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Abstract: Flash calculations are essential in reservoir engineering applications, most notably in
compositional flow simulation and separation processes, to provide phase distribution factors,
known as k-values, at a given pressure and temperature. The calculation output is subsequently
used to estimate composition-dependent properties of interest, such as the equilibrium phases’ molar
fraction, composition, density, and compressibility. However, when the flash conditions approach
criticality, minor inaccuracies in the computed k-values may lead to significant deviation in the
dependent properties, which is eventually inherited to the simulator, leading to large errors in
the simulation. Although several machine-learning-based regression approaches have emerged
to drastically accelerate flash calculations, the criticality issue persists. To address this problem, a
novel resampling technique of the ML models’ training data population is proposed, which aims to
fine-tune the training dataset distribution and optimally exploit the models’ learning capacity across
various flash conditions. The results demonstrate significantly improved accuracy in predicting
phase behavior results near criticality, offering valuable contributions not only to the subsurface
reservoir engineering industry but also to the broader field of thermodynamics. By understanding and
optimizing the model’s training, this research enables more precise predictions and better-informed
decision-making processes in domains involving phase separation phenomena. The proposed
technique is applicable to every ML-dominated regression problem, where properties dependent on
the machine output are of interest rather than the model output itself.

Keywords: phase behavior; machine learning; resampling; flash computations; reservoir simulation;
computational thermodynamics

1. Introduction

Vapor–liquid equilibrium (VLE) calculations constitute the foundation of a very wide
range of reservoir engineering applications [1–3]. These include phase behavior modeling,
compositional reservoir simulation, material balance models, Enhanced Oil Recovery
(EOR) studies, and separation processes [3]. For instance, in reservoir simulations, given
the pressure (P), temperature (T), and mole concentration of each component (zi), phase
stability analyses [4] and flash calculations [5] predict, at each discretization block of the
grid model (Figure 1) and for each time step, the exact number and type of coexisting phases
in equilibrium, as well as the concentration of each component in each equilibrium phase.

The common approach to treating the flash problem, which is depicted in Figure 2,
is to seek a solution which satisfies the component mass balance [7–9] and ensures that
each component shares same fugacity value in both phases [10]. The principle of mass
conservation states that for a fluid with composition z that is split into a vapor phase, y,
and a liquid phase, x, the total number of moles of a specific component, zi, is equal to the
number of moles of that component in the vapor phase, yi, plus the number of moles of that
component in the liquid phase, xi. The equality of fugacities dictates that at equilibrium,
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the fugacities of each component in the two phases must be equal, i.e., f V
i = f L

i , such that
the Gibbs free energy of the final two-phase system is minimized [11].
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Figure 2. Schematic representation of the flash problem.

By combining the two principles and considering the constraint that the composition
of each equilibrium phase sums up to unity, the well-known Rachford–Rice equation [12]
is derived, which is frequently written as a function of the vapor phase molar fraction, β:

h(β) =
t

∑
i

zi(ki − 1)
1 + β(ki − 1)

= 0 (1)

where zi and ki denote the overall molar fraction and equilibrium ratio (k-value or dis-
tribution factor) of component i in the mixture, respectively. Imposing specific k-values
essentially ensures the equality of component fugacities.

The Rachford–Rice equation (Equation (1)) demonstrates the direct effect that equilib-
rium ratios (k-values) have on the flash calculations. By numerically solving this equation
for a given feed, z, and values k, the molar fraction of the vaporized feed, β, can be
calculated. The composition of each equilibrium phase is then given by:

xi =
zi

1 + β(ki − 1)
(2)

yi =
ziki

1 + β(ki − 1)
= xiki (3)
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The range of, which determines the preference of a constituent to remain in the
vapor phase or liquid phase, can vary widely depending on the pressure and temperature
conditions under which the flash calculation is performed [13]. A component’s k-value
greater than one indicates that it is volatile and tends to stay mostly in the vapor phase,
while a k-value less than one indicates its higher affinity to remain in the liquid phase [14].
As the flash conditions approach the mixture’s critical ones (known as criticality conditions),
the vapor and liquid phases become less distinguishable from each other, resulting in the
k-values converging to unity [15]. Figure 3 provides an illustration of this variation by
depicting isotherms plotted on a k-values versus pressure diagram for three components
of different molecular weights: a light component (C1), an intermediate component (i-C5),
and a heavy component (C7+). The k-values clearly approach unity as pressure increases
close to the critical one (approx. 4500 psi).
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Figure 3. Effect of pressure on k-values at reservoir temperature in the 1500 to 4054.3 psi range.

Once the phase compositions are determined, the properties directly incorporated into
the flow simulation, such as saturation, density, and viscosity, are computed as functions of
xi and yi.

