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Abstract: A quadrotor trajectory tracking problem is addressed via the design of a model reference
adaptive control (MRAC) system. As for real-world applications, the entire quadrotor dynamics is
typically unknown. To take that into account, we consider a plant model, which contains uncertain
nonlinear terms resulting from aerodynamic friction, blade flapping, and the fact that the mass and
inertia moments of the quadrotor may change from their nominal values. Unlike many known
studies, the explicit equations of the parameter uncertainty for the position control loop are derived
in two different ways using the differential flatness approach: the control signals are (i) used and (ii)
not used in the parametric uncertainty parameterization. After analysis, the neural network (NN)
is chosen for both cases as a compensator of such uncertainty, and the set of NN input signals is
justified for each of them. Unlike many known MRAC systems with NN for quadrotors, in this
study, we use the kxx + krr baseline controller, which follows from the control system derivation,
with both time-invariant (parameterization (i)) and adjustable (parameterization (ii)) parameters
instead of an arbitrarily chosen non-tunable PI/PD/PID-like one. Adaptive laws are derived to
adjust the parameters of NN uncertainty compensator for both parameterizations. As a result, the
position controller ensures the asymptotic stability of the tracking error for both cases under the
assumption of perfect attitude loop tracking, which is ensured in the system previously developed
by the authors. The results of the numerical experiments support the theoretical conclusions and
provide a comparison of the effectiveness of the derived parameterizations. They also allow us to
make conclusions on the necessity of the baseline controller adjustment.

Keywords: quadrotor; trajectory tracking; parameter uncertainty; asymptotic stability; neural-network-
based compensator

1. Introduction

This study is an extended version of a previously published conference paper [1].
The problem of quadrotor control quality improvement under the condition of pa-

rameter uncertainty has gained considerable attention from the control community in the
recent years [2] because of the numerous outdoor and indoor civilian applications of such
devices in the following: agriculture, traffic monitoring, delivery, mapping coverage, etc.

The main advantages of the quadrotors are their small size, light weight, vertical
take-off and landing, and dynamical maneuverability. However, on the other hand, their
dynamics is non-linear with couplings between translational and rotational motions; we
have only four control signals (thrust and rotational torques) for six degrees of freedom.
Moreover, some parameters of such a plant can not be known precisely: aerodynamical
coefficients, its mass, and inertia moments. For instance, if the quadrotor is spraying
pesticides on crops, its mass is getting lower like a smooth function, while in the case of
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cargo delivery, such variation happens in a step-like manner. It should be noted that the
inertia moments change their values in both cases.

Despite all the above-mentioned difficulties, the quadrotor position control is required
to be of high quality, especially if the indoor missions are considered. To solve such a
complicated problem, the control system is usually implemented in accordance with the
cascade principle [3] with the inner attitude and outer position loops. The plants of both
have their own parameter uncertainties to be compensated. The scope of this research is
the position loop only, but interested readers are referred to [4], in which a short review of
the existing methods of attitude adaptive control is given, and an effective solution of such
problem is proposed.

As far as the trajectory tracking is concerned, the following different techniques have
been applied to solve the control problem under consideration: the conventional PID-
control [5], LQ-regulator [5,6], backstepping [7], and feedback linearization [8]. However,
all of them require the plant dynamics (model parameters) to be known a priori.

To relax such a strict requirement, two solutions should be mentioned. The first is an
active disturbance rejection control [9], which is based on the idea of the disturbance (uncer-
tainty) estimation with the help of the extended state observer (ESO). It is a linear high-gain
observer, in which the large gain may induce the well-known peaking phenomenon. So,
such a scheme is not considered further.

Secondly, the adaptive control techniques can be applied. In particular, the model
reference adaptive control (MRAC) with the conventional adaptive law of the form of
−Γere f PBx is used in [10]. Unfortunately, it is not explained why the baseline controller is
chosen as the PD instead of kxx + krr, as well as the absence of the σ or e robust modification
in the adaptive law to compensate for the parameter uncertainty, given that its basis
functions are approximated using the set of radial-basis ones. The presented stability
analysis of such a scheme holds only in case the uncertainty parameters are time invariant.

