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Abstract: At present, fuzzy modeling has established itself as an effective tool for designing and
developing systems for various purposes that are used to solve problems of control, diagnostics,
forecasting, and decision making. One of the most important problems is the choice and justification
of an appropriate functional representation of the main fuzzy operations. It is known that, in the
class of rational functions, such operations can be represented by additive generators in the form
of a linear fractional function, a logarithm of a linear fractional function, and an arctangent of a
linear fractional function. The paper is devoted to the latter case. Restrictions on the parameters,
under which the arctangent of a linear fractional function is an increasing or decreasing generator,
are defined. For each case, a corresponding fuzzy operation (a triangular norm or a conorm) is
constructed. The theoretical significance of the research results lies in the fact that the obtained
parametric families enrich the theory of Archimedean triangular norms and conorms and provide
additional opportunities for the functional representation of fuzzy operations in the framework of
fuzzy modeling. In addition, in fact, we formed a scheme for study functions that can be considered
additive generators and constructed the corresponding fuzzy operations.

Keywords: linear fractional function; additive generator; triangular norm and conorm

1. Introduction

Fuzzy set theory and fuzzy logic form the basis of the fuzzy modeling methodology,
and the following main situations that determine the feasibility of its use in applications
can be distinguished: (a) there is an interest in the approximate representation and pro-
cessing of input on the basis of the concepts of fuzzy and linguistic variables (for example,
when choosing the best object, a set of perspective variants is first formed using linguistic
assessments, and then, a more thorough quantitative analysis is applied); (b) it is difficult
or even impossible to obtain accurate quantitative information, but the involvement of an
expert or an expert group solves this problem; (c) the model is constructed according to the
“gray-box” principle, when, for a system or process, the dependence of the output variable
on the input variables can be described only approximately or at a qualitative level, for
example, using if–then rules (this approach allows us to perform a “quick” simulation of
complex dynamic systems).

The main directions of the practical use of the fuzzy modeling methodology are the
following [1–3]: the development of models and methods of decision making under condi-
tions of uncertainty; technical and medical diagnostics; the improvement of technological
processes through the introduction of fuzzy control systems; monitoring and forecasting
the state of hazardous facilities; and the management of technical systems and equipment,
including transport. The use of fuzzy modeling makes it possible to solve control problems
in situations where classical methods are inefficient or even inapplicable because of a lack
of sufficiently accurate knowledge about the control object and/or the conditions of its
operation. In modern developments, fuzzy models are used together with neural networks,
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genetic algorithms, and clustering methods. Thus, a mathematical apparatus is formed that
is capable of solving complex problems under conditions of uncertainty, which manifests
itself both in the behavior of the system or the object being modeled and as a factor in the
influence of the external environment.

At present, an extensive arsenal of fuzzy modeling methods is available. One of the
most important problems is the problem of choosing the most appropriate way to formalize
fundamental logical connectives since any computing system is based on the definitions of
basic operations. The results of calculations and their interpretation depend on how these
operations are defined, and this fact determines the importance of choosing their functional
representation.

Figure 1 shows the well-known problem of parking a mobile object.
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Figure 1. The trajectory of movement of a mobile object (Trajectories marked with different colors
correspond to inference engine implementations that are based on different representations of fuzzy
logic operations).

The object must park up the ramp in a rectangular area (parking zone). The position
of the object is defined by the values of the coordinates of the center of its rear part and
the angle at which it is located relative to the y-axis. Parking on the ramp is performed by
moving in reverse at a constant speed. The task of the control module is to select a steering
angle for the front wheels that will bring the object to the parking point located at the center
of the ramp. The figure shows various object movement trajectories generated using a fuzzy
control system. Trajectories in different colors correspond to different implementations of
the inference engine. These implementations are based on various representations of fuzzy
logical connectives to define the composition operation. The center of gravity method is
used as a defuzzification method. It can be seen that an incorrect selection of operation can
lead to the control problem not being successfully solved.

Initially, the operation’s min and max were used for and and or, respectively. It should
be noted that these operations play a significant role in modern approaches to the con-
struction of fuzzy models in various systems since their physical meaning is obvious,
and of the main properties of algebraic operations, only the complementarity property is
not satisfied for them. However, a significant drawback of min and max is their “rigid-
ity”, which manifests itself in the insensitivity of the result of the operation to small
changes in arguments. This problem is partially solved, for example, through algebraic
operations: (xy, x + y− xy). In the parking problem discussed above, when using the
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(max− prod)-composition in the inference engine, the trajectory is smoother and shorter
than the inference, which is based on the (max−min)-composition. This is because the
product operation, xy, reacts to all input changes in the model, while min only considers
the input change with the smallest membership function value.

In our opinion, parametric forms of fuzzy operations—which allow us to consider the
characteristic features of a particular application and ensure the flexibility and adaptive
properties of fuzzy models by selecting parameters—are of the greatest interest for model-
ing. This class of fuzzy operations includes triangular norms and conorms, and the theory
devoted to them can be considered fully formed. Known families of triangular norms and
conorms proposed by various researchers are presented, for example, in [4]. And, of course,
there is a question regarding the existence of other families, which are different from those
already known. One approach to answering this question is to study the representation of
triangular norms and conorms in terms of their additive generators [5], and related prob-
lems were discussed in [6]. This representation is connected to the associativity property of
binary operations [7]. Knowledge of additive generators is the source of much research on
special operations and fuzzy structures [8–11]. Additive generators are used to construct
aggregation functions in the class of means and OWA operators [12,13]. In [14], additive
generators are used to define special operations in fuzzy numbers and intervals. Based on
these, the formalization of the compositional rule of logical inference is conducted when
building fuzzy systems [15].