In the compositional reservoir simulation context, in order to simulate the phase
behavior of multicomponent fluids, billions of flash calculations are required to be carried
out. Indeed, once the stability test indicates an unstable feed, z, at each iteration of the non-
linear solver, at each grid block, and at each time step, a flash calculation needs to follow
to estimate k. Various computational methods are used for flash calculations, including
successive substitution iteration (SSI), the quasi-Newton method, the Newton–Raphson
(NR), the steepest descent method [16–19], and their respective variations, as well as hybrid
approaches [5,20–22]. These computational techniques, though CPU-time intensive, are
known for their high accuracy, ensuring precise reservoir simulation predictions across a
wide range of pressure–temperature conditions. However, challenges arise when dealing
with criticality. This is because properties crucial in flow simulation, such as saturation,
density, viscosity, and the effects of gravity, are highly sensitive to k-values under such
conditions. Consequently, even minor errors in estimating k-values can result in significant
inaccuracies in these important properties.

In addition, several non-iterative methods exist for estimating k-values. Wilson’s
correlation [23] stands as the most notable, while other correlations include Standing’s
correlation [24], Hoffman et al.’s correlation [25], Whitson and Torp’s correlation [26], and
the convergence pressure method [2]. Specific correlations have also been developed for the
plus fraction [27–29] and non-hydrocarbons [30]. However, for demanding phase behavior
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calculations, the accuracy of these approximations falls short. Therefore, the development
of faster and more accurate k-value estimation methods is highly desirable.

Over the years, several machine learning (ML) techniques have appeared in the lit-
erature, aiming to accelerate the time-consuming process of solving flash calculations. A
phase stability-targeted support vector machine (SVM) methodology was first proposed
by Gaganis et al. [31], who utilized a uniformly drawn stability test dataset to generate
a discriminating function that replicates a mixture’s phase boundary. The classifier was
trained using stability labels (stable/unstable) in order to obtain fast predictions. Later,
they [3,32] expanded their research and solved both phase stability and phase-split prob-
lems by combining SVMs for classification and ANNs for regression in a single prediction
system. To further accelerate the calculations, reduced variables were used to shrink the
output, back-transforming the ANN predictions to regular k-values. In 2014, Gaganis et al.
developed a technique to rapidly solve the multiphase stability problem using SVMs [33].
After that, Gaganis [34] proposed a more efficient treatment of the stability problem utiliz-
ing two custom discriminating functions, each single-sided correct, to denote the stability
of a mixture. The functions are built so that the ambiguous space, called “the grey area”
(where no discriminating function is positive), is as narrow as possible, reducing the need
to run a conventional stability test.

Kashinath et al. [35] also treated the stability problem as a binary classification one
using SVMs, this time tailoring it to CO2 flooding simulations. In their work, if the classifier
predicts an unstable phase, an ANN model is used to predict the prevailing k-values.
Zhang et al. [36] introduced a self-adaptive deep learning model capable of predicting the
number of phases and their respective properties. Li et al. [37] presented a deep artificial
neural network (ANN) model to tackle the iterative flash problem, which is a prevalent
issue in phase equilibrium calculations within the moles, volume, and temperature (NVT)
framework. Similarly, Poort et al. [38] employed a combination of classification and
regression neural networks to address both phase stability and phase property predictions.
In addition, Wang et al. [39] built two ANN models to handle the stability and phase-split
problems. Similar processes were developed by various other authors [40–43]. Schmitz
et al. [44] developed a classification method using a feed-forward ANN and a probabilistic
ANN to extend the previous approaches and solve the phase stability problem. A more
recent work was developed by Samnioti et al. [45], who employed ANNs to accelerate
complex gas condensate phase behavior calculations. The ANN was trained using an
extensive dataset obtained from the simulation of various gas recycling schemes, covering
any possible compositional changes that might occur inside a reservoir to account for the
large compositional variability in the gas reinjection process. Later, Anastasiadou et al. [46]
progressed similarly by trying to solve the phase stability problem for an even more
complex acid gas reinjection system. The authors proposed three classification approaches,
ANNs, decision trees (DTs) and SVMs, to solve the phase stability problem, using a large
ensemble of training data.

The main drawback of the ML techniques described above is that the error function
utilized in the models’ training accounts equally for all datapoints regardless of their
proximity to criticality. As a result, when the prevailing conditions are close to the critical
ones, as can be the case in gas condensate reservoirs, these models’ k-value estimates may
lead to significantly large errors in the fluid properties of real interest in flow simulations.
It should be noted that apart from the critical point itself, criticality also appears along the
convergence locus (CL), that is, the pressure–temperature conditions’ locus, where negative
flash solutions vanish [47]. In the case of gas condensates, the CL lies very close to the
dew point phase boundary and hence to the interior of the phase envelope where the flash
calculations are run.