As the parameter uncertainty is both time varying and nonlinear, it is worth applying
the universal approximators such as neural networks (NN) to compensate for it. NN is used
to implement compensators in the MRAC-like robust scheme with a PD-based baseline
controller [11] and the schemes of backstepping in [12,13]. The solution from [11] requires
the known upper bounds of some constituent parts of the parameter uncertainty, while
the application of backstepping results in complex controllers of a high dynamic order.
Concerning NNs in [11–13], the input vector components are chosen without analysis of
what signals form the uncertainty to be compensated, and only the output layer parameters
are adjusted. So, the higher number of hidden neurons is to be chosen to obtain the required
approximation error [14]. More detailed analyses of NN applications to solve the problem
under consideration can be found in recent studies [15,16]. As for [15,16], the proposed
solutions use the PI/PID controller with time-invariant parameters as a baseline, which
contradicts the classical principles of MRAC system synthesis.

All in all, despite a great number of studies on the application of MRAC + NN to con-
trol quadrotor trajectory, all of them contains at least some of the following disadvantages:

(d1) A simplified model of the quadrotor with time-invariant parameters of mass and
inertia moments is used.

(d2) The explicit equation of the parameter uncertainty to be compensated is not presented,
as well as the numerical simulation results, which compare the outputs of the proposed
compensator with the ones of such equation. This makes it difficult to understand to
what extent the uncertainty has been compensated.

(d3) The baseline controller is chosen arbitrarily but not as a result of the synthesis proce-
dure.

(d4) Baseline controller has time-invariant parameters, and plant parameterization, under
which it can also be adjustable, is not considered.

This study fills this gap and designs the direct MRAC schemes with the NN-based
compensator of matched parameter uncertainty for a quadrotor, which are free from the
above-mentioned disadvantages.
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The following contributions of this study are that simultaneously:

(c1) The explicit equations of the parameter uncertainty are derived for the quadrotor
trajectory tracking problem for two cases, when control signals are (i) used and
(ii) not used in the parametric uncertainty parameterization;

(c2) Using (c1), the application of NN-based uncertainty compensator and signals included
into its input vector are justified;

(c3) The MRAC-based schemes are implemented with the baseline controller of a
kxx + krr type (in two variants, with time-invariant and adjustable kx and kr) and the
NN-based compensator of the paramtric uncertainty, in which the parameters of both
output and hidden layers are adjusted in real time.

2. Problem Statement and Methods
2.1. Mathematical Model of Quadrotor

Schematic representation of quadrotor is shown in Figure 1.

Figure 1. Schematic representation of quadrotor.

The equations of the quadrotor model [8] are written as follows (the brackets and the
time argument are omitted whenever it is clear from the context and causes no confusion):

ṗ = V = RVb, ξ̇ = ω = Jωb,

V̇b =
1
m

Fext −ωb ×Vb, Ibω̇b = τext −ωb × Ibωb,
(1)

where m is a plant mass, ψ is roll, θ stands for pitch, and φ denotes yaw, ξ =
[
ψ, θ, φ

]T. The
center of gravity of the quadrotor is the origin of a body-fixed frame (BFF). Considering
the inertial frame (IF), p = (X, Y, Z) is the coordinate vector, V =

[
Ẋ Ẏ Ż

]T stands

for the linear velocity, and w =
[
ψ̇ θ̇ φ̇

]T is the plant angular velocity. As far as the
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BFF is concerned, the same vectors are denoted as pb = (x, y, z), Vb =
[
u, v, w

]T, and

ωb =
[
p, q, r

]T, respectively. Fext =
[

fx, fy, fz
]T and τext =

[
τψ, τθ , τφ

]T are the external
forces and moments in BFF. τψ, τθ , τφ are calculated via ψ, θ, and φ controllers. R and J are
transformation matrices, which are expressed as follows:

R =

cθcφ sψsθcφ − cψsφ cψsθcφ + sψsφ

cθsφ sψsθsφ + cψcφ cψsθsφ − sψcφ

−sθ sψcθ cψcθ

, J =

1 sψ tθ cψ tθ

0 cψ −sψ

0 sψ/cθ cψ/cθ

, (2)

Hereafter, s(.) stands for sin(.), c(.) is cos(.), and t(.) denotes tan(.).

Assumption 1. The inertia matrix Ib = diag(Jx, Jy, Jz) is diagonal as the quadrotor is symmetric
in xB− zB and yB− zB planes.

