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Abstract: We consider the multispecies model described by a coupled system of diffusion–reaction
equations, where the coupling and nonlinearity are given in the reaction part. We construct a semi-
discrete form using a finite volume approximation by space. The fully implicit scheme is used for
approximation by time, which leads to solving the coupled nonlinear system of equations at each
time step. This paper presents two uncoupling techniques based on the explicit–implicit scheme
and the operator-splitting method. In the explicit–implicit scheme, we take the concentration of
one species in coupling term from the previous time layer to obtain a linear uncoupled system of
equations. The second approach is based on the operator-splitting technique, where we first solve
uncoupled equations with the diffusion operator and then solve the equations with the local reaction
operator. The stability estimates are derived for both proposed uncoupling schemes. We present a
numerical investigation for the uncoupling techniques with varying time step sizes and different
scales of the diffusion coefficient.

Keywords: multispecies diffusion–reaction model; spatial–temporal models; explicit–implicit scheme;
operator-splitting method; uncoupling techniques

1. Introduction

Mathematical models used in various scientific disciplines, including chemistry, ge-
ology, ecology, and biology, incorporate reaction terms [1–3]. In mathematical ecology,
reaction–diffusion models are employed to understand and describe the dynamics of
species populations [4,5]. Spatial–temporal Lotka–Volterra models are utilized to inves-
tigate the populations of multiple interacting communities, considering the influence of
spatial relationships on diverse aspects such as biodiversity and the structure of food
webs [6]. The application of these models to marsh ecosystems at the mouth of the Nue-
ces River is presented in [7]. Furthermore, one- and two-species population competition
models are studied through unsteady diffusion–reaction equations [8,9]. In simulating
subsurface flow and transport, reactive transport models capture the effects of biochemical
reactions [10–12].

The reaction term is nonlinear and usually has a different time scale, requiring special
numerical techniques for accurate and computationally effective solution development. To
solve a nonlinear problem, a linearization technique is required. The Newton’s method
is the traditional choice but is computationally expensive and sometimes requires small
stepping for an accurate solution and method convergence. The Newton’s method, a
powerful iterative technique for solving nonlinear equations, finds widespread use in
scientific computation, despite its computational expense. It has proven valuable in diverse
domains such as Computational Fluid Dynamics (CFD), Structural Mechanics, Electromag-
netics, Geophysical Modeling, Optimization, Chemical Engineering, Climate Modeling,
and Biomedical Simulations. Researchers often combine Newton’s method with optimiza-
tion techniques, preconditioners, or adaptive step-size control to enhance its efficiency
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and overcome convergence challenges. Its effectiveness in tackling fully-implicit nonlinear
problems remains a compelling choice for many scientific applications [13–15].

The most straightforward technique for solving nonlinear problems is linearization
using a previous time-layer solution [16]. In the semi-implicit time approximation method,
the reaction term is approximated using the solution from the previous time layer [17–20].
This approach is beneficial when applied to multispecies interaction models, as it leads to
uncoupled equations for each species. This uncoupling improves computational efficiency
and enables faster simulations than fully coupled and implicit schemes. Operator-splitting
methods have been extensively employed in computational mathematics [21–23]. These
methods divide coupled multiphysics processes into components corresponding to differ-
ent physical processes, allowing each component to be treated with specific techniques [24].
Such schemes have been developed for various problems, including convection–diffusion–
reaction problems, Navier–Stokes equations, poroelasticity, and thermoelasticity prob-
lems [18,24–29]. The splitting methods allow different numerical methods and libraries
to solve the subproblems, reducing computational effort for large problems and enabling
parallel computations.

Additive operator-difference schemes are valuable for solving unsteady equations in
the context of time approximation. These schemes can be effectively combined with explicit–
implicit time approximation methods. Explicit–implicit time approximation is commonly
employed for convection–diffusion–reaction equations [10,17,18,25,30]. Reactive transport
processes often involve a combination of slow transport processes and stiff reaction terms.
In such cases, explicit time approximation methods can approximate the slow transport
processes, while the fast reaction terms are treated implicitly [10]. The explicit–implicit
scheme is applied to decouple equations in the context of multicontinuum flow problems
in fractured porous media in the study mentioned in [17].

In this work, we consider uncoupling techniques for the multispecies model. This
mathematical model is described by a coupled system of reaction–diffusion equations,
where the system’s nonlinearity is related to the reaction term. We start with a standard
fully implicit approach with the Backward Euler time approximation and Newton solver.
Then, we consider two schemes useful for uncoupling systems and linearizing the nonlinear
reaction term. We first consider linearization based on evaluating a part of the reaction
term using the solution from the previous time layer (explicit–implicit scheme). In this
approach, we take the concentration of another species in coupling term from the previous
time layer to obtain a linear uncoupled system of equations, i.e., we solve the equation for
each species separately. The second approach is based on the operator-splitting technique,
where we first apply a diffusion operator and then apply a local reaction operator that
can be calculated using explicit or implicit time approximation in each grid cell separately
(local problem). Operator splitting techniques lead to the uncoupled system, where each
species’ diffusion equation is solved separately. We present a numerical investigation of
the uncoupling techniques with varying time step sizes and different scales of diffusion
coefficients.

This paper is organized as follows. In Section 2, we describe the problem formulation
with a finite volume approximation by space and a fully implicit approximation by time.
The uncoupling techniques are presented in Section 3. A numerical investigation of the
methods’ accuracy with computational effectiveness is presented in Section 4. The paper
ends with a conclusion.