We note that there is no universal method for finding an additive generator or its
corresponding triangular norms and conorms. But, in some cases, such procedures are
known [16–19]. In particular, the author proposes approaches to finding additive generators
for Archimedean triangular norms and conorms represented by a rational function. The
choice of the class of rational functions is due to the fact that most of the known families
widely cited in theoretical studies and applied in practice belong to this class. In [20],
generators in the form of a linear fractional function are considered, and the corresponding
families of triangular norms, TLFAG, and conorms, SLFAG, are constructed. In [21], a family
of triangular norms, Tln LFAG, generated by generators in the form of a logarithm of a
linear fractional function is proposed. A significant theoretical result of the research is that
the resulting families of fuzzy operations include, as special cases, the known families of
triangular norms and conorms (Hamacher, Lukasiewicz, Einstein, Weber, Yu), which allows
us to speak of systematizing and generalizing the existing results of many years of research
in this area.

The purpose of this paper is to study the arctangent of a linear fractional function and
to define the corresponding family of Archimedean triangular norms and conorms. The
results obtained, in fact, close the issue of the representation of fuzzy operations in the class
of rational functions.

Section 2 provides basic theoretical information, including theorems of the represen-
tation of triangular norms and conorms using additive generators. Equally important
are formulas that establish a relationship between increasing and decreasing generators,
which allows us, knowing one of the generators, to define the other. Using generators,
we can find negation functions, which is important for defining the de Morgan triple. In
Section 3, we shall define restrictions in parameters under which a function in the form of
an arctangent of a linear fractional function is an increasing or decreasing generator and
find the corresponding fuzzy operations. Section 4 discusses the results obtained. A general
scheme of the function study method is provided based on a stage-by-stage verification
of the fulfillment of the requirements contained in the corresponding definitions of the
generators and fuzzy operations.

2. Materials and Methods

Let us introduce the necessary definitions based on [5,22,23].
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A triangular norm (t-norm) is a binary operation, T : [0, 1]× [0, 1]→ [0, 1] , that is non-
decreasing with respect to each argument and has the properties of commutativity and
associativity and T(x, 1) = T(1, x) = x for each x ∈ [0, 1].

A triangular conorm (s-conorm) is a binary operation, S : [0, 1]× [0, 1]→ [0, 1] , that is
non-increasing with respect to each argument and also has the properties of commutativity
and associativity and S(x, 0) = S(0, x) = x for each x ∈ [0, 1].

The triangular norm models operations of the multiplication type (intersection of
fuzzy sets, conjunction), while the conorm models operations of the addition type (union of
fuzzy sets, disjunction). The systems 〈[0, 1], T,≤〉 and 〈[0, 1], S,≤〉 are Abelian semigroups.

The negation function is understood as a continuous, monotonically decreasing oper-
ation, n : [0, 1]→ [0, 1] , that satisfies the conditions n(0) = 1, n(1) = 0. If n(n(x)) = x,
then n is called an involution.

Operations T and S are called dual with respect to involution, n, if the following
relations hold: n(T(x, y)) = S(n(x), n(y)), n(S(x, y)) = T(n(x), n(y)). This formalizes de
Morgan’s laws. The tuple, (T, S, n), forms the de Morgan triple.

Examples of dual fuzzy operations are the following well-known pairs [4]:

T0(x, y) =
xy

x + y− xy
, S−1(x, y) =

x + y− 2xy
1− xy

;

TP(x, y) = xy, SP(x, y) = x + y− xy;

Tλ(x, y) = max(0, x + y− 1− λ(1− x)(1− y)), Sλ(x, y) = min(1, x + y + λxy)(λ > −1).

For each pair, (T, S), the standard negation, n(x) = 1− x, “works”. However, original
negation functions may exist for some pairs. For example, for the pair (Tλ, Sλ), there is a
negation function of the form nλ(x) = 1−x

1+λx (λ > −1) [5].
A continuous t-norm that satisfies subidempotency (T(x, x) < x) is called an Archimedean

t-norm. If it also satisfies strict monotonicity, it is called a strict Archimedean t-norm. Similar
definitions hold for triangular conorms, but idempotency violation is defined by formula
S(x, x) > x (superidempotency).

The notion of an additive generator is fundamental to the representation of associative
operations and, in particular, Archimedean t-norms and s-conorms.

The decreasing generator, t : [0, 1]→ R , is a continuous, strictly decreasing function
such that t(1) = 0, and its pseudo-inverse, t(−1) : R→ [0, 1] , is defined as follows:

t(−1)(x) =


1, i f x < 0,
t−1(x), i f x ∈ [0, t(0)],
0, i f x > t(0).

The Increasing generator, s : [0, 1]→ R , is a continuous, strictly increasing function
such that s(0) = 0, and its pseudo-inverse, t(−1) : R→ [0, 1] , is defined as follows:

s(−1)(x) =


0, i f x < 0,
s−1(x), i f x ∈ [0, s(1)],
1, i f x > s(1).

We note that for x ∈ [0, 1], we have t(−1)(t(x)) = x and s(−1)(s(x)) = x.
On the basis of an increasing generator, we can construct a decreasing generator and

vice versa [23].
Let t be a decreasing generator; then, the function

s(x) = t(0)− t(x), (1)

defined in x ∈ [0, 1], is an increasing generator.
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Let s be an increasing generator; then, the function,

t(x) = s(1)− s(x), (2)

defined in x ∈ [0, 1], is a decreasing generator.
We note that the generators obtained on the basis of the above relations satisfy the

condition s(1) = t(0).
It is known [5,23] that each Archimedean t-norm, T, can be represented using a

decreasing generator, t, in the form

T(x, y) = t(−1)(t(x) + t(y)), (3)

where t(−1) is a pseudo-inverse.
For the Archimedean s-conorm, there is a similar representation,

S(x, y) = s(−1)(s(x) + s(y)), (4)

where s is an increasing generator, and s(−1) is a pseudo-inverse.
Knowing the additive generator allows us to construct a triangular norm or conorm in

accordance with the above formulas. Increasing and decreasing generators are defined up
to a positive multiplicative constant [5].