Taking into account the drag force [8], Equation (1) are represented as follows:Ẋ
Ẏ
Ż

 = R

u
v
w

,

ψ̇
θ̇
φ̇

 = J

p
q
r

, (3)

 ṗ
q̇
ṙ

 =


qr Jy−Jz

Jx

pr Jz−Jx
Jy

pq Jx−Jy
Jz

+


qωr

Jr
Jx
− ψ̇

kψ l
Jx
− sψ

Kc
Jx

−pωr
Jr
Jy
− θ̇ kθ l

Jy
− sθ

Kc
Jy

−φ̇
kφ l
Jz


︸ ︷︷ ︸

∆pqr

+


τψ

Jx
τθ
Jy
τφ

Jz

,
(4)

 u̇
v̇
ẇ

 =

rv− qw
pw− ru
qu− pv

+

 gsθ

−gcθsψ

−gcθcψ + T
m

+


−CxρSxu|u|

2m
−CyρSyv|v|

2m
−CzρSzw|w|

2m


︸ ︷︷ ︸

∆uvw

, (5)

where Kc, Cx, Cy, Cz stand for aerodynamic coefficients; kψ, kθ are the air resistance
parameters; ρ is the air density; Sx, Sy, Sz are the quadrotor surface areas corresponding
to the respective axis; l is the distance between the gravity center and each motor rotor;
Jr stands for the inertia moment of the motor; and ωr is the total motors speed.

The output of the altitude controller is T. Lift forces T1, T2, T3, T4 and rotational
torques M1, M2, M3, M4 are calculated from T, τψ, τθ , τφ, using (13) from [8].

2.2. Trajectory Tracking Control Problem

Assumption 2. The parameters values of the quadrotor model are unknown. p, q, r and u, v, w are
measurable. Then, all other states from (3)–(5) can be obtained.

Assumption 3. The inner attitude control system that includes ψ, θ, φ loops has already been
designed using the approach from [4]. That means that despite (a) Jx, Jy, Jz being unknown and time-
varying and (b) having ∆pqr in (4) and J in the right-hand part of (3), the NN-based compensator
of the the inner loop proposed in [4] ensures ψ, θ, φ control quality defined using the attitude
reference model.

Goal. To solve the quadrotor trajectory tracking problem via development of MRAC
system (green blocks in Figure 2), which is capable of the parameter uncertainty (see (5))
compensation and ensures asymptotic convergence of the tracking error to a compact set.
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Figure 2. Block scheme of quadrotor control system.

3. Main Result
3.1. Uncertainty Parameterization

The left equation in (3) is differentiated with regards to time. The substitution of (5)
into the obtained result yields the following:Ẍ

Ÿ
Z̈

 = R

 u̇
v̇
ẇ

+ Ṙ

 u
vs.
w

 = R

0
0
1

 T
m + R

rv− qw
pw− ru
qu− pv


+R

 gsθ

−gcθsψ

−gcθcψ

+ R∆uvw + Ṙ

 u
vs.
w

 =

cψsθcφ + sψsφ

cψsθsφ − sψcφ

cψcθ

 T
m

+ R

rv− qw
pw− ru
qu− pv

+ R

 gsθ

−gcθsψ

−gcθcψ

+ R∆uvw + Ṙ

 u
vs.
w


︸ ︷︷ ︸

∆

,

(6)

Ṙ = R ·

 0 −r q
r 0 −p
−q p 0

.

The actual quadrotor mass m is unknown and time varying. However, we know its
nominal constant value m.

The aim is to ensure trajectory tracking independent of the value of the yaw angle, i.e.,
Xd, Yd, Zd are to be followed with the required quality at any value of φ. To achieve this,
the differential flatness approach [17] is applied:

θd = arctan
(

1
uz

(
uxcφ + uysφ

))
,

ψd = arctan
(

cθ
1
uz

(
uxsφ − uycφ

))
, T = muz

cψcθ
.

(7)

This equation is actually an implementation of the converter block in Figure 2.
Further parameterization depends on whether ux, uy, uz is directly used in the

uncertainty parameterization or not.

3.1.1. Case I: Control Signals Are Directly Used in Uncertainty Parameterization

Equation (6) is rewritten as follows:Ẍ
Ÿ
Z̈

 =

cψsθcφ + sψsφ

cψsθsφ − sψcφ

cψcθ

 T
m +

cψsθcφ + sψsφ

cψsθsφ − sψcφ

cψcθ

T m−m
mm + ∆. (8)
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The only constant in (8) is m.
Equation (7) is substituted into (8) to obtain the following:Ẍ

Ÿ
Z̈

 =

ux
uy
uz

+

ux
uy
uz

m−m
m + ∆

︸ ︷︷ ︸
∆

. (9)

Therefore, ∆ =
[
∆X ∆Y ∆Z

]T ∈ R3×1 is the matched parameter uncertainty to be
compensated. It can be rewritten as a linear regression with unknown m (time varying),
ρ, Cx, Cy, Cz, Sx, Sy, Sz and measurable nonlinear regressor, which depends on the twelve
known signals ux, uy, uz, ψ, θ, φ, u, v, w, p, q, r. The obtained parameterization has
two main features: (i) the input gain matrix is known and identified, and (ii) control signals
ux, uy, uz are included into uncertainty parameterization.