In this paper, we present a novel methodology aimed at enhancing the training
quality of ML models addressing the thermodynamic phase-split problem. Our approach
focuses on improving the efficiency of ML models, particularly in the vicinity of criticality,
by generating uniformly distributed rather than biased deviations across various flash
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conditions. Specifically, we propose an approach to fine-tune the ML model’s learning
capacity without altering its structure or training algorithm while only affecting the training
dataset, taking into consideration the impact of k-values on the fluid property of interest in
the subsequent flow simulation.

This technique is directly applicable to a wide range of computational problems where
an ML model utilizes an input, x, to predict an output, f(x), although the primary focus lies
on the accuracy of some dependent property, g(f(x)). Our research aligns with the broader
field of optimizing regression machines for specific engineering objectives, and it delves
into the realm of computational methods designed to improve the performance of these
machines in a targeted manner.

The paper is laid out as follows: Section 2 establishes formally the need for a new
physics-oriented approach to train ML models that solve the flash problem. Section 3
describes the proposed methodology, while Section 4 discusses the results obtained. Con-
clusions are presented in Section 5.

2. Proof of Concept

In this section, the significance of obtaining poor-quality k-values when running flash
calculations close to critical conditions is demonstrated firstly by a theoretical analysis,
followed by numerical calculations. In a regular two-phase flash calculation, the quantity of
a phase, such as the vapor molar fraction, represented by β, always falls within the physical
interval [0, 1]. This implies that the recombination of β moles of gas with composition y
and (1− β) moles of liquid with composition x results in the reconstruction of the original
feed composition, Whitson and Michelsen [47] extended the regular flash calculation to
conditions under which the fluid is physically monophasic and demonstrated that the
phase-split equations can be satisfied even when the β values lie outside the physical
domain [0, 1]. In a negative flash with β < 0 (at pressures exceeding the bubble point),
|β| = −β represents the vapor phase amount that needs to be removed from 1− β = 1+ |β|
moles of liquid to reconstruct one mole of the original fluid feed composition. Similarly,
when β > 1 (at pressures above the upper or below the lower dew point), β− 1 moles
of liquid need to be removed from β moles of gas. Clearly, the negative flash results are
indicative of hypothetical states and lack direct applicability in fluid flow computations.
However, such calculations can significantly enhance the convergence properties of regular
flash computations near the phase boundary by allowing phase molar fractions at some
iteration to temporarily cross the phase boundary.

The convergence pressure (Pconv) [27] in a multicomponent mixture refers to the
pressure at which a negative flash, k, approaches unity at a fixed temperature. Similarly,
for a fixed pressure, the convergence temperature (Tconv) is defined as the temperature at
which a negative flash, k, converges to unity. In the pressure–temperature plane, the CL is
the line that connects all of the convergence pressures and temperatures. The regular phase
envelope and the CL meet at the mixture’s critical point. The negative flash calculations
yield non-trivial results, meaning two distinct solutions for the compositions of the liquid
and gas phases, only within the region bounded by the regular phase envelope and the
convergence locus (CL), which contains the convergence pressures and temperatures. This
region is often referred to as the shadow region. The regions discussed are shown in Figure 4
for a gas condensate. Note that the diamond marker represents the fluid’s critical point.

Performing flash calculations in the vicinity of a fluid’s CL within the phase boundary
is challenging as only slightly inaccurate k-value estimates may lead to significant phase
compositional errors. This can be expressed mathematically through the limit of ∂xi/∂k j as
the k-value of component j, k j, approaches unity. Note that ∂xi/∂k j is the partial derivative
of Equation (2) with respect to k j and represents the sensitivity of xi (or yi) to inaccuracies
in k j:

∂xi
∂k j

=
−zi

[1 + β(ki − 1)]2

[
βδij + (ki − 1)

∂β

∂k j

]
(4)
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where ∂β
∂kj

= 1
(kj−1)

2 , and δij is Kronecker’s delta. This expression is derived by differentiat-

ing the implicit Rachford–Rice equation (Equation (1)). Specifically, the independence of the
k-values from each other allows for the cancellation of the summation in Equation (1). By
applying the quotient rule and expressing ∂β/∂k j in terms of the other variables, the partial
derivative ∂β/∂k j is obtained. When k j approaches unity, as indicated in Equation (5), the
limit of ∂xi/∂k j tends towards infinity:

lim
kj→1

∂xi
∂k j

= lim
kj→1

−zi

[1 + β(ki − 1)]2

(
βδij +

1
k j − 1

)
= lim

kj→1

(
βδij +

1
k j − 1

)
= ∞ (5)
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Thus, when the prevailing conditions are close to criticality (either to the critical point
itself or to the CL), the need for precise k-value, k, estimates is particularly high to ensure
that dependent properties of real interest in reservoir simulation, such as the saturation,
density, and viscosity of each phase, are computed accurately. Densities are directly related
to gravitational effects, whereas their derivatives with respect to pressure are directly
related to fluid compressibility, which dominates viscous flow.