2. Problem Formulation

We consider the multispecies competition model that is described by the following
system of equations:

∂uk
∂t
−∇ · (εk(x)∇uk) = rk(x)uk(1− uk)−∑

l 6=k
αkl(x)ukul , k = 1, .., L, x ∈ Ω, t > 0, (1)
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where uk is the population of the kth species, εk is the diffusion coefficient, rk is the kth pop-
ulation reproductive growth rate, and αkl is the interaction coefficient due to competition
(ul compete with uk).

The system of equations is considered with initial conditions

uk = uk,0, x ∈ Ω, t = 0, (2)

and free boundary conditions

∇uk · n = 0, x ∈ ∂Ω, (3)

where n is the outer normal vector to the boundary ∂Ω.

2.1. Approximation by Space

For the numerical solution of the problem Equation (1) with initial and boundary
conditions Equations (2) and (3), we use a finite volume method for approximation by
space [31].

Let Th be the triangulation of the domain Ω with mesh size h

Th = ∪iKi,

where Ki is the grid cell, i = 1, · · · , N, and N is the number of the grid cells. Let eij be the
interface (facet) between two cells Ki and Kj, Ki ∩ Kj 6= .

Let uk,i be the cell average value of the function uk on cell Ki

1
|Ki|

∫
Ki

ukdx = uk,i,

where |Ki| is cell volume.
For diffusion, we use a two-point flux approximation,∫

eij

εk∇uk · nij ds ≈ Tk,ij(uk,i − uk,j), Tk,ij = εk,ij |eij|/dij,

where dij is the distance between cell center points xi and xj, |eij| is the length of the interface
between cells Ki and Kj, and εk,ij is the harmonic average, εk,ij = 2/(1/εk,i + 1/εk,j).

Therefore, we have the following semi-discrete form:

∂uk,i

∂t
|Ki|+ ∑

j
Tk,ij(uk,i − uk,j) = rk,iuk,i(1− uk,i)|Ki| −∑

l 6=k
αkl,iuk,iul,i|Ki|. (4)

Next, we consider implicit time approximation to construct a discrete system of
equations.

2.2. Fully Implicit Scheme for Approximation by Time

Let u(n+1)
k,i = uk(xi, tn+1) and u(n)

k,i = uk(xi, tn−1), where tn = nτ, n = 1, 2, · · · and
τ > 0 is the fixed time step size. For approximation by time, we apply an implicit scheme
and obtain the following discrete system:

u(n+1)
k,i − u(n)

k,i

τ
|Ki|+ ∑

j
Tk,ij(u

(n+1)
k,i − u(n+1)

k,j )

= rk,iu
(n+1)
k,i (1− u(n+1)

k,i )|Ki| −∑
l 6=k

αkl,iu
(n+1)
k,i u(n+1)

l,i |Ki|.
(5)

To solve a nonlinear system of equations, we use the Newton method.
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Let s be the nonlinear iteration number and

u(n,s+1) = u(n,s) + δu(n,s+1), s = 0, 1, 2 · · · ,

where u(n,s) = (u(n,s)
1 , · · · , u(n,s)

L ).
In the considered problem, we have a linear diffusion operator and the following

nonlinear reaction operator:

Rk(u) = rkuk(1− uk)−∑
l 6=k

αklukul .

In Newton’s method, we apply the following linearization

Rk(u(n,s+1)) ≈ Rk(u(n,s)) + ∑
j
(Rk(u(n,s)))′jδu(n,s+1)

j ,

(Rk(u))′j =
{

rk(1− 2uk)−∑l 6=k αklul j = k,
−αkjuk j 6= k

and obtain the following system of linear equations on each nonlinear iteration

δu(n+1,s+1)
k,i

τ
|Ki|+ ∑

j
Tk,ij(δu(n+1,s+1)

k,i − δu(n+1,s+1)
k,j )− rk(1− 2u(n+1,s)

k,i )δu(n+1,s+1)
k,i |Ki|

+ ∑
l 6=k

αkl(u
(n+1,s)
l,i δu(n+1,s+1)

k,i + u(n+1,s)
k,i δu(n+1,s+1)

l,i )|Ki| = −F(n+1,s)
k,i ,

(6)

with

F(n+1,s)
k,i =

u(n+1,s)
k,i − u(n)

k,i

τ
|Ki|+ ∑

j
Tk,ij(u

(n+1,s)
k,i − u(n+1,s)

k,j )

− rk,iu
(n+1,s)
k,i (1− u(n+1,s)

k,i )|Ki|+ ∑
l 6=k

αkl,iu
(n+1,s)
k,i u(n+1,s)

l,i |Ki|,

for s = 1, 2, · · · . We iterate nonlinear iterations until ||δu(n,s+1)
k ||L2 becomes smaller than

the given tolerance or until we reach a maximum nonlinear iteration. We use a solution
from the previous time layer as an initial condition in nonlinear iterations. The scheme
Equation (6) is a fully implicit approximation, FI (coupled).

3. Uncoupling Techniques

In the fully implicit approximation by time, we update the matrix and right-hand side
of the linear system of equations in each time and nonlinear iteration, which is computa-
tionally expensive. Furthermore, the convergence of the nonlinear iterations depends on
the time step size, and for larger time steps, it takes more iterations to converge. Note that
the Newton method is the most accurate method for the solution of the nonlinear system
of equations, and we will use it to calculate the reference solution by setting a small time
step. In this section, we construct uncoupling techniques that are more computationally
effective. We start with the most straightforward scheme constructed by linearization from
the previous time layer.