Let T and S be the Archimedean operations generated by the corresponding additive
generators, t and s, respectively, and t(1) < ∞, s(0) < ∞; then, T and S induce strong
negations, nT and nS, which are defined by the following formulas [23]:

nS(x) = s−1(s(1)− s(x)), (5)

nT(x) = t−1(t(0)− t(x)). (6)

If T and S are dual with respect to the negation function, n, then nT ◦ n = n ◦ nS,
where ◦ is the superposition operation.

The characterization of the main classes of additive generators is one of the most
important problems in the functional representation of fuzzy operations [6]. In [24], we
investigated the Archimedean t-norms and s-conorms representable using rational func-
tions, i.e., the relationship between two polynomials or, in a special case, a polynomial. For
example, the Hamacher family of t-norms has the following form [4]:

TH
h (x, y) =


xy

x+y−xy , i f h = 0;
xy, i f h = 1;

xy
h+(1−h)(x+y−xy) , i f h ∈ (0, ∞), h 6= 1.

For TH
h , the decreasing generator has the form

tH
h (x) =

{
1−x

x , i f h = 0;
ln h+(1−h)x

x , i f h ∈ (0, ∞).

It is established that, for a rational function of the form,

F(x, y) =
a0 + a1(x + y) + a2xy
b0 + b1(x + y) + b2xy

. (7)

There are only three types of functions [24,25],

ϕ1(x) =
ax + b
cx + d

+ C, ϕ2(x) = k · ln ax + b
cx + d

+ C, ϕ3(x) = k · arctan
ax + b
cx + d

+ C,
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that can be considered additive generators if the conditions of the corresponding definitions
are satisfied. This fact can be explained as follows [24]. According to de Finetti, if F is
symmetric (possesses the property of commutativity) and has a derivative, then a necessary
and sufficient condition for its associativity is the fulfillment of the equality F′x(x,y)

F′x(x,y) =
ϕ′(x)
ϕ′(y) ,

where ϕ is an additive generator for F. For a function, F, in form (7) we obtain,

ϕ(x) = ±
∫ dx

(a1b0 − a0b1) + (a2b0 − a0b2)x + (a2b1 − a1b2)x2 + C.

Thus, under the assumption that F has form (7), we find that only ϕ1, ϕ2, ϕ3 can be
considered an additive generator, and other variants of generators are impossible. The
study of the listed cases will make it possible to describe all variants of t-norms and
s-conorms in the class of rational functions.

Via the coefficients of functions based on representations (3) and (4), it is easy to
determine the coefficients of function (7) [25]. Since the purpose of the study is the function
of ϕ3, we present formulas on the basis of which we can use its coefficients to define the
coefficients of the function, F [25]:

a0 = b
(
b2 + d2), a1 = a

(
b2 + d2), a2 = 2acd− b

(
c2 − a2),

b0 = a
(
d2 − b2)− 2bcd, b1 = −b

(
a2 + c2), b2 = −a

(
a2 + c2). (8)

3. Results
3.1. Increasing Generator in the Form of an Arctangent of a Linear Fractional Function and the
Corresponding Triangular Conorm

Let us consider a function of the form ϕ(x) = k · arctan ax+b
cx+d + C and find restric-

tions on the parameters of ϕ, under which it is an increasing generator. The constant
C = −k · arctan b

d is determined from the condition ϕ(0) = 0, and then, we obtain

ϕ(x) = k ·
(

arctan
ax + b
cx + d

− arctan
b
d

)
= k · arctan

x(ad− bc)
x(ab + cd) + (b2 + d2)

,

where x 6= − b2+d2

ab+cd , x 6= − d
c , ab + cd 6= 0, and d 6= 0; in this case, according to the formula

for the difference in arctangents, the following condition must be satisfied:

ax + b
cx + d

· b
d
> −1. (9)

Since the generator is determined up to a positive multiplicative constant, we shall
assume that k > 0 and further consider the function, ϕ, in the following form:

ϕ(x) = arctan
x(ad− bc)

x(ab + cd) + (b2 + d2)
.

Dividing the numerator and denominator by d2 under the condition that d 6= 0 and
introducing the notation a

d = α, b
d = β, c

d = γ, we obtain the function, ϕ, in the form

ϕ(x) = arctan
x(α− βγ)

x(αβ + γ) + (1 + β2)
, (10)

where x 6= − 1+β2

αβ+γ and αβ 6= −γ.
Considering the introduced notations, inequality (9) is equivalent to the

following inequality:
x(αβ + γ) +

(
1 + β2)

γx + 1
> 0. (11)



Computation 2023, 11, 155 7 of 18

We note that x = − 1+β2

αβ+γ is the vertical asymptote of ϕ. Since the additive generator
must be determined on [0, 1], we require the vertical asymptote to lie outside it. Therefore,

one of the inequalities, − 1+β2

αβ+γ < 0 or − 1+β2

αβ+γ > 1, must hold. Their analysis allowed us to
draw the following conclusion:

(a) If −
(
1 + β2) < αβ + γ < 0, then the asymptote is located to the right of [0, 1];

(b) If αβ + γ > 0, then the asymptote is located to the left of the given interval
(left asymptote).

The function, ϕ, is increases if ϕ′(x) > 0. We note that the derivative for (10) is defined
by the derivative formula for a complex function. The denominator of the derivative for
arctan is always positive, so we need to investigate the derivative of the argument. This
derivative has the form

(arg(arctan))′(x) =
(α− βγ)

(
1 + β2)

(x(α + βγ) + (1 + β2))
2 .

For α− βγ > 0, we have ϕ′(x) > 0, and, therefore, ϕ is an increasing function.
To obtain restrictions on the parameters, under which ϕ is an increasing generator, it is

necessary to analyze the system, which includes the inequality α− βγ > 0 and inequality
(11), considering the position of the asymptotes. It is important that x ∈ [0, 1], and this fact
should be considered in the analysis.