After mathematically demonstrating the extent of the k-values’ limited accuracy
problem, numerical calculations were also carried out on two real reservoir fluids, a lean
gas condensate and a rich gas condensate, at various sets of pressure–temperature (P–T)
conditions. The compositions of the utilized fluids are shown in Table 1. Figure 5 illustrates
the phase envelopes (depicted by the blue curves) of the lean gas condensate and the rich
gas condensate, respectively, as obtained using the Peng and Robinson cubic equation of
state (1978) [2,14,48–53]. The diamond-shaped blue points on the phase envelopes represent
the critical points of the mixtures, while the purple dashed lines represent the convergence
loci (CLs). Five points were selected along the red isotherm of the reservoir temperature of
each fluid, each exhibiting a varying distance to criticality.

Table 1. Composition of gas condensates in mole% and reservoir temperature.

Comps Lean Gas Condensate Rich Gas Condensate

N2 0.01 0.10
CO2 1.26 2.95
C1 80.22 72.18
C2 6.6 4.03
C3 3.25 4.78
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Table 1. Cont.

Comps Lean Gas Condensate Rich Gas Condensate

i-C4 0.73 1.44
n-C4 1.08 2.38
i-C5 0.47 1.10
n-C5 0.38 0.99
C6 0.63 1.28
C7+ 5.37 8.77

Tres (◦F) 262 268
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The k-value norm, Lk, accounting for the sum of the squares of the natural logarithms
of the experimental k-values, k (Equation (6)), was introduced to serve as an indicator
of a point’s proximity to criticality, with lower values denoting a closer proximity. From
Tables 2 and 3, it follows that among the five points selected for each fluid (Figure 4), the
proximity to criticality increases gradually between the first and fifth point.

Lk =
t

∑
i=1

(log(ki))
2 (6)

Table 2. Proximity of the five selected P–T points to criticality—lean gas condensate.

P–T Points 1 2 3 4 5

Lk 108.41 71.06 49.79 30.02 8.63

Table 3. Proximity of the five selected P–T points to criticality—rich gas condensate.

P–T Points 1 2 3 4 5

Lk 28.59 17.88 12.99 4.55 0.80

Regular flash calculations were conducted using conventional iterative algorithms to
compute the gas phase ratio, β, and the equilibrium phases’ properties at each point along
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the isotherm. Subsequently, random noise of a fixed amplitude was added to the k-values
to replicate the error of an ML model trained to predict those outputs. This choice stems
from the fact that, in this work, an attempt is made to minimize the way an ML model
operates. In this case, the absolute error objective function is minimized by the training
process instead of a relative error metric. In fact, noise was added to the property predicted
by the ML model, which is the logarithm of the k-value. The Rachford–Rice equation
was then rerun using the distorted k-values, and the molar ratio and phase properties
were reestimated. Finally, the obtained deviations, defined by their average errors, were
determined. Tables 4 and 5 demonstrate that as the CL is being approached, there is a
significant increase in the absolute errors of the vapor phase molar fraction, β, the liquid
and vapor phase compositions, x and y, and the liquid and gas phase densities, ρL and ρV ,
even though the same level of noise was added to all the selected points. This underscores
that highly reliable k-value estimations are especially crucial in close proximity to the CL
due to the increased sensitivity of the derived phase properties to k-value errors in that
area. Note that, for this specific application, adding a relative basis noise would cause
an unbalanced effect on the k-values due to their very wide span, which covers several
orders of magnitude. This, in turn, would not allow for the analysis of the side effect on the
properties of interest for the subsequent flow simulations.

Table 4. Absolute errors of direct and dependent properties—lean gas condensate.

P–T Points 1 2 3 4 5

Proximity to CL Low Medium High

Absolute Error

β× 10−4 1.18 4.59 9.95 20.8 83.1
x× 10−3 (mole%) 2.87 4.49 5.79 6.79 8.80
y× 10−4 (mole%) 1.27 2.31 4.01 7.55 24.2
ρL × 10−1 (lb/ft3) 0.35 0.97 16.5 24.7 43.5
ρV × 10−2 (lb/ft3) 0.05 5.51 11.6 19.4 23.6

Table 5. Absolute errors of direct and dependent properties—rich gas condensate.