3.1.2. Case II: Control Signals Are Not Used in Uncertainty Parameterization

Equation (6) is used, and (7) is substituted into it as follows:Ẍ
Ÿ
Z̈

 =

ux
uy
uz

m
m + ∆ = m

m

ux
uy
uz

+ ∆

. (10)

In such a case, the matched parametric uncertainty again can be rewritten as a linear
regression, but its regressor does not include ux, uy, uz. Furthermore, the system input
gain matrix is unknown and represented as a diagonal matrix with m

m on its main diagonal.

3.1.3. Representation of Plant in State-Space Form

The state xp =
[
X, Ẋ, Y, Ẏ, Z, Ż

]T and control vectors u =
[
ux, uy, uz

]T are intro-
duced. Then, (9) and (10) are written as follows:

ẋp(t) = Apxp(t) + Bp(u(t) + ∆(t)),

u(t) = ubase(t)− uad(t),
(11)

Considering (9), we have the following:

Bp = I3×3 ⊗
[

0
1

]
, Ap = I3×3 ⊗

[
0 1
0 0

]
,

while it is written for (10) as follows:

Bp =

 m
m︸︷︷︸
Λ

I3×3

⊗ [0
1

]
, Ap = I3×3 ⊗

[
0 1
0 0

]
.

Λ is unknown. So, in the course of the following design, we will need ubase with
time-invariant parameters for Case I and adjustable ones for Case II.

The uncertainty ∆ is time varying and has a nonlinear regressor for both cases, so NN
is chosen to compensate for it.
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3.2. MRAC System with NN-Based Compensator
3.2.1. Reference Model

The reference model is introduced as follows:

ẋre f (t) = Are f xre f (t) + Bre f r(t),

Bre f = I3×3 ⊗
[

0
w2

n

]
, Are f = I3×3 ⊗

[
0 1
a0 a1

]
.

(12)

The following definitions are used: xre f =
[

Xre f , Ẋre f , Yre f , Ẏre f , Zre f , Żre f

]T
,

r =
[
Xd Yd Zd

]T, a0 = −w2
n, a1 = −2gwn, g > 0, wn > 0.

3.2.2. Plant Representation: Neural Network Description

According to the proved approximation theorem [18], ∆ is expressed as NN with the
sigmoid activation function σ in the hidden layer (Figure 3) as follows:

ẋp = Apxp + Bp

u + WTσ
(

VTxnn

)
︸ ︷︷ ︸

∆?

+ε

,

‖ε‖ ≤ εN , xnn =
[
b1 ξT (Vb)

T
(ωb)

T
]T

,

σ
(

VTxnn

)
=
[
b2 σ1 σ2 · · · σN2

]T,

V =


β1

1 · · · β1
N2

ω1
1,1 · · · ω1

1,N2
...

. . .
...

ω1
N1,1 · · · ω1

N1,N2

, W =


β2

1 · · · β2
N3

ω2
1,1 · · · ω2

1,N3
...

. . .
...

ω2
N2,1 · · · ω2

N2,N3

.

Figure 3. Neural network structure.

On the basis of the obtained parameter uncertainty parameterization, it is concluded
that the number of the input neurons is N1 = 12 for Case I (xnn = {ux, uy, uz, ψ, θ, φ, u,
v, w, p, q, r}) and N1 = 9 (xnn = {ψ, θ, φ, u, v, w, p, q, r}) for Case II, the number of
output neurons is N3 = 3 for both cases. ε is the approximation error, of which its upper
bound (‖ε‖ ≤ εN) can be estimated using the results from [14]. It depends on the number
of hidden neurons N2, the higher N2, and the lower εN .