Let the asymptote be located to the right of [0, 1]. In this case, it is necessary to study
the system 

(
x(αβ + γ) +

(
1 + β2))/(γx + 1) > 0,

−
(
1 + β2) < αβ + γ < 0,

α− βγ > 0,
,

which is equivalent to one of the following systems:

(i)


x(αβ + γ) +

(
1 + β2) > 0,

γx + 1 > 0,
−
(
1 + β2) < αβ + γ < 0,

α− βγ > 0,

(ii)


x(αβ + γ) +

(
1 + β2) < 0,

γx + 1 < 0,
−
(
1 + β2) < αβ + γ < 0,

α− βγ > 0.

Let us consider system (i). Since αβ + γ < 0 and x ∈ [0, 1], we have the true inequality

x < − 1+β2

αβ+γ . Let γ > 0. It follows from the relation γ < −αβ that if α and β are positive, then
we obtain a contradiction. Therefore, it is advisable to consider the α and β of different signs,
and then, γ ∈ (0,−αβ), but we need to consider the inequality−

(
1 + β2)− αβ < γ < −αβ,

which holds for the right asymptote. If α < 0, β > 0, then γ < α
β < 0, which contradicts

the assumption. The analysis of the case α > 0, β < 0 made it possible to obtain the
following restriction: γ ∈

(
max

{
0, −αβ−

(
1 + β2)},−αβ

)
. Let γ < 0; then, considering

that x ∈ [0, 1], we have γ ∈ (−1, 0). In investigations of this case, the following results can
be obtained:

(a) α > 0, β > 0, αβ < 1, γ ∈
(
max

{
−1, −αβ−

(
1 + β2)},−αβ

)
;

(b) α > 0, β < 0, γ ∈
(

max
{

α
β , −αβ−

(
1 + β2)}, 0

)
;

(c) α < 0, β > 0, α > −β, γ ∈
(
−1, α

β

)
.

In system (ii), given that αβ + γ < 0, the first inequality is rearranged into the form

x > − 1+β2

αβ+γ > 1, but it does not satisfy x ∈ [0, 1].
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Now, we consider the case when the asymptote is located to the left of [0, 1]. The
system for determining restrictions on parameters takes the form

(
x(αβ + γ) +

(
1 + β2))/(γx + 1) > 0,

αβ + γ > 0,
α− βγ > 0.

Accordingly, it is required to investigate each of the following systems of inequalities:

(i′)


x(αβ + γ) +

(
1 + β2) > 0,

γx + 1 > 0,
αβ + γ > 0,
α− βγ > 0,

(ii′)


x(αβ + γ) +

(
1 + β2) < 0,

γx + 1 < 0,
αβ + γ > 0,
α− βγ > 0,

for γ > 0 and γ < 0. We can now investigate system (i′) for γ > 0. Provided that x ∈ [0, 1],
the first two inequalities are true. The system is rearranged into the form

γ > 0,
αβ + γ > 0,
α− βγ > 0,

from which the following restrictions on the parameters are obtained:

α > 0, β > 0, γ ∈
(

0,
α

β

)
; α < 0, β < 0, γ >

α

β
; α > 0, β < 0, γ > −αβ.

If γ < 0, then x < − 1
γ , and it is expedient to require that − 1

γ > 1, from which we
obtain γ ∈ (−1, 0). It follows from the second inequality of the system that γ > −αβ, and
it is reasonable to require that α and β be of the same sign and αβ < 1. It is established
that if α > 0, β > 0, then γ ∈ (max{−1,−αβ}, 0). If α < 0, β < 0, then this assumption
contradicts the last inequality of the system, since, on the one hand, γ ∈ (−1, 0); on the
other hand, γ > α

β > 0.
System (ii′) does not make sense for any combination of parameter values since,

considering the first and third inequalities, we obtain a contradiction between x ∈ [0, 1]

and x < − 1+β2

αβ+γ < 0.
We note that we have a rather complicated system of restrictions.
Thus, the following is proved:

Assertion 1. The function:

s(x) = sα,β,γ(x) = arctan
x(α− βγ)

x(αβ + γ) + (1 + β2)
,

where x 6= − 1+β2

αβ+γ is an increasing generator if the following restrictions on the parameters
are satisfied:

(1) α > 0, β > 0,γ ∈

αβ<1︷ ︸︸ ︷(
max
{
−1, −αβ−

(
1 + β2

)}
,−αβ

)
∪ (max{−1,−αβ}, 0)︸ ︷︷ ︸

γ<0

∪
(

0,
α

β

)
︸ ︷︷ ︸

γ>0

;

(2) α < 0, β < 0, γ ∈
(

α

β
, ∞
)

︸ ︷︷ ︸
γ>0

;
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(3) α > 0, β < 0,

γ ∈
(

max
{

α

β
, −αβ−

(
1 + β2

)}
, 0
)

︸ ︷︷ ︸
γ<0

∪
(

max
{

0, −αβ−
(

1 + β2
)}

,−αβ
)
∪ (−αβ, ∞)︸ ︷︷ ︸

γ>0

;

(4) α < 0, β > 0, α
β > −1, γ ∈

(
−1, α

β

)
⊂ (−1, 0).

Example 1. Let α = 2, β = −4 (case 3). Let us construct an interval for γ. Now, let us
calculate α

β = −0.5, −αβ = 8, −αβ −
(
1 + β2) = 8− (1 + 16) = −9. Let us find the

intervals specified for this situation

(
max

{
α

β
, −αβ−

(
1 + β2

)}
, 0
)
= (max{−0.5,−9}, 0) = (−0.5, 0);

(
max

{
0, −αβ−

(
1 + β2

)}
,−αβ

)
= (max{0,−9}, 8) = (0, 8);

(−αβ, ∞) = (8, ∞).

Combining the obtained intervals, we find that γ ∈ (−0.5, ∞)\{0, 8}. Figure 2 shows
increasing generators for α = 2, β = −4 and different values of parameter γ.
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Figure 2. Graphs of increasing generators for various combinations of parameter values:
γ = −0.3s(x) = arctan 0.8x

−8.3x+17 (solid line); γ = 1 s(x) = arctan 6x
−7x+17 (wide-spaced dashed

line); γ = 5 s(x) = arctan 22x
−3x+17 (narrow-spaced dashed line).