P–T Points 1 2 3 4 5

Proximity to CL Low Medium High

Absolute Error

β× 10−4 2.11 7.83 13.3 53.9 301
x× 10−3 (mole%) 2.41 3.92 4.60 6.94 10.9
y× 10−4 (mole%) 2.85 4.98 6.91 18.1 57.6
ρL × 10−1 (lb/ft3) 0.20 0.57 0.82 1.77 3.35
ρV × 10−2 (lb/ft3) 0.15 6.24 12.1 28.5 34.1

To further demonstrate the problem, the efficacy of a classic supervised ML model
trained to accurately reproduce the training data associated with the P–T points near the
CL of the rich gas condensate was investigated. Firstly, a total of 100,000 random pressure
points were uniformly selected across the range of 1500 psi (i.e., a typical abandonment
pressure) to 4054.3 psi (i.e., the gas dew point pressure) at the reservoir temperature, and
a dedicated MATLAB code that performs regular flash calculations was run for each of
these pressures at the reservoir temperature using the feed fluid composition, z, to yield
the vapor phase and liquid phase compositions, y and x, respectively. Subsequently, the
corresponding k-values, k, for each pressure point were determined by calculating the ratio
of the vapor phase composition of a given component, i, to its corresponding liquid phase
composition. The data collected form the “source dataset”.

A “base case dataset” was generated by randomly selecting 2000 uniformly drawn
pressure points, along with their associated k-values, k, from the source dataset in order to
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ensure statistical significance with respect to the population. The pressure histogram of the
base case dataset in Figure 6 exhibits uniformly distributed bars with no discernible peaks
or valleys, which confirms its uniformity. On the other hand, the frequency distribution of
the corresponding k-value norms is highly non-uniform, as shown in the same figure, as the
effect of pressure on the k-values of each component of a mixture at a constant temperature
is distinct and depends on the unique properties of each component.
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Figure 6. Pressure and k-value histograms of the base training dataset.

Subsequently, a conventional feedforward artificial neural network (ANN) was trained
against the base case training dataset to predict the logarithms of the k-values, given the
prevailing pressure. Note that these pressure values reflect the dynamic conditions within
the reservoir, and the role of the ANN is to establish a functional relationship between these
pressure inputs and the resulting k-values. Training was repeated 100 times to mitigate the
inherent stochasticity of ANN training, which stems from random weight initialization and
the stochastic nature of the training algorithm. The Rachford–Rice equation (Equation (1))
was solved for β using a combined Newton–Raphson bisection method, given the overall
mole fractions, z, and predicted k-values. Given β, the phase compositions x and y were
obtained using Equations (2) and (3), respectively, and the molecular weights of the two
phases in equilibrium were determined based on their respective compositions. Finally,
the Peng–Robinson cubic equation of state was used to compute the molar volumes, vm,
of each phase, which, when combined with the molecular weights, enable the liquid
and gas densities to be determined. To gain a more comprehensive understanding of
the effectiveness of the classic supervised ML model training approach, the properties of
interest were averaged across the 100 training runs, yielding a single representative value
for each property.

Conventional ANN training aims at utilizing its flexibility to vary the model parame-
ters (weights) to optimally reproduce the training outputs, i.e., the k-values, by minimizing
the loss function, J , described by Equation (7).

J =
1
N ∑

i
∑

j

(
k̂ij − kij

)2
(7)

where k̂ij and kij correspond to the estimated and exact k-value, respectively, of the ith
component of the jth pair. As a result, it focuses on accurately reproducing k-values rather
than the dependent properties of interest in a flow simulation.
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To evaluate the accuracy of the predicted dependent properties in conjunction with
their proximity to criticality, the 2000-datapoint training space was divided into 10 classes
based on the k-value norms, where the first class encompasses the P–T points that lie closest
to the CL, and the last class comprises the points that are farthest from tit. As can be seen
from the k-value norm distribution in Figure 5 and the ANN prediction error statistics in
Table 6, class 1 contains 246 points, whereas class 10 has only 169 points. From Table 6, it
can be further seen that the errors associated with points in close proximity to criticality
are significantly greater than those for points that lie further away, although the former
dominate the training process due to their abundance in the dataset, resulting in the error
function being minimized by the learning step. This is visually confirmed by the decaying
value of the average absolute error of all properties with increasing class number, i.e., while
departing from criticality (Figure 7). These findings confirm the need for a new, focused
approach to training an ANN to solve the thermodynamic phase-split (flash) problem.
Moreover, these findings can be repeated using any alternative machine learning model,
rather than an ANN, to predict k-values given the flash conditions.

