bertocco, S.; Simula, F.; Ragagnin, A.; Tornatore, L.; Coretti, I.; Taffoni, G.
Performance and energy footprint assessment of FPGAs and GPUs on HPC systems using astrophysics application. Computation
2020, 8, 34. [CrossRef]

22. Ruiz-Rosero, J.; Ramirez-Gonzalez, G.; Khanna, R. Field programmable gate array applications—A scientometric review.
Computation 2019, 7, 63. [CrossRef]

23. Siddiqui, F.; Amiri, S.; Minhas, U.I.; Deng, T.; Woods, R.; Rafferty, K.; Crookes, D. FPGA-Based Processor Acceleration for Image
Processing Applications. J. Imaging 2019, 5, 16. [CrossRef]

24. Kalaitzis, K.; Sotiriadis, E.; Papaefstathiou, I.; Dollas, A. Evaluation of external memory access performance on a High-End FPGA
hybrid computer. Computation 2016, 4, 41. [CrossRef]

25. Sideris, A.; Sanida, T.; Chatzisavvas, A.; Dossis, M.; Dasygenis, M. High Throughput of Image Processing with Keccak Algorithm
using Microprocessor on FPGA. In Proceedings of the 2022 7th South-East Europe Design Automation, Computer Engineering,
Computer Networks and Social Media Conference (SEEDA-CECNSM), Ioannina, Greece, 23–25 September 2022; pp. 1–4.
[CrossRef]

http://doi.org/10.1002/cpe.6649
http://dx.doi.org/10.1007/978-981-16-9952-8_44
http://dx.doi.org/10.1002/cpe.5520
http://dx.doi.org/10.1002/cpe.5681
http://dx.doi.org/10.1002/cpe.6233
http://dx.doi.org/10.55708/js0107004
http://dx.doi.org/10.1007/s11227-022-04966-7
http://dx.doi.org/10.1002/cpe.6355
http://dx.doi.org/10.1007/978-3-319-63688-7_19
http://dx.doi.org/10.1109/MOCAST.2019.8741638
http://dx.doi.org/10.1007/978-3-540-71039-4_1
http://dx.doi.org/10.1007/978-3-540-89754-5_8
http://dx.doi.org/10.3390/technologies8010015
http://dx.doi.org/10.1007/s00145-019-09313-3
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.1109/TITS.2016.2517603
http://dx.doi.org/10.1007/978-3-031-19439-9_12
http://dx.doi.org/10.1093/nsr/nwac228
http://dx.doi.org/10.1504/IJITST.2017.089781
http://dx.doi.org/10.1016/B978-0-12-803843-7.00048-X
http://dx.doi.org/10.3390/computation8020034
http://dx.doi.org/10.3390/computation7040063
http://dx.doi.org/10.3390/jimaging5010016
http://dx.doi.org/10.3390/computation4040041
http://dx.doi.org/10.1109/SEEDA-CECNSM57760.2022.9932909

Computation 2023, 11, 152 15 of 15

26. Nguyen, T.; MacLean, C.; Siracusa, M.; Doerfler, D.; Wright, N.J.; Williams, S. FPGA-based HPC accelerators: An evaluation on
performance and energy efficiency. Concurr. Comput. Pract. Exp. 2022, 34, e6570. [CrossRef]

27. Lefevre, C.; Mennink, B. Tight Preimage Resistance of the Sponge Construction. In Proceedings of the Advances in Cryptology–
CRYPTO 2022: 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, 15–18 August 2022;
Proceedings, Part IV; Springer: Berlin/Heidelberg, Germany, 2022; pp. 185–204. [CrossRef]

28. Al-Odat, Z.A.; Ali, M.; Abbas, A.; Khan, S.U. Secure hash algorithms and the corresponding fpga optimization techniques. ACM
Comput. Surv. (CSUR) 2020, 53, 1–36. [CrossRef]

29. Ma, K.M.; Le, D.H.; Pham, C.K.; Hoang, T.T. Design of an SoC Based on 32-Bit RISC-V Processor with Low-Latency Lightweight
Cryptographic Cores in FPGA. Future Internet 2023, 15, 186. [CrossRef]

30. El Moumni, S.; Fettach, M.; Tragha, A. High throughput implementation of SHA3 hash algorithm on field programmable gate
array (FPGA). Microelectron. J. 2019, 93, 104615. [CrossRef]

31. Wong, M.M.; Haj-Yahya, J.; Sau, S.; Chattopadhyay, A. A new high throughput and area efficient SHA-3 implementation. In
Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5.
[CrossRef]

32. Kundi, D.-e.-S.; Aziz, A. A low-power SHA-3 designs using embedded digital signal processing slice on FPGA. Comput. Electr.
Eng. 2016, 55, 138–152. [CrossRef]

33. Provelengios, G.; Kitsos, P.; Sklavos, N.; Koulamas, C. FPGA-based design approaches of keccak hash function. In Proceedings of
the 2012 15th Euromicro Conference on Digital System Design, Cesme, Turkey, 5–8 September 2012; pp. 648–653. [CrossRef]