Let us find the s-conorm for the increasing generator, s. Using Formula (8) for
a = α− βγ, b = 0, c = αβ + γ, and d = 1 + β2, we can calculate the coefficients of F

a0 = 0, a1 = (α− βγ)
(
1 + β2), a2 = 2(α− βγ)(αβ + γ)

(
1 + β2),

b0 = (α− βγ)
(
1 + β2), b1 = 0, b2 = −(α− βγ)

(
(α− βγ)2 + (αβ + γ)2

)
.

Thus,

F(x, y) =
(x + y) + 2(αβ + γ)xy

1− (α2 + γ2)xy
.

Let us check whether the definition of the s-conorm holds. Note that F(0, 0) = 0

and F(x, 0) = F(0, x) = x. Let us find f (x) = F(x, x) = 2x+2(αβ+γ)x2

1−(α2+γ2)x2 . It is necessary
that the discontinuity points of the second kind, which are determined by the equation
1−

(
α2 + γ2)x2 = 0, do not belong to [0, 1]. We have x2 = 1

α2+γ2 and, hence, x = ±
√

1
α2+γ2 .

The negative root, −
√

1
α2+γ2 , does not belong to [0, 1]. For a positive root, the inequality
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√
1

α2+γ2 > 1 must be satisfied, from which we obtain a relation for the parameters of the

following form: α2 + γ2 < 1.

Let us find F(1, 1) − 1 = 2+2(αβ+γ)
1−(α2+γ2)

− 1 =
(γ+1)2+(α2+2αβ)

1−(α2+γ2)
. We note that, consid-

ering the previous inequality, the denominator is positive. Then, F(1, 1) > 1 holds if
(γ + 1)2 +

(
α2 + 2αβ

)
> 0. If α and β have the same sign, then the inequality always holds;

otherwise, we require (γ + 1)2 > −
(
α2 + 2αβ

)
, where α2 + 2αβ < 0 and, hence, α

β > −2.
This inequality is valid for restrictions (3) and (4) from Assertion 1.

Thus, the following takes place:

Assertion 2. If there is an increasing generator, sα,β,γ, and the condition α2 + γ2 < 1 is satisfied,
then an s-conorm exists:

Sα,β,γ(x, y) = min
{

1,
(x + y) + 2(αβ + γ)xy

1− (α2 + γ2)xy

}
.

Figure 3 shows graphs of functions (a)–(c), obtained on the basis of increasing genera-
tors from Example 1. It can be seen that the functions are not s-conorms since the restriction
α2 + γ2 < 1 is violated. In (d), we show a graph of the s-conorm for α = 0.2, β = 0.4,
γ = −0.05 ∈ (max{−1,−0.08}, 0). In this case, the restriction is met.
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Figure 3. Graphs of functions that are obtained on the basis of generators from Example 1:

(a) x+y−16.6xy
1−4.09xy ; (b) x+y−14xy

1−5xy ; (c) x+y−6xy
1−29xy ; (d) min

{
1, x+y+0.06xy

1−0.0225xy

}
-s-conorm.

3.2. Decreasing Generator in the Form of an Arctangent of a Linear Fractional Function and the
Corresponding Triangular Norm

Let s(x) = arctan x(α−βγ)
x(αβ+γ)+(1+β2)

be an increasing generator. According to (2), the
function t(x) = s(1)− s(x) is a decreasing generator on [0, 1], and t(0) = s(1).

Let us find s(1) = arctan α−βγ

(αβ+γ)+(1+β2)
; then,

t(x) = s(1)− s(x) = arctan
(α− βγ)(1− x)

((αβ + γ) + (α2 + γ2))x + ((αβ + γ) + (1 + β2))
.
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We note that t(0) = arctan α−βγ

(αβ+γ)+(1+β2)
= s(1).

We can investigate the function, t, in accordance with the definition of a decreas-
ing generator. To hold the continuity property on [0, 1], we require that the vertical
asymptote be outside the given interval. The vertical asymptote for t has the form

x = − (αβ+γ)+(1+β2)
(αβ+γ)+(α2+γ2)

, and it is located to the left of [0, 1] if − (αβ+γ)+(1+β2)
(αβ+γ)+(α2+γ2)

< 0. We

note that if αβ + γ > 0, then this inequality is always satisfied. If −
(
1 + β2) < αβ + γ < 0

and, therefore, (αβ + γ) +
(
1 + β2) > 0, then it is necessary to require that the inequality

(αβ + γ) +
(
α2 + γ2) > 0 be satisfied, whence αβ + γ > −

(
α2 + γ2), and finally we obtain

−min
{

α2 + γ2, 1 + β2} < αβ + γ < 0.

The vertical asymptote is on the right if − (αβ+γ)+(1+β2)
(αβ+γ)+(α2+γ2)

> 1. This inequality is
equivalent to one of the following systems:

(i)
{

αβ + γ < − 1
2
(
α2 + β2 + γ2 + 1

)
,

αβ + γ > −
(
α2 + γ2); or (ii)

{
αβ + γ > − 1

2
(
α2 + β2 + γ2 + 1

)
,

αβ + γ < −
(
α2 + γ2).

We note that the first inequality of system (i) can be converted into the inconsistent
inequality of the form

αβ + γ < −1
2

(
α2 + β2 + γ2 + 1

)
⇔ (α + β)2 + (1 + γ)2 < 0,

and, therefore, this system does not make sense to consider.
In system (ii), the first inequality is converted to the form (α + β)2 + (1 + γ)2 > 0,

which is always true for any values of the parameters, so it can be discarded. Thus,
the remaining inequality is αβ + γ < −

(
α2 + γ2). For αβ + γ > 0, it is inconsistent,

and for −
(
1 + β2) < αβ + γ < 0, we obtain the following restriction on the parameters:

−
(
1 + β2) < αβ + γ < −

(
α2 + γ2). Thus, the following restrictions on the parameters are

obtained, which guarantee that the vertical asymptote is outside the interval [0, 1]:

(1) The vertical asymptote is located to the left of [0, 1] if αβ + γ > 0 or
−min

{
α2 + γ2, 1 + β2} < αβ + γ < 0;

(2) The vertical asymptote is located to the right of [0, 1] if−
(
1 + β2) < αβ + γ < −

(
α2 + γ2).