As ideal weights W and V are unknown, NN with adjustable parameters V̂ and Ŵ is
introduced as follows [19]:

∆̂ = ŴTσ
(

V̂Txnn

)
, (13)

The adaptive laws for V̂ and Ŵ will be derived further for both cases under consideration.
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3.2.3. MRAC System Design

The approximation and estimation errors are introduced as follows:

e = ∆− ∆? − ε,

Ṽ = V̂ −V, W̃ = Ŵ −W.
(14)

The dependence of e from V is nonlinear due to the sigmoid function, so it is linearized
via the Taylor series expansion as follows:

σ
(

VTxnn

)
= σ

(
V̂Txnn

)
− σ̇

(
V̂Txnn

)
ṼTxnn + O

(
ṼTxnn

)2
. (15)

Introducing ere f = xp − xre f , the error equation is obtained as follows:

ėre f = Are f ere f + Bp(−uad + ∆? + ε) + Bp

(
ubase − B†

pBre f r + B†
p

(
Ap − Are f

)
xp

)
, (16)

The summands of u(t) are chosen as follows:

ubase = −B†
p

(
Ap − Are f

)
︸ ︷︷ ︸

kx

xp + B†
pBre f︸ ︷︷ ︸

kr

r,

uad = ∆̂.

(17)

As far as Case I is concerned, kx and kr can be directly calculated, while in Case II, this
is impossible as Bp is unknown. In such a case, the baseline control law with adjustable
parameters should be introduced as follows:

ubase = k̂xxp + k̂rr = θ̂Tω,

θ̂T =
[
k̂x k̂r], ω =

[
xp
r

]
.

(18)

As for Case I, the substitution of (15) and (17) into (16) yields the following:

ėre f = Are f ere f + Bp (WTO
(

ṼTxnn

)2
+ ε)︸ ︷︷ ︸

δ

−BpW̃T
(

σ
(

V̂Txnn

)
−σ̇
(

V̂Txnn

)
V̂Txnn

)
− BpŴTσ̇

(
V̂Txnn

)
ṼTxnn.

(19)

Considering Case II, we have the following:

ėre f = Are f ere f + Bp θ̃Tω + Bp (WTO
(

ṼTxnn

)2
+ ε)︸ ︷︷ ︸

δ

−BpW̃T
(

σ
(

V̂Txnn

)
−σ̇
(

V̂Txnn

)
V̂Txnn

)
− BpŴTσ̇

(
V̂Txnn

)
ṼTxnn.

(20)

We are in a position to present the main result of this research.
If the parametric uncertainty parameterization includes the control signals ux, uy, uz,

the following theorem holds.

Theorem 1. Let the laws to adjust NN parameters be defined as follows:

˙̂V = Γv

[
xnneT

re f PBpŴTσ̇
(

V̂Txnn

)
− σvV̂

]
,

˙̂W = Γw

[(
σ
(

V̂Txnn

)
− σ̇

(
V̂Txnn

)
V̂Txnn

)
eT

re f PBp − σwŴ
]
,

(21)
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where Γv and Γw are adaptive gains, σv and σw are σ-modification parameters, P = PT > 0
stands for the solution of the Lyapunov equation Are f

TP + PAre f = −Q, the augmented error

ζ =
[
eT

re f vecT(W̃) vecT(Ṽ)]T
is uniformly ultimately bounded (ζ ∈ UUB) with the ultimate

bound R, and ere f asymptotically converges to a compact set with the bound R1.

Proof. The proof of this theorem, as well as the definitions of R and R1 are presented in
Appendix A.

If the uncertainty parameterization does not include control signals ux, uy, uz, the

following theorem holds. It is noted that in such a case, we can write Bp =
(m

m I3×3
)
⊗
[

0
1

]
.

Furthermore, sgn(m
m ) = 1, so we understand sgn(Bp) as Bsgn = I3×3 ⊗

[
0
1

]
.

Theorem 2. Let the laws to adjust the baseline controller and NN parameters be defined as follows:

˙̂θ = −Γθ

[
ωeT

re f PBsgn − σθ θ̂
]
,

˙̂V = Γv

[
xnneT

re f PBsgnŴTσ̇
(

V̂Txnn

)
− σvV̂

]
,

˙̂W = Γw

[(
σ
(

V̂Txnn

)
− σ̇

(
V̂Txnn

)
V̂Txnn

)
eT

re f PBsgn − σwŴ
]
,

(22)

where Γθ , Γv, and Γw are adaptive gains, σθ , σv, and σw are σ-modification parameters, P = PT > 0
stands for the solution of the Lyapunov equation Are f

TP + PAre f = −Q, the augmented error

ζ =
[
eT

re f vecT(θ̃) vecT(W̃) vecT(Ṽ)]T
is uniformly ultimately bounded (ζ ∈ UUB) with

the ultimate bound R2, and ere f asymptotically converges to a compact set with the bound R3.

Proof. The proof of this theorem, as well as the definitions of R2 and R3, are verbatim to
the one of Theorem 1 up to one additional term in the Lyapunov function for the baseline
controller adjustable parameters.