3.1. Semi-Implicit Schemes

To construct semi-implicit schemes by time (linearized scheme), we take some of the
parameters in the reaction operator from the previous time step. By varying parameters
that are linearized, we can obtain the following schemes:
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• SI-1 (uncoupled):

u(n+1)
k,i − u(n)

k,i

τ
|Ki|+ ∑

j∈S
Tk,ij(u

(n+1)
k,i − u(n+1)

k,j )

= rk,iu
(n)
k,i (1− u(n)

k,i )|Ki| −∑
l 6=k

αkl,iu
(n)
k,i u(n)

l,i |Ki|.
(7)

Here, we set the whole reaction term using the solution from the previous time layer.
In the resulting scheme, the matrix of the system of linear equations that we solve
at each time iteration is fixed and decoupled for each component (species). So, we
can solve equations for each species separately by updating only the right-hand side
vector.

• SI-2 (uncoupled):

u(n+1)
k,i − u(n)

k,i

τ
|Ki|+ ∑

j∈S
Tk,ij(u

(n+1)
k,i − u(n+1)

k,j )

= rk,iu
(n+1)
k,i (1− u(n)

k,i )|Ki| −∑
l 6=k

αkl,iu
(n+1)
k,i u(n)

l,i |Ki|.
(8)

In this scheme, we still obtain decoupled problems for each species but approximate
part of the reaction term using a current solution. Therefore, each iteration should
update the matrix and right-hand side vector of the linear system of equations.

• SI-3 (coupled):

u(n+1)
k,i − u(n)

k,i

τ
|Ki|+ ∑

j∈S
Tk,ij(u

(n+1)
k,i − u(n+1)

k,j )

= rk,iu
(n+1)
k,i (1− u(n)

k,i )|Ki| −∑
l 6=k

αkl,iu
(n)
k,i u(n+1)

l,i |Ki|.
(9)

Here, we obtain a coupled problem for the multispecies competition model, but this
problem is linear in each iteration. We will use it in the numerical investigation and
compare it with other schemes.

Note that the main characteristic we want to reach is the separate solution of the equa-
tion for each species (uncoupled scheme). By uncoupling the problem, we are constructing
a fast computational algorithm.

To write stability estimates for the proposed schemes, we write all schemes in a unified
way and introduce the following matrices:

M = diag{M1, · · · , ML}, Mk = {mij}, mij =

{
|Ki| i = j,

0 i 6= j
,

Aε = diag{Aε,1, · · · , Aε,L}, Aε,k = {aε,k,ij}, aε,k,ij =

{
∑j Tk,ij i = j,
−Tk,ij i 6= j

,

A(n)
r = diag{A(n)

r,1 , · · · , A(n)
r,L }, A(n)

r,k = {a(n)r,k,ij}, a(n)r,k,ij =

{
−rk

i (1− u(n)
k,i )|Ki| i = j,

0 i 6= j
,

(10)

For matrix Aα, we define an uncoupled way of linearization (SI-1 and SI-2):

Aun,(n)
α = diag{Aun,(n)

α,1 , · · · , Aun,(n)
α,L }, Aun,(n)

α,k = {aun,(n)
α,k,ij }, (11)

aun,(n)
α,k,ij =

{
∑l 6=k αkl

i u(n)
l,i |Ki| i = j,

0 i 6= j
,
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and coupled way of linearization (SI-3):

Aco,(n)
α =


0 Aco,(n)

α,12 · · · Aco,(n)
α,1L

Aco,(n)
α,21 0 · · · Aco,(n)

α,2L
· · · · · · · · · · · ·

Aco,(n)
α,L1 Aco,(n)

α,L2 · · · 0

, Aco,(n)
α,kl = {aco,(n)

α,kl,ij}, (12)

aco,(n)
α,kl,ij =

{
αkl

i u(n)
k,i |Ki| i = j,
0 i 6= j

Then, we can rewrite the linearized system in the following matrix form [9,17]:

M
u(n+1) − u(n)

τ
+ ∑

l=ε,r,α

(
σl A

(n)
l u(n+1) + (1− σl)A(n)

l u(n)
)
= 0, (13)

where u(n) = (u(n)
1 , · · · , u(n)

L )T , A(n)
ε = Aε, σε, σr and σα are the weights.

Particularly, in this work, we set σε = 1 (implicit diffusive transport)

M
u(n+1) − u(n)

τ
+ Aεu(n+1) + σ(A(n)

r + A(n)
α )u(n+1) + (1− σ)(A(n)

r + A(n)
α )u(n) = 0, (14)

with σr = σα = σ and initial condition u(0) = u0.
By varying σ in scheme Equation (14), we can define semi-implicit schemes SI-1, SI-2

and SI-3.

• SI-1 (uncoupled): σ = 0 where A(n)
α u(n) = Aun,(n)

α u(n) = Aco,(n)
α u(n).

• SI-2 (uncoupled): σ = 1 with Aα = Aun,(n)
α .

• SI-3 (coupled): σ = 1 with Aα = Aco,(n)
α .