When the found restrictions on the parameters are met, the function, t, is continuous.
Let us move on to the next stage of the study.
According to the formula for the difference in arctangents, the following inequality

must hold:
α− βγ

(αβ + γ) + (1 + β2)
· (α− βγ)x
(αβ + γ)x + (1 + β2)

> −1,

which is reduced to the form(
1 + β2)(x((αβ + γ) +

(
α2 + γ2))+ ((αβ + γ) +

(
1 + β2)))

(x(αβ + γ) + (1 + β2)) · ((αβ + γ) + (1 + β2))
> 0,

from whence we obtain the following systems of inequalities:

(1)
{

x
((

α2 + γ2)+ (αβ + γ)
)
+
(
1 + β2)+ (αβ + γ) > 0,(

(αβ + γ)x +
(
1 + β2)) · ((αβ + γ) +

(
1 + β2)) > 0;

(2)
{

x
((

α2 + γ2)+ (αβ + γ)
)
+
(
1 + β2)+ (αβ + γ) < 0,(

(αβ + γ)x +
(
1 + β2)) · ((αβ + γ) +

(
1 + β2)) < 0.

System (1) is equivalent to one of the following inequalities:

(1i)


x
((

α2 + γ2)+ (αβ + γ)
)
> −

((
1 + β2)+ (αβ + γ)

)
,

(αβ + γ)x > −
(
1 + β2),

(αβ + γ) > −
(
1 + β2); (1ii)


x
((

α2 + γ2)+ (αβ + γ)
)
> −

((
1 + β2)+ (αβ + γ)

)
,

(αβ + γ)x < −
(
1 + β2),

(αβ + γ) < −
(
1 + β2).
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Similarly, for system (2), the following cases take place:

(2i)


x
((

α2 + γ2)+ (αβ + γ)
)
< −

((
1 + β2)+ (αβ + γ)

)
,

(αβ + γ)x < −
(
1 + β2),

αβ + γ > −
(
1 + β2); (2ii)


x
((

α2 + γ2)+ (αβ + γ)
)
< −

((
1 + β2)+ (αβ + γ)

)
,

(αβ + γ)x > −
(
1 + β2),

αβ + γ < −
(
1 + β2).

We shall study these systems considering the already found restrictions on the param-
eters. If αβ + γ > 0, then system (1ii) is inconsistent, and in system (1i), all inequalities are
true for x ∈ [0, 1] 

(αβ + γ) > −
(
1 + β2),

x > − (αβ+γ)+(1+β2)
(αβ+γ)+(α2+γ2)

,

x > − 1+β2

αβ+γ .

(12)

If αβ + γ > 0, then system (2i) is inconsistent because of the second inequality, and
system (2ii) is inconsistent because of the third inequality.

Now let −min
{

α2 + γ2, 1 + β2} < αβ + γ < 0 and, therefore, simultaneously,
(αβ + γ) +

(
α2 + γ2) > 0 and (αβ + γ) +

(
1 + β2) > 0. It follows from the last inequality

that αβ + γ > −
(
1 + β2), which contradicts system (1ii). System (1i) is converted into

form (12) and is consistent since − 1+β2

αβ+γ > 1, which, as in the first inequality, there is an
expression for the vertical asymptote on the right side, which satisfies the requirement
x ∈ [0, 1].

Let us consider (2), subject to the same restrictions. It can be seen that system (2ii) does
not satisfy the restriction on αβ + γ and is, therefore, inconsistent. For (2i), we obtain

(2i)


αβ + γ > −

(
1 + β2),

x < − (1+β2)+(αβ+γ)

(α2+γ2)+(αβ+γ)
,

x > − 1+β2

αβ+γ .

Since x ∈ [0, 1], the first inequality is not true, so this system is inconsistent.
Now, we consider the case −

(
1 + β2) < αβ + γ < −

(
α2 + γ2). Here, the following

inequalities hold simultaneously: (αβ + γ) +
(
1 + β2) > 0 and (αβ + γ) +

(
α2 + γ2) < 0.

We can investigate system (1). System (1ii) contradicts the inequality−
(
1 + β2) < αβ + γ.

System (1i) is equivalent to the following system:
(αβ + γ) > −

(
1 + β2),

x < − (1+β2)+(αβ+γ)

(α2+γ2)+(αβ+γ)
,

x < − 1+β2

αβ+γ .

The first inequality is true for x ∈ [0, 1] because its right side contains the expression

for the right asymptote. Since (αβ + γ) +
(
1 + β2) > 0, − 1+β2

αβ+γ > 1, which is also true for
x ∈ [0, 1]. Thus, this system is consistent.

Now we consider (2) under the same restrictions. Since −
(
1 + β2) < αβ + γ, it is

expedient to consider only system (2i). Here (αβ + γ) +
(
α2 + γ2) < 0, so it takes the form

of (12). Since, in this case, − 1+β2

αβ+γ > 1, the second inequality contradicts the assumption
x ∈ [0, 1], so this system is inconsistent. Thus, the found restrictions on the parameters that
ensure the continuity of the function, t, do not contradict its definition in the form of the
difference in arctangents.
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The function, t, is a decreasing function if t′(x) < 0. The denominator of the derivative
for t is always positive, so we need to investigate the derivative of the argument. This
derivative has the form

(arg(arctan))′(x) = −
(α− βγ)

(
(α + β)2 + (1 + γ)2

)
(((αβ + γ) + (α2 + γ2))x + ((αβ + γ) + (1 + β2)))

2 .