Table 6. Absolute average errors in conventional ML model training.

Class Range of Lk Num of Points β× 10−5 x× 10−4 y× 10−5 ρL × 10−3 (lb/ft3) ρV × 10−3 (lb/ft3)

1 0.66 2.89 246 180 7.66 44.2 23.4 15.8

2 2.92 5.14 235 34.5 3.42 15.8 9.14 5.38

3 5.15 7.36 216 18.7 3.03 9.47 7.47 2.99

4 7.39 9.62 202 12.3 2.48 7.67 5.55 2.20

5 9.65 11.87 197 9.15 2.34 5.52 4.89 1.46

6 11.87 14.08 178 7.36 2.29 5.56 4.38 1.29

7 14.12 16.35 168 5.25 1.80 4.34 3.16 0.88

8 16.37 18.58 207 4.54 1.81 3.60 2.99 0.67

9 18.62 20.84 181 4.98 2.25 4.93 3.38 0.79

10 20.85 23.07 169 4.37 2.20 4.71 2.99 0.63
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Figure 7. Average absolute errors in conventional ML model training for each dependent property
and datapoint class.
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3. Methodology

The previous section established the necessity of focusing on the physical properties
of interest, rather than solely on the model output, while training machine learning models.
Therefore, ML model training must be modified to prioritize the primary objective, that
is, to accurately predict a dependent property, g(f(x)), based on an input, x, where f(x)
represents the original ML model output.

To attain a physically sound predictive model, the loss function, J , in Equation (7) can
be modified to incorporate weighting factors for individual training points or groups of
points. These weights assign varying levels of importance to the datapoints based on their
significance in predicting the dependent properties of interest. In the context of this research,
highly important datapoints are those in the vicinity of the mixture’s convergence locus
(CL), where the uncertainty in the indirectly derived properties is maximized. However,
implementing this approach requires significant modifications to the training algorithm,
such as adjusting the loss function, its gradient, and the Hessian matrix, all of which are
indispensable parts of the training algorithm. Instead of introducing individual weights
for each datapoint or groups of points, which can be both complex and significantly alter
the native training formulation, this work proposes implementing a resampling technique
to enhance the flash ML models’ predictions near criticality while simultaneously reducing
the average error and standard deviation for each property (β, x, y, ρL, and ρV).

The proposed resampling technique is designed to improve the performance of an
ML model by balancing the datapoint population within a training dataset derived from a
source dataset that encompasses a substantial volume of datapoints. This is accomplished
by considering the datapoints’ proximity to criticality (Lk) and the prediction errors as-
sociated with a specific property of interest within each class of the training dataset. The
population of datapoints belonging to classes which exhibit poor performance is enhanced
by picking more training samples from the source dataset, corresponding to a stronger
contribution of such points to the training error function. This way, the training algorithm
that minimizes J is forced to pay more attention to those points, thus improving their
prediction over the other classes and recovering the required accuracy of the physical
properties which follow. A hyperparameter, denoted by D, controls the level of adjustment
made to the number of datapoints in each class during the resampling process. A high
value of D results in more intense adjustments, while a lower value results in more sub-
tle changes. D can be considered analogous to the weight given to each class’s average
logarithmic error of the selected dependent property when balancing the training data.
Once the resampling step from the source dataset has been completed, a balanced dataset
emerges, and the machine training is run regularly.

Figure 8 outlines the resampling algorithm used to improve the ML model perfor-
mance against some specific dependent property. Firstly, regular training is performed
using the initially available training population to obtain the training error of each data-
point, ∆i. The algorithm utilizes the average absolute error per class, ei (Equation (8)), for
the derived property of interest, obtained by considering the total number of datapoints in
each class, Ci, of the training dataset, denoted by Ni. Subsequently, the algorithm calculates
the log absolute error per class, εi (Equation (9)), with which the extent (δi) to which these
errors deviate from the corresponding errors of the best-trained class can be determined, as
described in Equation (10). Ideally, all classes would share the same average absolute error,
leading to δi values equal to zero and hence no need to modify the overall balance of the
dataset. For non-zero δi values, the algorithm defined increases the number of samples in
each class, as outlined in Equation (11). Clearly, the bigger the spread between a class error,
εi, and that of the optimally learned one (min

(
ε j
)
), the bigger the increase in the datapoints

in that class, from Ni to Fi. In the final step, the resampling algorithm employs uniform
down sampling to reduce the number of datapoints in the resampled training dataset while
maintaining the new distribution of the resampled training dataset. This process ensures
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that the resampled training dataset is of equal size to the base training dataset, preventing
any bias introduced by the resampling process.