Note that the scheme in Equation (14) has a first-order accuracy by τ for σ 6= 0.5 [32,33].
For the presented matrices, we have the following properties:

M = MT > mI ≥ 0, Aε = AT
ε ≥ 0, Ar = AT

r > −δI , Aα ≥ 0, (15)

where I is the indetity matrix, m = mini |Ki| > 0, rk(x) > r ≥ 0, δ = rm > 0, ε(x) > 0 and
αkl(x) ≥ 0 and 0 ≤ u ≤ 1 (undimensional case).

To derive a stability estimate of the semi-implicit scheme Equation (14), we write a
weighted scheme in the following form (a canonical form of two-level schemes) [18,32–34]

B(n) u(n+1) − u(n)

τ
+ A(n)u(n) = 0, (16)

where
B(n) = M + τAε + τσ(A(n)

r + A(n)
α ), A(n) = Aε + A(n)

r + A(n)
α . (17)

For the first scheme with σ = 0 (SI-1), we have

B(n) = M + τAε, B(n) = (B(n))T ≥ mI ,

and
A(n) = Aε + A(n)

r + A(n)
α , A(n) ≥ −δI .
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Next, after scalar multiplication by u(n) of Equation (17), we obtain

(B(n)(u(n+1) − u(n)), u(n)) + τ(A(n)u(n), u(n))

= (B(n)u(n+1), u(n))− (B(n)u(n), u(n)) + τ(A(n)u(n), u(n))

≥ (B(n)u(n+1), u(n))− (m + τδ)||u(n)||2L2

Taking into account that

u(n+1) =
u(n+1) + u(n)

2
+

u(n+1) − u(n)

2
, u(n) =

u(n+1) + u(n)

2
− u(n+1) − u(n)

2
,

we obtain

(B(n)u(n+1), u(n)) =
1
2
(B(n)(u(n+1) + u(n)), u(n)) +

1
2
(B(n)(u(n+1) − u(n)), u(n))

=
1
4
(B(n)(u(n+1) + u(n)), u(n+1) + u(n))− 1

4
(B(n)(u(n+1) − u(n)), u(n+1) − u(n))

≥ m(u(n+1), u(n)) ≥ m||u(n+1)||L2 ||u
(n)||L2

with B(n) = (B(n))T ≥ mI .
Therefore, we have

||u(n+1)||L2 ||u
(n)||L2 ≤ (1 +

δ

m
τ)||u(n)||2L2

.

Then, we can write the following stability estimate for the scheme SI-1 for δ = rm > 0.

Theorem 1. The semi-implicit scheme of Equation (16) with σ = 0 (SI-1) is unconditionally
ρ-stable and satisfies the following estimate:

||u(n+1)||L2 ≤ ρ||u(n)||L2

with ρ = 1 + rτ.

Finally, we consider schemes with σ = 1 (SI-2 and SI-3). Here, the operator A(n) in the
problem in Equation (16) is not sign-definite, and for the solvability, we should ensure that
B > 0. Using operator properties in Equation (15), we obtain

B(n) = M + τA ≥ m− τδ > 0.

This leads to the following time step size restriction.

τ < τ0 =
m
δ

. (18)

Note that a similar time step restriction was derived in our previous works [20,35] for
convection–diffusion problems and can be found in [36,37] for reaction-diffusion problems.

Therefore, for the schemes SI-2 and SI-3, we seek a ρ-stability estimate (see [18,20,32–35]
for details). Let u(n) = ρnv(n) with ρ > 0. Substituting it into Equation (16), we obtain

B̃(n) v(n+1) − v(n)

τ
+ Ã(n)v(n) = 0, (19)

with
B̃(n) = ρB(n), Ã(n) =

ρ− 1
τ

M + ρA(n).

Here, we can write
B̃(n) = M + τÃ(n).
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The stability of the scheme Equation (19) can be proven if the operator Ã(n) ≥ 0 can be
associated with ρ. With

ρ = 1 +
δ

ξm
τ, (20)

we obtain

Ã(n) =
ρ− 1

τ
M + ρA(n) ≥

(
δ

ξ
−
(

1 +
δ

ξm
τ

)
δ

)
I =

δ

ξ

(
1−

(
ξ +

δ

m
τ

))
I .

Under the following conditions for τ

τ < τ0 =
m
δ
(1− ξ), 0 < ξ < 1, (21)

we have
ξ +

δ

m
τ < 1.

Then, we have Ã(n) > 0. Moreover, we have δ = rm then τ < 1−ξ
r . Finally, the following

stability estimate is valid.

Theorem 2. The semi-implicit scheme Equation (16) with σ = 1 (SI-2 and SI-3) is ρ-stable and
satisfies the following estimate:

||u(n+1)||L2 ≤ ρ||u(n)||L2

where ρ = 1 + r
ξ τ and the time step satisfies constrain τ < 1−ξ

r (0 < ξ < 1).

3.2. Operator-Splitting Scheme

Next, we consider a fractional time stepping method based on the operator splitting
technique. In this method, we first apply the diffusion operator, and after that the reaction
operator, where the previous diffusive solution is used as an initial condition. The main
advantage of the operator-splitting scheme is that we obtain an uncoupled system of equa-
tions for the multispecies interaction model. Furthermore, the second equation (reaction
operator) is local, i.e., it does not depend on neighbor values of the solution and can be
solved for each grid cell independently.

We have the following algorithm:

1. Solve parabolic PDEs for each species k independently to find u?
k = u?

k (x, tn+1),
tn+1 = tn + τ

∂u?
k

∂t
−∇(εk∇u?

k ) = 0, x ∈ Ω, t ∈ [tn, tn+1], (22)

with initial condition u?
k = u(n)

k for t = tn.