Then, t′(x) < 0 if α− βγ > 0. Thus, the following is proved:

Assertion 3. The function:

t(x) = tα,β,γ(x) = arctan
(α− βγ)(1− x)

((αβ + γ) + (α2 + γ2))x + ((αβ + γ) + (1 + β2))
,

where x 6= − (αβ+γ)+(1+β2)
(αβ+γ)+(α2+γ2)

is a decreasing generator if α− βγ > 0 and one of the following
conditions is met:

(1) αβ + γ > 0;
(2) −min

{
α2 + γ2, 1 + β2} < αβ + γ < 0;

(3) −
(
1 + β2) < αβ + γ < −

(
α2 + γ2).

Example 2. Let α− βγ > 0 and αβ + γ > 0 (case 1). We have the system
{

γ > −αβ,
α > βγ.

.

Next, we list all possible cases for the signs of parameters α and β and the obtained
restrictions for γ: if α > 0, β > 0, then −αβ < γ < α

β ; if α > 0, β < 0, then γ > −αβ; if
α < 0, β > 0, the values of γ do not exist; if α < 0, β < 0, then γ > α

β . Figure 4 shows
decreasing generators for different values of the parameters.
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19x+7

(wide-spaced dashed line); α = −1, β = −2, γ = 1, t3(x) = arctan 1−x
5x+8 (narrow-spaced

dashed line).

Let us find the corresponding t-norm for (13). To simplify the transformations, we
introduce the following notation:

u =
α− βγ

αβ + γ
, v = 1 +

α2 + γ2

αβ + γ
, w = 1 +

1 + β2

αβ + γ
;

then, the generator, t, is converted into the form

t(x) = arctan
u(1− x)
vx + w

,
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where x 6= −w
v . Let us find the coefficients of the function, F, using Formula (8), and as a

result, we obtain the function.

F(x, y) =
xy− u2+w2

(v+w)2 (1− x)(1− y)

1− u2+v2

(v+w)2 (1− x)(1− y)
.

We note that F(x, 1) = F(1, x) = x. To find out if the function, F, is continuous, we
move on to the function

f (x) = F(x, x) =
x2 − u2+w2

(v+w)2 (1− x)2

1 + u2+v2

(v+w)2 (1− x)2 ,

which is rational, so the points of discontinuity correspond to the roots of the equation

1 − v2+u2

(v+w)2 (1− x)2 = 0; hence, 1 − x = ±
√

(v+w)2

v2+u2 , and then, x1 = 1 +

√
(v+w)2

v2+u2 and

x2 = 1−
√

(v+w)2

v2+u2 . The root, x1, is located to the right of 1. The expression (v+w)2

v2+u2 in terms

of α, β, γ is reduced to the form
(

1 +
2(αβ+γ)+(1+β2)

α2+γ2

)
, and hence, in accordance with

Assertion 3, it exceeds 1. Thus, the root x2 is located to the left of 0.

Let us find F(0, 0) =
−(u2+w2)

(v+w)2+u2+v2 . Note that F(0, 0) < 0, so a design operation is

required. Thus, returning to the parameters α, β, γ, we can formulate the following:

Assertion 4. If a decreasing generator, tα,β,γ, exists and, consequently, the restrictions from
Assertion 3 are satisfied, then a t-norm of the form exists:

Tα,β,γ(x, y) = max

0,
xy− 1+β2

(α+β)2+(1+γ)2 (1− x)(1− y)

1 + α2+γ2

(α+β)2+(1+γ)2 (1− x)(1− y)

.

Figure 5 shows graphs of the t-norm, Tα,β,γ, for various parameter values.
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Figure 5. The t-norm, Tα,β,γ, for various combinations of parameter values (Example 2). (a) T1,2,−1(x, y);
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(b) T1,−2,4(x, y); (c) T0.2,0.4,−0.05(x, y); (d) For α = −3, β = 5, γ = 0.3, the function, T−3, 5, 0.3, is not a
t-norm (α− βγ < 0).

4. Discussion

Within the framework of the study, we can speak about a sequence of actions, the
result of which is the found additive generator and the corresponding t-norm or s-conorm.
Let the parametric function, ϕ, be given in one of the forms ϕ1, ϕ2, ϕ3, possibly with
a multiplicative factor, as well as with an additive constant that can play the role of an
additive generator. To investigate this function and construct the corresponding t-norm or
s-conorm, the following procedure is proposed:

1. For the function, ϕ, ensure the continuity, strict decrease (or increase), and fulfillment
of condition ϕ(1) = 0 (or condition ϕ(0) = 0) by adjusting the parameters. If at least
one of the requirements is not met, then the given function cannot be considered
a generator.

2. The construction of a t-norm or s-conorm from the class of rational functions is
conducted on the basis of the commutative and associative function of form (7). Based
on the constructed generator, ϕ, one can find the coefficients of the function, F.

3. Define restrictions on the parameters of the function, F, that ensure the fulfillment of
the boundary conditions from the definition of a triangular norm or conorm.

4. Investigate the continuity of F on the basis of the function f (x) = F(x, x). At this step,
those parameter values for which the function, f , has points of discontinuity on [0, 1]
are excluded.

5. Determine whether the design operation is needed: if f (1) = 1, then S = F. Otherwise,
( f (1) > 1), and the design operation S(x, y) = min{1, F(x, y)} must be used. Similar
reasoning takes place for the t-norm: if f (0) = 0, then T = F; if f (0) < 0, then
T(x, y) = max{0, F(x, y)}.
In the process of using the proposed procedure, it may turn out that the generator

exists but the corresponding t-norm or s-conorm does not. Moreover, if T and S exist,
they are not necessarily dual in the sense of de Morgan’s laws. For each of the operations,
T and S, we can construct a dual norm or a conorm using the standard negation. If both
generators and the corresponding t-norm and s-conorm are constructed on the basis of
the selected function, ϕ, then it is possible to define the negation function, as well as the
conditions that ensure the fulfillment of de Morgan’s laws.