3.3. Numerical Experiments and Discussion

On the basis of Equations (1)–(5), the mathematical model of the quadrotor has been
implemented in Matlab/Simulink. The values of its parameters were taken from the Parrot
Mambo model [4]. The Euler solver with fixed step of 0.001 s was used for modeling.

The same flight plan was chosen for all experiments as follows: (1) to take-off to
reach 1.1 m height (from start to fifth second), (2) to track Gerono lemniscate (figure eight)
trajectory from the 5th to 65th seconds: Xd = cos(2πt) and Yd = sin(4πt).

The parameters of MRAC system were picked as follows: ωn = 5, γ = 1.1, N2 = 50,
V̂(0) = 0N1×N2 , σv = 10−3, σw = 10−3, Γw = 10 · I3×3, Γv = 10−8 I50×50, Ŵ(0) = 0N2×N3 ,
kx = I3×3 ⊗

[
−25 −11

]
, kr = diag(25, 25, 25), Q = I6×6, Cx = Cy = Cz = 1,

ρ = 1.184 kg/m3, Kc = 0.001, kres = 0.001, l = 0.0441 m, kψ = kθ =
√

2·kres ·l
2 , kφ = kres · l.

For Case II, we first picked σθ = 10−5, Γθ = 100 · I9×9, k̂x(0) = 03×6, k̂r(0) = 03×3.
The known nominal values of inertia matrix and mass were chosen as follows:

m = 0.063
2 kg, Ib = diag

(
( 5.8

2 )× 10−5, ( 7.17
2 )× 10−5, ( 1

2 )× 10−4
)

kg·m2.
The quadrotor model parameters were unknown to the control system. In the

course of experiments, Ib and m were changed as follows: (1) from start to 35th second
Ib = diag

(
(1.2× 5.8× 10−5, 1.2× 7.17× 10−5, 1.2× 1× 10−4) kg·m2, m = 1.2× 0.063 kg;

(2) from 35th to 65th second Ib = diag
(
(5.8× 10−5, 7.17× 10−5, 10−4) kg·m2, m = 0.063 kg.

The attitude control was implemented in accordance with [4], while the system pro-
posed in this study was used for the position control. The yaw setpoint was picked as
φd = π

4 .
Here, we outline some comments on how the parameters for simulation were chosen.

All quadrotor (and environment) parameters were taken from [4]. The initial values of
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the controllers parameters were picked as zeros. The reference model parameters were
calculated on the basis of the analysis of the results from [4]. The values of kx and kr were
calculated using (17). The value of φd could be chosen arbitrarily. The values of the adaptive
gains and σ-modification parameters were picked as a result of trial and error. The trade-off
of such a choice was as follows. The only way to reduce the tracking error was to increase
the adaptive gain. However, this increased the L2 norm of the control signal, which resulted
in oscillations [20]. Therefore, the trade-off was between the values of the tracking error
and the oscillations. The values of the σ-modification parameters were in relation with the
corresponding adaptive gain. Their lower values resulted in higher controller parameters
and lower tracking error, and vice versa (please see proof of Theorem 1 in Appendix A).

The experiments were conducted as follows: (i) with NN-based compensator de-
signed for Case I, (ii) with NN-based compensator designed for Case II, and (iii) without
compensator.

First of all, the compensator for Case I was compared with the system without un-
certainty compensation. Figure 4 presents the behavior of the Z coordinate. When the
control system included only the baseline controller, a steady-state error occurred due to
the difference between m and m. Such an error was compensated for in the neural network.

Figure 4. Transients of Z for control systems with (Case I) and without NN-based compensator.

The behavior of the coordinates X and Y is shown in Figure 5. The sum of squared
errors (the difference between the reference figure-eight trajectory and the real one) was
reduced via the NN-compensator by 16.62%.

Figure 5. Transients of X and Y for control systems with (Case I) and without NN-based compensator.
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The obtained equation for ∆ was used to calculate the ideal value of the parameter
uncertainty for each time instant of the numerical experiment. Figure 6 illustrates that the
NN-based compensator approximated such ideal ∆ and verifies the theoretical result. The
fact that m value was changed at 35th second did not cause the peaking phenomenon.

Figure 6. Approximation of the ideal parameter uncertainty in neural network for X, Y, Z.

As the attitude control loop synthesized according to [4] also included its own NN-
based compensator, Figures 7 and 8 are shown to demonstrate that the parameter uncer-
tainty of the ψ, θ, φ control loops and Jx, Jy, Jz switch were approximated as well.