2. Solve coupled nonlinear ODEs to find u(n+1)
k , tn+1 = tn + τ

∂u(n+1)
k
∂t

= rku(n+1)
k (1− u(n+1)

k )−∑
l 6=k

αklu
(n+1)
k u(n+1)

l , t ∈ [tn, tn+1], (23)

with initial condition u(n+1)
k = u?

k for t = tn.

In this algorithm, we separate the system into diffusion and reaction parts, where the
diffusion part in Equation (22) is uncoupled and solved using implicit approximation by
time (Backward Euler, BE)

Mk
u?

k − u(n)
k

τ
+ Aε,ku?

k = 0, (24)
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for each k = 1, · · · , L independently.
The coupled nonlinear local reaction part of Equation (23) can be solved using an

implicit time-approximation scheme (BE):

Mk
u(n+1)

k − u(?)
k

τ
+ (Ar,k + Aα,k)u

(n+1)
k = 0 (25)

for each cell Ki independently. We note that the splitting scheme in Equations (24) and (25)
has a first-order accuracy by τ [27–29].

To derive the stability estimate of the operator splitting scheme, we write the equation
in the following form:

(Mk + τAε,k)u?
k = u(n)

k ,

(Mk + τ(Ar,k + Aα,k))u
(n+1)
k = u(?)

k .

By the scalar multiplication of the equation by u? and u(n+1), we obtain

((Mk + τAε,k)u?
k , u?

k ) = (u(n)
k , u?

k ),

((Mk + τ(Ar,k + Aα,k))u
(n+1)
k , u(n+1)

k ) = (u(?)
k , u(n+1)

k ).

Then, using the operator’s properties, we have

((Mk + τAε,k)u?
k , u?

k ) ≥ m||u?
k ||

2
L2

, m > 0

((Mk + τ(Ar,k + Aα,k))u
(n+1)
k , u(n+1)

k ) ≥ (m− τδ)||u(n+1)
k ||2L2

.

By the Cauchy–Schwarz inequality, we obtain

m||u?
k ||L2 ≤ ||u

(n)
k ||L2 ,

(m− τδ)||u(n+1)
k ||L2 ≤ ||u

?
k ||L2

Finally, for τ ≥ 1/r, we have the following stability estimate

||u(n+1)
k ||L2 ≤ ||u

(n)
k ||L2 . (26)

In the presented operator-splitting scheme, we can handle the time step restriction by
performing a smaller time step size for the reaction subproblem and by keeping a more
significant time step size for the diffusion subproblem. Such schemes are related to mul-
tirate time approximation schemes, where a different time step size can be used for each
subproblem. Note that the explicit multistep methods can be used, whereas for the case of
the one-step method, we can obtain the Forward Euler formula (FE). We note that, for FE
approximation with fixed time step size τ̃ = τ, we obtain a similar time approximation as
SI-1.

Furthermore, a general class of adaptive implicit multistep methods can be used for
a set of local ODEs in Equation (23) in each cell Ki. Particularly, we will use the adaptive
backward differentiation formula (BDF) to solve ODEs in time interval t̃ ∈ [tn, tn+1] with
varying order p and time-step size τ̃l [38–40]. Let t̃l = t̃l−1 + τ̃l for l = 1, · · · , M̃ with
t̃0 = tn and t̃M̃ = tn+1. Then, to find ũ(l)

i = (ũ(l)
1,1, · · · , ũ(l)

L,1)
T in each cell Ki at time t̃l , we

solve
p

∑
s=0

γsũ(l−s)
i = τ̃l βF(ũ(l)

i ), (27)

with initial condition
ũ(0) = u?

i , u?
i = (u?

1,1, · · · , u?
L,1)

T ,
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with

F(ui) = ( f1(ui), · · · , fL(ui))
T , fk(ui) = rk,iuk,i(1− uk,i)−∑

l 6=k
αkl,iuk,iul,i,

Finally, we set u(n+1) = ũ(M̃). This method is implicit and requires the solution of nonlinear
equations at each step. Note that the considered above Backward Euler scheme is equivalent
to the BDF with p = 1 (BDF1).

Presented formulation Equations (22) and (23) are written in general form, and fur-
ther investigation will be conducted in future works for different scales of reaction parts,
including the stiff case when the time scale of reaction is much smaller than the diffusive
part.

4. Numerical Results

For numerical investigation, we consider the multispecies interaction model in the
heterogeneous domain Ω. Let Ω = Ωm ∪Ωc, where Ωm is the background subdomain and
Ωc is the subdomain of the inclusions (see Figure 1). For the heterogeneous properties,
we set:

εk(x) =
{

εk,m, ∈ Ωm
εk,c, ∈ Ωc

, rk(x) =
{

rk,m, ∈ Ωm
rk,c ∈ Ωc

, αlk(x) =
{

αlk,m, ∈ Ωm
αlk,c ∈ Ωc

where εk,m, εk,c, rk,m, rk,c, αlk,m and αlk,c are constants that characterize properties of the
subdomains. We note that the solution to such problems requires the construction of grids
that resolve heterogeneity on the grid level, which leads to a large system of equations that
is computationally expensive to solve. The application of the Newton method requires
even more computational time.

Figure 1. Heterogeneous domain with fine grid that resolves heterogeneity on the grid level. Blue
color: background subdomain, Ωm. Red color: subdomain of the circle inclusions, Ωc.