In fact, this scheme was used in [20,21], although it was not explicitly described.
To define the restrictions on parameters, we can sequentially consider the properties of

a function that can potentially act as a generator, each time “cutting off” inappropriate pa-
rameter values. On the other hand, it is possible to form systems of restrictions, considering
all the requirements of the corresponding definitions, and analyze them. It is impossible to
predict in advance which path will be shorter.

On the basis of the generators, Formulas (5) and (6) can be used to define the negation
functions corresponding to fuzzy operations.

Let us find the negation function for the s-conorm, Sα,β,γ. The inverse function for the

generator, s = sα,β,γ, has the form s−1(x) = (1+β2) tan x
(α−βγ)−(αβ+γ) tan x ; then, in accordance with

Formula (5), we obtain

nS(x) =

1 +

(
(α + β)2 + (1 + γ)2

)
x

(1 + β2)(1− x)

−1

.

Figure 6 shows graphs of negation functions generated by increasing generators from
Example 1 for α = 2, β = −4 and various values of parameter γ.
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Let us find the negation function for the t-norm Tα,β,γ. For t(x) = arctan u(1−x)
vx+w , the in-

verse function has the form t−1(x) = u−w tan x
u+v tan x . According to (6), we obtain

nT(x) = t−1(t(0)− t(x)) = 1−x

1+
(

(v+w)2

w2+u2 −1
)

x
or, returning to variables α, β, γ,

nT(x) =
1− x

1 +
(

(α+β)2+(1+γ)2

1+β2 − 1
)

x
.

Figure 7 shows graphs of negation functions generated by decreasing generators from
Example 2 for various parameter values.
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It is shown in [24] that t-norms and s-conorms that are representable using rational
functions can be obtained using only three types of additive generators. Considering the
results of this paper, it can be argued that this class of Archimedean triangular norms is most
basically completely described. It is important that the resulting formulas for fuzzy operations
have a certain structure. Thus, in [20], a s-conorm of the form Sρ(x, y) = min

{
1, (x+y)+2ρxy

1−ρ2xy

}
,

with the increasing generator sρ(x) = x
ρx+1 (ρ ∈ (−1, 1]), is presented. On the other hand,
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in this study, we obtained the s-conorm Sα,β,γ(x, y) = min
{

1, (x+y)+2(αβ+γ)xy
1−(α2+γ2)xy

}
, with the

increasing generator sα,β,γ(x) = arctan x(α−βγ)
x(αβ+γ)+(1+β2)

. We note that Sρ and Sα,β have a similar
structure. It follows from this that, with a suitable choice of parameters, the same fuzzy
operation can be obtained using different generators.

5. Conclusions

This paper considers a particular case of representing an additive generator in the form
of an arctangent of a linear fractional function. The study of this case is aimed at solving
the problem of characterizing additive generators that generate continuous Archimedean
fuzzy operations in the class of rational functions. Other types of additive generators (in the
form of a linear fractional function and the logarithm of a linear fractional function) were
studied in [20,21]. Knowledge of additive generators makes it possible to solve a number of
related problems in the theory of Archimedean norms and conorms: (a) if T is a continuous
Archimedean t-norm with additive generator t, then the function, e−t(x), is a multiplica-
tive generator of T [5]; (b) let t(x) be an additive generator of Archimedean t-norm T,
and then, for each λ ∈ (0, ∞), the function tλ(x) = (t(x))λ is an additive generator [4];
(c) on the basis of an increasing generator, we can define a decreasing generator and vice
versa. In addition, we can find the corresponding negation functions (these properties are
demonstrated in this paper). Using the additive generator, we can construct other logical
operations, such as the implication [23], which is important for inference systems, or the
indistinguishability operator [26], which is used, for example, in classification/clustering
problems. In [27], continuous Archimedean triangular norms and pseudo-inverses of their
additive generators are used to construct fuzzy metrics. There are known approaches
to determining operations for fuzzy numbers in terms of additive generators, which, ac-
cording to the authors, simplifies calculations and provides additional opportunities for
analyzing the results. Also, additive generators are used to construct aggregation functions
and operations (for example, an associative weighted mean), and the generator can be
considered a transformation function of the initial aggregated variables, which converts
them into a dimensionless scale in accordance with a certain principle.

Against the background of the variety of functional representations of fuzzy operations,
the problem of choosing the most appropriate representation arises. In our opinion, there
are no universal criteria for choosing the type of fuzzy operation. Such criteria can be
defined within a particular application. For example, a fuzzy system can be considered
a universal approximator; then, when using some parametric t-norm to formalize the
inference mechanism, it is necessary to select such a parameter value in the training set so
that the approximation accuracy is a maximum. In the problem of choosing transitively
nearest subsets (the fuzzy clustering problem), the t-norm, T, is used to formalize the
(max− T)-transitivity property. When choosing a suitable t-norm or adjusting parameters,
we should consider not only the quality criteria of clustering but also the quality of the
decomposition tree, which contains all possible set partitions of a given set of subsets.
Different t-norms or different parameter values of the chosen parametric t-norm allow us to
find in this problem a different number of clusters for the same value of the decomposition
parameter, which can be a significant argument when choosing a suitable functional
representation for a fuzzy operation. Triangular norms and conorms are used in multi-
objective (multi-attribute) decision-making models, which are based on the aggregation of
partial estimates in accordance with some aggregation strategy. The choice of a suitable
representation for the aggregation function can be determined with the initial hypotheses
of the study. For example, if, in order to reduce the set of alternatives, it is required to obtain
the most different generalized estimates of alternatives with minimum partial estimates
using indicators or criteria, then, for example, the t-norm presented in Figure 3d) can
be used.

A promising area of research is to determine the partition of the parameter space into
regions, each of which is “responsible” for a certain type of generator and the corresponding
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fuzzy operation. The formulas that define t-norms for three types of generators, as noted in
this paper, have the same structure, but the coefficients of fuzzy operations are expressed in
different ways through the generator coefficients. In addition, it is important to study the
algebraic properties of fuzzy operations, which will allow us, from a mathematical point of
view, to justify the choice of an operation for a particular application.
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