Figure 7. Approximation of the ideal parameter uncertainty by neural network for ψ, θ, φ.
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Figure 8. The behavior of ψ, θ, φ for MRAC system with NN.

The same results were obtained using different values of φd. Therefore, the validity of
the converter synthesis procedure for Case I was corroborated.

The next step was to test the adaptive control system designed for Case II. As men-
tioned above, the initial values of the baseline controller adjustable parameters were zeros.
The results obtained for X, Y, Z coordinates are shown in Figures 9 and 10.

Figure 9. Transients of Z coordinate for control system with NN-based compensator for Case II using
baseline controller with zero initial conditions.

They demonstrate that the adaptive control system stabilized the quadrotor and
ensured the asymptotic convergence of the tracking error to a compact set, but the steady-
state error is too large for X and Y. This was mainly caused by the fact that both baseline and
adaptive controllers started from zero initial conditions, which did not provide stabilization.
Figures with curves to assess the quality of uncertainty approximation are not provided,
as in Case II, both the NN and baseline controller have adjustable parameters and try to
compensate for the whole uncertainty together.
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Figure 10. Transients of X and Y coordinates for control system with NN-based compensator for
Case II using baseline controller with zero initial conditions.

To overcome the above-faced problems, it was decided to set the baseline controller
initial conditions equal to the parameters of the characteristic polynomial of the reference
model as follows: k̂x(0) = I3×3 ⊗

[
−25 −11

]
, k̂r(0) = diag(25, 25, 25). Furthermore, the

experiment was conducted again. The obtained results are shown in Figures 11 and 12.

Figure 11. Transients of Z coordinate for control system with NN-based compensator for Case II
using baseline controller with non-zero initial conditions.

Having compared the curves in Figures 4 and 11 and Figures 5 and 12, it was concluded
that the design in Case I provided better transients quality for X, Y, and Z coordinates,
so the additional adjustment of the baseline controller did not allow us to obtain any
advantages. Therefore, according to the conducted experiments, Case I parameterization is
a better solution to the stated problem.

Additionally, the system on basis of the PID-controllers of altitude, attitude and
position from the “ParrotMinidroneHover” project was also applied to the implemented
quadrotor model. The comparison of such system with the proposed solution is considered
to be fair, as we did not adjust PID-controllers by ourselves but used the best values of their
parameters obtained by the developers of the “ParrotMinidroneHover” project, which were
successfully applied not only for simulations but also for a real minidrone. The obtained
behavior of the X, Y, and Z coordinates are shown in Figures 13 and 14. It was concluded
that compared to the MRAC system with NN, the PID-controllers were not capable of the
parameter uncertainty compensation.
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Figure 12. Transients of X and Y coordinates for control system with NN-based compensator for
Case II using baseline controller with non-zero initial conditions.

Figure 13. Transients of Z coordinate for PID-based control system.

Figure 14. Transients of X and Y coordinates for PID-based control system.
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Furthermore, finally, we compared the proposed solution with the ones in which
the PI/PD/PID controllers with time-invariant parameters are used as the baseline. To
do so, the scheme with PID-controllers was augmented with the NN-based compensator
for the X, Y, and Z coordinates. The obtained results are presented in Figures 15 and 16.
Comparing Figures 5, 14 and 16, it was concluded that the simple combination of some
PID-controllers and NN-based compensators did not allow us to obtain results similar to
the proposed solution. So, as in [15,16], the PID-controllers has to be adjusted via a trial
and error procedure. Therefore, in [15,16], such a procedure is much more difficult, as both
baseline controller parameters and adaptive controller hyperparameters have to be chosen
manually. As far as the proposed solution (Case I) is concerned, the baseline controller
parameters are calculated using mathematically-sound equations, and only adaptive gains
and σ-modification parameters for NN are chosen via trial and error.

Figure 15. Transients of Z coordinate for PID+NN control system.

Figure 16. Transients of X and Y coordinates for PID+NN control system.

All in all, the obtained experimental results can be summarized as follows:

(r1) Despite the fact that systems designed on the basis of Case I and Case II parameteriza-
tions had the same theoretical properties, the MRAC system with the NN-compesator
with time-invariant baseline controller parameters allowed us to obtain better results
in comparison with the adjustable baseline controller.
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(r2) The system on the basis of PID-controllers was not able to fully compensate for the
parametric uncertainty.

(r3) The simple combination of the PID-based control system with the NN-based compen-
sator did not allow us to obtain the same results as the proposed approach. So, the
baseline controller should be derived on the basis of the MRAC design procedure and
have the form kxx + krr. Moreover, as far as Case I parameterization is considered,
the values of kx and kr can be directly computed.