ei =
∑j∈ci

∣∣∆j
∣∣

Ni
(8)

εi = log(ei) (9)

δi = D[εi −min(εi)] (10)

Fi = exp(δi)Ni (11)
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4. Results and Discussion

The proposed resampling technique was applied to the base case training dataset
of the rich gas condensate presented in Section 2. Firstly, the liquid density error was
selected as the balancing metric to resample the datapoint population. This selection was
motivated by the significant liquid dropout that occurs when the pressure of the rich gas
condensate falls below the dew point, which needs to be modelled accurately due to its high
commercial value. In addition, liquid density is included in the expression of isothermal
compressibility, as described in Equation (12), which, in turn, governs fluid flow.

co =
1

ρL

(
∂ρL
∂P

)
T

(12)

To determine the optimal value for hyperparameter D, which controls the level of
adjustment imposed, a sensitivity analysis was performed. This involved varying the
value of D across a wide range and evaluating its impact on predicting the five dependent
properties of interest (β, x, y, ρL, and ρV) using the ML-model-predicted k-values. As
shown in Figure 9, higher values of D significantly adjust the datapoints distribution in
each class during resampling, focusing more on classes with poorer performances (i.e.,
class 1), as reflected by the stronger contribution of such points to the training error function.
As an example, consider the distribution of the balanced dataset’s population across the
10 classes for D values ranging between 0.8 and 2.4, as obtained by considering the liquid
density error (i.e., ei) to control the resampling process. Since the points in each class exhibit
varying degrees of proximity to criticality, their cardinality is differently affected by the
resampling process. Class 1 contains the datapoints which lie closer to criticality conditions;
they exhibit maximum error, and hence their number is severely affected by the correction
factor D. Specifically, this class originally contained 246 points, which increased to 435 and
697 for D = 1 and D = 2, respectively, whereas the number of points in the remaining
classes decreased accordingly.
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Figure 9. Number of datapoints in the balanced dataset across the 10 classes with respect to hyperpa-
rameter D, based on ρL error resampling.

Figure 10 depicts the overall improvement (or decline) in the average error and
standard deviation for the combined dependent properties of interest. The k-values utilized
in this analysis were generated from the ML model trained with the balanced training
dataset of the ρL error resampling algorithm. Subsequently, the standard deviation and
absolute error of each property for various D values were recorded. The sum of the
standard deviations and absolute errors of all five dependent properties at each D was then
calculated to obtain a measure of the improvement in predictions over all the properties of
interest. Comparing those values to the performance of the original, unbiased model led
to the datapoints plotted in Figure 10. The analysis covers a range of D values spanning
from 0.8 to 2.4, presenting a comparative evaluation against the results obtained from the
base ML training. Clearly, the overall improvement (or decline) in the average error and
standard deviation is equal to zero when D = 0, i.e., when no resampling takes place.
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Figure 10. Improvement/decline in the average absolute error and standard deviation versus D
based on ρL error resampling.
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Exaggerated values of D may lead to overfitting in favor of the formerly weak class,
ultimately deteriorating the overall model performance, as reflected by the negative mean
absolute error values. This corresponds to an improvement in the errors for classes near
criticality, while the deterioration in other classes suggests a negative overall trade-off. For
the rich gas condensate base training dataset considered in this work, the optimal value of
D was found to be equal to two. At this value, the average error and standard deviation
per property exhibit substantial improvements, reaching a cumulative improvement of 48%
and 250%, respectively, compared to the base case training scenario.

Figure 11 provides a visual representation of the distribution frequency of k-value
norms within the optimally resampled training dataset (D = 2). As expected, the histogram
of k-values exhibits a right-skewed pattern, confirming that a significant portion of the
datapoints in the dataset correspond to pressures close to the CL of the fluid. Likewise, the
histogram of pressures will display a left-skewed pattern.
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Table 7 illustrates the absolute average errors within each class obtained from training
the ANN using the resampling approach, while Figures 12–16 provide a comparison of the
class errors obtained by conventional and balanced dataset training. Based on these results,
it is safe to say that the proposed methodology leverages more efficiently the learning capac-
ity of the ANN, leading to significant improvements in the errors of the underperforming
classes while reducing, at the same time, the average error and standard deviation for each
property. Eventually, the model prediction error in the dependent properties of interest is
much more uniformly distributed, thus ensuring the similar performance of the ML model
across all flash conditions, only weakly related to their proximity to criticality. Note that
the model trained with the resampled training dataset exhibits slightly worse performance
for classes 5–10 compared to the model trained with the base training dataset. However,
this discrepancy is a strategic trade-off in the approach. Emphasis is put on optimizing
the model’s learning capacity across various flash conditions, particularly in classes closer
to criticality, where inaccuracies in predicted k-values have a more pronounced impact
on the results, i.e., the dependent properties. In other words, it is preferable to “sacrifice”
some of the performance of the fine-performing classes while improving that of the classes
performing really poorly, as is the case with the near-critical points.
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Figure 12. Comparison of absolute average error in β per class using the base training dataset and
the resampled training dataset.
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Figure 13. Comparison of absolute average error in x per class using the base training dataset and
the resampled training dataset.
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Figure 14. Comparison of absolute average error in y per class using the base training dataset and
the resampled training dataset.
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Figure 15. Comparison of absolute average error in ρL per class using the base training dataset and
the resampled training dataset.
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Figure 16. Comparison of absolute average error in ρV per class using the base training dataset and
the resampled training dataset.