We consider the two-species competition model

∂u1

∂t
−∇ · (ε1(x)∇u1) = r1(x)u1(1− u1)− α12(x)u1u2, x ∈ Ω,

∂u2

∂t
−∇ · (ε2(x)∇u2) = r2(x)u2(1− u2)− α21(x)u1u2, x ∈ Ω.

with small, medium and large diffusions:

Small diffusion (s)

ε1 =

{
10−5, x ∈ Ωm
10−3, x ∈ Ωc

, ε2 =

{
10−3, x ∈ Ωm
10−5, x ∈ Ωc
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Medium diffusion (m)

ε1 =

{
10−4, x ∈ Ωm
10−2, x ∈ Ωc

, ε2 =

{
10−2, x ∈ Ωm
10−4, x ∈ Ωc

Large diffusion (l)

ε1 =

{
10−3, x ∈ Ωm
10−1, x ∈ Ωc

, ε2 =

{
10−3, x ∈ Ωm
10−1, x ∈ Ωc

Note that the diffusion coefficients for the first and second species are opposite, i.e., we con-
sider the case when the first species is less diffusive in the primary subdomain (background)
with ε1,m = ε1,c/100. We set the opposite case for the second species when background
media are more diffusive ε2,m = ε2,c · 100.

We consider two test problems:

• Test 1

r1 =

{
0.15, x ∈ Ωm
0.1 x ∈ Ωc

, r2 =

{
0.1, x ∈ Ωm
0.15 x ∈ Ωc

,

α12 =

{
0.055, x ∈ Ωm
0.05 x ∈ Ωc

, α21 =

{
0.05, x ∈ Ωm
0.055 x ∈ Ωc

,

and tmax = 50 and 100 time iterations.

Test 1s (small diffusion)
Test 1m (medium diffusion)
Test 1l (large diffusion)

• Test 2

r1 =

{
0.15, x ∈ Ωm
0.1 x ∈ Ωc

, r2 =

{
0.1, x ∈ Ωm
0.15 x ∈ Ωc

,

α12 =

{
0.15, x ∈ Ωm
0.01 x ∈ Ωc

, α21 =

{
0.01, x ∈ Ωm
0.075 x ∈ Ωc

,

and tmax = 150 and 100 time iterations.

Test 2s (small diffusion)
Test 2m (medium diffusion)
Test 2l (large diffusion)

As the initial condition, we set u1,0 = u2,0 = 0.5. In both test problems, we simulate
100 time steps.

For constructing the computational geometry with inclusions and grid generation, we
use Gmsh [41]. Numerical implementation is performed using PETSc [42,43] and FEniCS
libraries [43,44]. To visualize the results, we use Paraview [45].

We solve the problem on the fine grid and use the solution as a reference solution
to calculate the errors of the multiscale solver. The fine grid contains 69,948 cells and
DOFh = 69, 948 for each component. In Figure 2, we present the dynamic of the average
values of the solution for Test 1 and 2 for cases with no diffusion (Test 1 (ODE) and 2 (ODE)),
small (Test 1s and 2s), medium (Test 1m and 2m) and large diffusion (Test 1l and 2l). To
calculate the average solution, we use the following formulas:

ūk,m =
1
|Ωm|

∫
Ωm

uk dx, ūk,c =
1
|Ωc|

∫
Ωc

uk dx, k = 1, 2,

where |Ωm| and |Ωc| are the volume of the domains Ωm and Ωc, respectively. In Figure 2,
we also present values of the solutions at the final time. Numerical solutions for small,
medium, and large diffusion at the final time are presented in Figure 3 for Test 1 and
2. We observe a considerable influence of the diffusion on the solution in the inclusions
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subdomain. However, the effect of diffusion on the solution in the background domain is
minor. We see that both species survive in background media in Test 1, but the population of
the first species is smaller than that of the second. In Test 2, we observe that the population
of the second species is very small, and the first species almost survives in background
media. The influence of the diffusion in inclusions is very large and can change dominated
species. For example, the first species dominate the second in Test 1 with no diffusion, but
for a problem with diffusion, we see that the second species starts to dominate over the
first. We observe similar behavior in the inclusions for Test 2.

(a) Test 1s, 1m and 1l (from top to bottom) (b) Test 2s, 2m and 2l (from top to bottom)

Figure 2. Dynamic of the average solution with no diffusion (ODE) and for small, medium and large
diffusion using Newton’s method (FI, fully implicit, coupled). ūk,m (left) and ūk,c (right) ū1 (red color)
and ū2 (blue color).

(a) Test 1s, 1m and 1l (from top to bottom) (b) Test 2s, 2m and 2l (from top to bottom)

Figure 3. Final time solution for small, medium and large diffusion using Newton’s method (FI, fully
implicit, coupled). u1 (left) and u2 (right).
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For the fully implicit scheme, we consider the effect of the time stepping size on the
method accuracy. In Figure 4, we present the dynamic of the average values of the solution
for Test 1 and 2 with τ = 2, 5 and 10. We use a fully implicit scheme with the smallest τ = 1
as a reference solution. We observe that the more significant difference occurs at the first
half-time of simulations.

Next, we calculate the errors between the reference solution and the solution with a
more significant time step size (τ = 2, 5 and 10). To compare solutions, we calculate relative
L2 errors for the first and second species populations using the following formulas:

ek =

(∫
Ω(uk − uk,ms)

2 dx∫
Ω(uk)2 dx

)1/2

, k = 1, 2

where uk is the reference solution (coupled) and uk,ms is the solution using uncoupling
methods.