4. Conclusions

Considering the trajectory tracking problem, the equations of the quadrotor parameter
uncertainty were obtained for two cases: control signals are (i) used and (ii) not used
in the parametric uncertainty parameterization. Their analysis allowed us to choose the
following: (1) the neural networks to implement the compensators of Case I and Case II
uncertainties and (2) the signals to form their input layers. For Case I, the adaptive laws
of NN parameters were derived. For Case II, the adaptive laws of both NN and baseline
controller parameters were obtained, which ensured that the augmented tracking error
was UUB. The conducted experiments demonstrated that, as far as transient quality is
concerned, Case I parameterization seems to be a better solution.

The main problem of the proposed solution is the above-mentioned trade-off between
the value of the augmented error and the transient quality, particularly, oscillations. The
scope of further research is to (i) derive a parameterization of the quadrotor to apply an
identification-based adaptive control and some extension and mixing schemes to ensure
some transient quality, (ii) guarantee exponential convergence instead of the assymptotic
one, and (iii) consider cases when the quadrotor dynamics is affected by the wind and
gravity center displacement due to load.
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Appendix A

Proof. Let a Lyapunov function candidate be chosen as follows:

L
(

ere f , Ṽ, W̃
)
= eT

re f
Pere f + tr

(
ṼTΓ−1

v Ṽ
)
+ tr

(
W̃TΓ−1

w W̃
)

,

AT
re f P + PAre f = −Q,

λm‖ζ‖2 ≤ V(‖ζ‖) ≤ λM‖ζ‖2,

λm = min
{

λmin(P), λmin

(
Γ−1

w

)
, λmin

(
Γ−1

v

)}
,

λM = max
{

λmax(P), λmax

(
Γ−1

w

)
, λmax

(
Γ−1

v

)}
(A1)

Its derivative is written as follows:

L̇ = −eT
re f Qere f + 2tr

(
W̃T
[
−
(

σ
(

V̂Txnn

)
− σ̇

(
V̂Txnn

)
V̂Txnn

)
× eT

re f PBp + Γ−1
w

˙̃W
])

+ 2tr
(

ṼT
[
−xnneT

re f PBpŴTσ̇
(

V̂Txnn

)
+ Γ−1

v
˙̃V
])

+2eT
re f PBpδ.

(A2)
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Substituting (21) into (A2), it is obtained as follows:

L̇ ≤ −λminQ
∥∥∥ere f

∥∥∥2
+ 2λmax(P)

∥∥Bp
∥∥∥∥∥ere f

∥∥∥δ0 − 2
∥∥Bp

∥∥σv
∥∥Ṽ
∥∥2

+2
∥∥Bp

∥∥σv
∥∥Ṽ
∥∥V0 − 2

∥∥Bp
∥∥σw

∥∥W̃
∥∥2

+ 2
∥∥Bp

∥∥σw
∥∥W̃
∥∥W0,

δ0 = max ‖δ‖∞, V0 = ‖V‖, W0 = ‖W‖.

(A3)

The first two terms of the right hand side of (A3) are added to full square. Then, after
routine operations, the upper bound of L̇ is rewritten as follows:

L̇ ≤ −1
2

(
λmin(Q)

∥∥∥ere f

∥∥∥2
+ 2
∥∥Bp

∥∥σv︸ ︷︷ ︸
γ1

∥∥Ṽ
∥∥2

+ 2
∥∥Bp

∥∥σw︸ ︷︷ ︸
γ2

∥∥W̃
∥∥2
)

+
2λ2

max(P)
∥∥Bp

∥∥2
δ2

0
λmin(Q)

+
∥∥Bp

∥∥σvV2
0 +

∥∥Bp
∥∥σwW2

0︸ ︷︷ ︸
γ3

≤ κL + γ3,

κ =
1

2λM
min{λmin(Q), γ1, γ2}

(A4)

Applying the comparison lemma, the inequality is solved as follows:

‖ζ(t)‖ ≤

√
λM
λm

e−κt‖ζ(0)‖+ γ3

κλm
= R. (A5)

So, ζ(t) is uniformly ultimately bounded. To prove the asymptotic convergence of the
tracking error ere f , we use (A5) and take into account the definitions of γ2 and t→ ∞. As a
result, the upper bound of the tracking error is obtained as follows:

∥∥∥ere f

∥∥∥ ≤ √ 2λmax(P)
λmin(Q)λmin(P)

γ3 = R1 (A6)

This completes the proof.
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