Table 7. Absolute average errors in resampling ML model training.

Class Range of Lk Num of Points β× 10−5 x× 10−4 y× 10−5 ρL × 10−3 (lb/ft3) ρV × 10−3 (lb/ft3)

1 0.66 2.89 697 106 4.53 27.2 13.7 9.73

2 2.92 5.14 294 29.6 2.95 13.4 7.82 4.60

3 5.15 7.36 227 21.3 3.00 11.6 7.31 3.67

4 7.39 9.62 164 11.9 2.38 7.57 5.25 2.21

5 9.65 11.87 143 11.1 2.80 7.47 5.79 2

6 11.87 14.08 118 9.78 2.80 7.64 5.36 1.80

7 14.12 16.35 84 6.26 2.37 5.19 4.15 1.07

8 16.37 18.58 98 6.74 2.87 6.34 4.61 1.19

9 18.62 20.84 95 6.17 2.87 6.32 4.31 1

10 20.85 23.07 80 5.71 3.06 6.42 4.15 0.88

By reducing the average error, the ANN improves its ability to make predictions that
are, on average, closer to the exact values. Additionally, by reducing the standard deviation,
the model ensures that the datapoints are less spread out, resulting in more concentrated
and reliable predictions. It is interesting to note that although the resampling process was
carried out against the liquid phase density solely, the performance of all the dependent
properties was positively affected due to their natural correlation.

A second attempt was carried out to resample the dataset, this time based on the error
of the vapor phase molar fraction, β, per class, which determines the saturation of the
coexisting phases in equilibrium. Figure 17 depicts the corresponding improvement or
decline in the sum of the absolute average errors and standard deviations per property
when varying hyperparameter D in the range of 0.8 to 2. The maximum improvement in the
overall average error and standard deviation combined occurs when D equals 1.2, which
is a 19% reduction in the overall average error and a 245% improvement in the standard
deviation. It is important to note that when the error in ρL was the basis for the resampling
algorithm, the overall improvement in the average error and standard deviation was more
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pronounced. This indicates that for each fluid, there is a specific dependent property whose
error should be incorporated into the resampling algorithm to optimize predictions using
an ML model. Nevertheless, the whole process can be easily automated in a computer
program, thus minimizing the use of human resources and the time required to optimize
the ML training step.
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Figure 17. Improvement/decline in the average absolute error and standard deviation versus D
based on β error resampling.

5. Conclusions

In this study, we present a novel ML model training strategy for phase behavior
prediction, with a particular focus on improving the accuracy of calculations near criti-
cality. We demonstrate the effectiveness of the proposed approach on the flash problem
in reservoir fluids, but our findings and insights are broadly applicable to other domains
involving phase separation phenomena, such as chemical engineering, materials science,
and environmental engineering.

The proposed methodology is based on the principle of fine-tuning the distribution
of the training data population by resampling to ensure the ML model’s optimal exploita-
tion across different input ranges. This is achieved by incorporating a physics-driven
understanding of the system into the ML training process. Specifically, this technique
involves fine-tuning the model’s learning capacity without altering its structure, taking
into consideration the impact of relevant input variables on the fluid property of interest.
This technique is directly applicable to a wide range of engineering problems where an ML
model utilizes an input, x, to predict an output, f(x), with the primary focus being on the
accuracy of a dependent property, g(f(x)). Overall, it paves the way for the development
of more precise and robust ML models for phase behavior prediction and other engineering
applications where the property of interest in the design problem is a function of the ML
model’s originally predicted output.
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formal analysis, V.G.; writing—original draft preparation, E.M.K. and A.S.; writing—review and
editing, V.G.; visualization, E.M.K. and A.S.; supervision, V.G. All authors have read and agreed to
the published version of the manuscript.
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Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.
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