The error dynamic is presented in Figure 5 for Test 1 and 2. We observe significant
errors at the beginning. We obtain more notable errors for the first species In Test 1. In
Test 2, we obtain more significant errors for the second species. However, the error for the
first species in Test 2 does not reduce by time.

In Table 1, we present the time of calculations for the fully implicit scheme with
different values of time step size τ. We also present the total number of linear system
solutions directly affecting the solution time. We observe that the time of simulations is
more significant for Test 2 due to the higher nonlinearity that leads to the larger number of
linear system solutions (number of nonlinear solver iterations). Moreover, we see that the
solution time is more significant for the more extensive diffusion. The effect of the time step
size is represented, where a smaller time of calculations is needed for a more significant
time step size.

(a) Test 1s, 1m and 1l (from top to bottom) (b) Test 2s, 2m and 2l (from top to bottom)

Figure 4. Dynamic of the solution for small, medium and large diffusion using Newton’s method (FI,
fully implicit, coupled). ūk,m (left) and ūk,c (right) ū1 (red color) and ū2 (blue color).
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Table 1. Time of solution (sec) and total number of nonlinear iterations for Test 1 and 2 with small,
medium and large diffusion using Newton’s method (FI, fully implicit, coupled). Number of time
steps: 100 for τ, 50 for 2τ, 20 for 5τ and 10 for 10τ.

FI (τ) FI (2τ) FI (5τ) FI (10τ)

Test 1

s 1897.350 (156) 1027.670 (88) 493.328 (43) 272.072 (24)
m 1971.700 (157) 1098.320 (88) 542.582 (43) 319.365 (24)
l 2199.840 (156) 1251.940 (87) 655.119 (43) 418.062 (24)

Test 2

s 2398.220 (200) 1165.990 (105) 533.938 (47) 327.067 (29)
m 2313.360 (200) 1302.200 (105) 632.548 (47) 408.872 (29)
l 2684.840 (200) 1560.850 (105) 934.957 (66) 670.564 (49)

(a) Test 1s, 1m and 1l (from top to bottom) (b) Test 2s, 2m and 2l (from top to bottom)

Figure 5. Dynamic of the errors for small, medium and large diffusion using FI scheme. ū1 (left) and
ū2 (right).

Next, we consider the solution to the problem using presented uncoupling techniques.
We start with the semi-implicit schemes. In Figure 6, we depict the error dynamics for the
three semi-implicit schemes. The results are presented for fixed time step size τ = 1. The
errors are calculated between the considered semi-implicit scheme and the fully implicit
scheme with the same time step size τ = 1. For Test 1, we observe minor errors for all three
diffusions. In Test 2, we obtain more significant errors for all three semi-implicit schemes.
The error behavior is similar for SI-1 and SI-2 in Tests 1 and 2. However, we observe a
significant error at the final time for SI-3. In Test 2, the errors for SI-3 are more considerable
for more extensive diffusion. SI-1 and SI-2 are preferable variances for the semi-implicit
scheme because that leads to the uncoupled system. Note that the presented semi-implicit
schemes are related to the simplest linearization, where the nonlinear part is taken from
the previous time layer. In SI-1, we approximate the whole reaction term using the solution
from the previous time layer. In this scheme, the matrix of the system of linear equations
that we solve at each time iteration is fixed and decoupled for each component (species).



Computation 2023, 11, 153 15 of 21

In SI-2, we also have decoupled problems for each species but approximate part of the
reaction term using a current solution. Therefore, each iteration should update the matrix
and right-hand side vector of the linear system of equations. In SI-3, we have a coupled
problem for the multispecies competition model, but each iteration is linear. The presented
numerical results show that the SI-1 and SI-2 schemes give more minor errors than SI-3.
Furthermore, because SI-1 and SI-2 schemes give almost the same errors, we can state
that the SI-1 is preferable due to its most straightforward realization with a fully explicit
approximation of the reaction part.

(a) Test 1s, 1m and 1l (from top to bottom) (b) Test 2s, 2m and 2l (from top to bottom)

Figure 6. Dynamic of the errors for small, medium and large diffusion using SI-1, SI-2 and SI-3
scheme with τ = 1. ū1 (left) and ū2 (right).

The semi-implicit and operator splitting method results are presented in Figure 7.
Note that we use the LSODE solver to solve the ODE system in the OS scheme. We
depict the dynamics of the average solution for each species in each subdomain. The final
average value of the solution is represented. The results for fully implicit, semi-implicit,
and operator splitting methods are represented for τ = 1. We observe a slight difference
between solutions in Test 1 for small, medium, and large diffusion. However, the difference
in the first half of time is slightly larger for more significant diffusion. In Test 2, we see
good results for small diffusion. We observe a sufficiently big difference for larger diffusion,
where larger errors occur for the operator-splitting method (OS). The difference between
the fully implicit and operator-splitting method is more significant for the first species.