34. Mestiri, H.; Kahri, F.; Bedoui, M.; Bouallegue, B.; Machhout, M. High throughput pipelined hardware implementation of the
KECCAK hash function. In Proceedings of the 2016 International Symposium on Signal, Image, Video and Communications
(ISIVC), Tunis, Tunisia, 21–23 November 2016; pp. 282–286. [CrossRef]

35. Sundal, M.; Chaves, R. Efficient FPGA implementation of the SHA-3 hash function. In Proceedings of the 2017 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), Bochum, Germany, 3–5 July 2017; pp. 86–91. [CrossRef]

36. Ioannou, L.; Michail, H.E.; Voyiatzis, A.G. High performance pipelined FPGA implementation of the SHA-3 hash algorithm. In
Proceedings of the 2015 4th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 14–18 June 2015;
pp. 68–71. [CrossRef]

37. Athanasiou, G.S.; Makkas, G.P.; Theodoridis, G. High throughput pipelined FPGA implementation of the new SHA-3 cryp-
tographic hash algorithm. In Proceedings of the 2014 6th International Symposium on Communications, Control and Signal
Processing (ISCCSP), Athens, Greece, 21–23 May 2014; pp. 538–541. [CrossRef]

38. Gaj, K.; Homsirikamol, E.; Rogawski, M.; Shahid, R.; Sharif, M.U. Comprehensive Evaluation of High-Speed and Medium-Speed
Implementations of Five SHA-3 Finalists Using Xilinx and Altera FPGAs. 2012. Available online: https://eprint.iacr.org/2012/3
68 (accessed on 30 May 2023).

39. Nannipieri, P.; Bertolucci, M.; Baldanzi, L.; Crocetti, L.; Di Matteo, S.; Falaschi, F.; Fanucci, L.; Saponara, S. SHA2 and SHA-3
accelerator design in a 7 nm technology within the European Processor Initiative. Microprocess. Microsyst. 2021, 87, 103444.
[CrossRef]

40. Mestiri, H.; Barraj, I. High-Speed Hardware Architecture Based on Error Detection for KECCAK. Micromachines 2023, 14, 1129.
[CrossRef] [PubMed]

41. Baldwin, B.; Byrne, A.; Lu, L.; Hamilton, M.; Hanley, N.; O’Neill, M.; Marnane, W.P. FPGA implementations of the round two
SHA-3 candidates. In Proceedings of the 2010 International Conference on Field Programmable Logic and Applications, Milan,
Italy, 31 August–2 September 2010; pp. 400–407. [CrossRef]

42. Katayama, K.; Matsumura, H.; Kameyama, H.; Sazawa, S.; Watanabe, Y. An FPGA-accelerated high-throughput data optimization
system for high-speed transfer via wide area network. In Proceedings of the 2017 International Conference on Field Programmable
Technology (ICFPT), Melbourne, VIC, Australia, 11–13 December 2017; pp. 211–214. [CrossRef]

43. Computer Security Division, Information Technology Laboratory (I.T.L.) Example Values—Cryptographic Standards and
Guidelines: CSRC. Available online: https://nist.gov/itl/csd (accessed on 2 May 2023).

44. Michail, H.; Kakarountas, A.; Milidonis, A.; Goutis, C. A top-down design methodology for ultrahigh-performance hashing cores.
IEEE Trans. Dependable Secur. Comput. 2008, 6, 255–268. [CrossRef]

45. AMD Inc Xilinx Power Estimator v2018.2. User Guide. Available online: https://docs.xilinx.com/v/u/2018.2-English/ug440
-xilinx-power-estimator (accessed on 7 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/cpe.6570
http://dx.doi.org/110.1007/978-3-031-15985-5_7
http://dx.doi.org/10.1145/3311724
http://dx.doi.org/10.3390/fi15050186
http://dx.doi.org/10.1016/j.mejo.2019.104615
http://dx.doi.org/10.1109/ISCAS.2018.8351649
http://dx.doi.org/10.1016/j.compeleceng.2016.04.004
http://dx.doi.org/10.1109/DSD.2012.63
http://dx.doi.org/10.1109/ISIVC.2016.7894001
http://dx.doi.org/10.1109/ISVLSI.2017.24
http://dx.doi.org/10.1109/MECO.2015.7181868
http://dx.doi.org/10.1109/ISCCSP.2014.6877931
https://eprint.iacr.org/2012/368
https://eprint.iacr.org/2012/368
http://dx.doi.org/10.1016/j.micpro.2020.103444
http://dx.doi.org/10.3390/mi14061129
http://www.ncbi.nlm.nih.gov/pubmed/37374714
http://dx.doi.org/10.1109/FPL.2010.84
http://dx.doi.org/10.1109/FPT.2017.8280143
https://nist.gov/itl/csd
http://dx.doi.org/10.1109/TDSC.2008.15
https://docs.xilinx.com/v/u/2018.2-English/ug440-xilinx-power-estimator
https://docs.xilinx.com/v/u/2018.2-English/ug440-xilinx-power-estimator

	Introduction
	The SHA-3 Overview
	Related Work
	Proposed Pipelining Optimization Technique of the SHA-3
	Experimental Results
	Validating the Modified Construction
	Efficiency and Throughput Performance Measures
	Results of Our Two Architectures

	Result in Discussion
	Conclusions and Future Work
	References