In Figure 8, we represent the error dynamic for the semi-implicit and operator splitting
method. We see that the operator splitting method errors for the first species in Test 2 has
an increasing behavior. Moreover, we obtain significant errors for a larger diffusion. For
example, we obtain 8.4% of error in Test 2l, 5.5% of error in Test 2m and 1.5% of error in
Test 2s. The errors for both uncoupling methods are similar for Test 1, with less than one
percent of errors. The results also illustrate that the operator splitting method is better than
the semi-implicit approximation in Test 1. Nevertheless, in Test 2, we observe the opposite
case with more minor errors for the semi-implicit scheme. The presented results of the
errors also illustrate the dynamics of uncoupling errors, where the semi-implicit approach
gives a more significant error in the first half of the simulation’s time and rapidly decreases
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after that. The operator splitting error dynamics is entirely different, where the accurate
approximation is performed at the begging of the simulation time.

(a) Test 1s, 1m and 1l (from top to bottom) (b) Test 2s, 2m and 2l (from top to bottom)

Figure 7. Dynamic of the solution for small, medium and large diffusion using SI-1 and OS schemes.
ūk,m (left) and ūk,c (right). ū1 (red color) and ū2 (blue color).

(a) Test 1s, 1m and 1l (from top to bottom) (b) Test 2s, 2m and 2l (from top to bottom)

Figure 8. Dynamic of the errors for small, medium and large diffusion using SI-1 and OS schemes
with τ = 1. ū1 (left) and ū2 (right).
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In Figures 9 and 10, we investigate the influence of the time step size on the SI-1 and
OS method accuracy. Similarly to the fully implicit scheme, we observe more significant
errors for Test 2. In Test 1, the errors are significant in the first half of the simulation’s time
and converge to sufficiently small errors at the final time. However, in Test 2, we have a
significant influence of the time step size on the method accuracy, especially for the first
species.

Finally, we present the solution time for uncoupled schemes and compare them with
the fully implicit scheme. Note that the main characteristic we want to reach is the separate
equation solution for each species (uncoupled scheme). By uncoupling the problem, we
are constructing a fast computational algorithm. In Figure 11, we present a bar plot for
calculation time for three semi-implicit schemes (SI-1, SI-2, and SI-3). We observe that the
coupled scheme SI-3 leads to a slower computational algorithm due to the solution of the
large coupled system at each time step. The decoupled approaches SI-1, and SI-2 are faster,
where the fastest algorithm is related to the fully explicit approximation of the reaction
term. We also observed from the previous numerical results that the SI-1 method has good
accuracy for such problems. The time of calculations for the explicit–implicit scheme (SI-1),
operator-splitting scheme(OS), and fully implicit scheme (FI) are presented in Figure 12. We
note that the quickest algorithm is provided by the SI-1 method. For example, the solution
time using the SI-1 scheme is approximately 49 and 64 s for small diffusion in Test 1 s and 2
s, respectively. For more significant diffusion values, we have more significant calculations
time with 229 and 405 s for Test 1m and 2m (medium diffusion) and 57 and 76 s for Test 1l
and 2l (large diffusion). Compared with the fully implicit scheme, we obtain a 37–38 times
faster solution for SI-1 and a 3–4.3 faster solution for OS for small diffusion test cases. We
have a 19–23 times faster solution for SI-1 and a 3.4 times faster solution for OS for the
medium diffusion. For the large diffusion case, we have a 6.6–9.6 times faster solution for
SI-1 and a 4.2 faster solution for OS. Therefore, the SI-1 scheme is preferable due to it having
the most straightforward implementation and the faster solution. However, the accuracy
highly depends on a test set of parameters, and the correct choice should be performed for
each case.

(a) Test 1s, 1m and 1l (from top to bottom) (b) Test 2s, 2m and 2l (from top to bottom)

Figure 9. Dynamic of the errors for small, medium and large diffusion using SI-1 scheme with τ = 2, 5
and 10. ū1 (left) and ū2 (right).
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(a) Test 1s, 1m and 1l (from top to bottom) (b) Test 2s, 2m and 2l (from top to bottom)

Figure 10. Dynamic of the errors for small, medium and large diffusion using OS scheme with
τ = 2, 5 and 10. ū1 (left) and ū2 (right).

(a) Test 1s, 1m and 1l (from top to bottom) (b) Test 2s, 2m and 2l (from top to bottom)

Figure 11. Time of calculations. Dynamic of the errors for small, medium and large diffusion using
SI-1, SI-2 and SI-3 schemes.
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(a) Test 1s, 1m and 1l (from top to bottom) (b) Test 2s, 2m and 2l (from top to bottom)

Figure 12. Time of calculations. Dynamic of the errors for small, medium and large diffusion using
FI, SI-1 and OS schemes.

5. Conclusions

The multispecies model was considered in the heterogeneous domain. The coupled
system of reaction–diffusion equations was used to describe the mathematical model,
where the coupling and nonlinearity are given in the reaction part. We constructed a semi-
discrete form using a finite volume approximation by space. The fully implicit scheme was
applied for approximation by time, which led to solving the nonlinear system of equations
at each time step. We presented and investigated two uncoupling approaches for such
problems based on the explicit–implicit scheme and the operator-splitting method. Three
approaches were considered in the semi-implicit scheme: (SI-1) implicit diffusion and fully
explicit reaction; (SI-2) implicit diffusion and partially explicit reaction (uncoupled); and
(SI-3) implicit diffusion and partially explicit reaction (coupled). The operator-splitting
scheme was based on decoupling the diffusive and reactive parts of the equation using the
first-order sequential non-iterative technique. The numerical investigation was performed
for two sets of parameters in a two-dimensional domain with heterogeneous inclusions.
Three test cases with small, medium, and large diffusions were considered to illustrate the
influence of the uncoupling method accuracy and computational time.
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