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Abstract: With the rapid development in technology in recent years, the use of cameras and the
production of video and image data have similarly increased. Therefore, there is a great need to
develop and improve video surveillance techniques to their maximum extent, particularly in terms of
their speed, performance, and resource utilization. It is challenging to accurately detect anomalies
and increase the performance by minimizing false positives, especially in crowded and dynamic
areas. Therefore, this study proposes a hybrid video anomaly detection model combining multiple
machine learning algorithms with pixel-based video anomaly detection (PBVAD) and frame-based
video anomaly detection (FBVAD) models. In the PBVAD model, the motion influence map (MIM)
algorithm based on spatio–temporal (ST) factors is used, while in the FBVAD model, the k-nearest
neighbors (kNN) and support vector machine (SVM) machine learning algorithms are used in a
hybrid manner. An important result of our study is the high-performance anomaly detection achieved
using the proposed hybrid algorithms on the UCF-Crime data set, which contains 128 h of original
real-world video data and has not been extensively studied before. The AUC performance metrics
obtained using our FBVAD-kNN algorithm in experiments were averaged to 98.0%. Meanwhile, the
success rates obtained using our PBVAD-MIM algorithm in the experiments were averaged to 80.7%.
Our study contributes significantly to the prevention of possible harm by detecting anomalies in
video data in a near real-time manner.

Keywords: machine learning; computer vision; video surveillance; video anomaly detection; UCF-
Crime data set; motion influence map; optical flow; spatio–temporal (ST); k-nearest neighbors (kNN);
support vector machine (SVM)

1. Introduction

As a result of the development and widespread use of technology, the rate of produc-
tion of video and image data has increased rapidly, and the areas of use for cameras, videos,
and images are becoming more diverse and widespread every day. The need for image
processing in many different fields, such as safety, security, military, intelligence, medicine,
road traffic management, urban and public administration, digital agriculture, industrial
production, quality control, media, and so on, is constantly growing. Meanwhile, in the
near future, with the widespread use of devices that produce and process images instantly
(e.g., autonomous land, air, and sea vehicles), the criticality of image processing systems
and the need for real-time image and video processing are expected to increase to high
levels. Therefore, it is of great importance to develop image-processing techniques and
optimize them to the maximum extent, particularly in terms of their speed, performance,
and resource utilization [1].
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Nevertheless, manual methods based on the human eye are still actively used in
many areas of video and image processing and analysis. It is widely known that manual
video and image analysis with the human eye takes too long, increases the probability of
missing critical images, and entails high workforce and financial costs. On the other hand,
considering the rapidly increasing number and duration of videos, it is understood that
relying on manual analysis methods using the human eye will become more and more
difficult, and will ultimately be unable to meet the associated demands [2].

The main objective of this study is video anomaly detection. It is not always possible
to watch video recordings from beginning to end when seeking to detect unusual (i.e.,
anomalous) situations, especially when considering long-duration videos. Therefore, it
is of great importance to classify video frames by analyzing them with machine learning
techniques. After the analysis and classification of video frames, the aim is to automatically
detect anomalous frames in a near real-time manner [3], allowing the operator (or another
concerned party) to take action by focusing on these images. In this way, the possibility of
overlooking unusual situations can be minimized, anomalous situations will be detected in
near real time, and their possible harmful effects may be prevented. As such, significant
contributions can be made to human health and public safety. At the same time, this
study aims to provide many indirect contributions, such as those related to environmental
protection and the efficient use of time, facilities, and resources.

Our study proposes a hybrid video anomaly detection model combining multiple
machine learning algorithms with pixel-based video anomaly detection (PBVAD) and
frame-based video anomaly detection (FBVAD) models. In the PBVAD model, the motion
influence map (MIM) algorithm based on spatial–temporal (ST) elements [4] is used, while
in the FBVAD model, the k-nearest neighbors (kNN) and support vector machine (SVM)
machine learning algorithms are used in a hybrid manner. First, video frames are analyzed
with machine learning techniques. Then, focusing on the obtained data, the anomalous
images are detected again with machine learning techniques. After this, the classification
of the detected anomalies is performed.

UCSD Ped1 [5] and UCSD Ped2 [6] are the most commonly used data sets in relevant
studies, and the anomaly detection success rates yielded in recent studies based on these
data sets have reached 97% and above (UCSD Ped1 [7], UCSD Ped2 [8]). Meanwhile, the
average success rates using other data sets are lower. In particular, it has been observed
that the success rates in studies conducted on the UCF-Crime data set were lower than
those conducted on other data sets [9,10]. Therefore, in our study, we focus in particular on
the UCF-Crime data set.

In the implementation and testing phases of our work, we focused on video anomaly
detection in relation to important incidents that are closely related to societal and pub-
lic safety, such as abuse, assault, burglary, fighting, explosions, and road accidents, as
contained in the UCF-Crime data set.

For our study, a comprehensive literature review was first conducted. Within the scope
of the literature review, the data sets, feature extraction techniques, developed models,
algorithms, development environments, analysis results, and success rates reported in
previous studies are examined in detail. Then, the used methodology and technical methods
are presented. The subsequent part of the study describes the developed application and
our test procedures, while the final section provides an evaluation of the findings and test
results obtained in our study.

In this study, the methodologies, algorithms, models, and anomaly detection tech-
niques used in various video anomaly detection studies are analyzed, and their perfor-
mances are evaluated comparatively.

2. Literature Review

We conducted a literature review focused on the most recent studies published after
2018, in relation to our research area.
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One of our primary findings is that image analysis studies have been carried out in
various areas of interest on a subject-by-subject basis but have not been conducted to offer
references for many general fields [11–13]. Some studies have emphasized the need for
real-time image processing [14]. However, the number of studies comparing multiple
machine learning techniques is limited [14].

During the literature review process, it was observed that studies on video anomaly
detection—which is our area of interest—have increased in number, especially in recent
years [15].

2.1. Using Methods and Algorithm Types

When the video anomaly detection studies were examined methodologically, we ob-
served that different methodologies were used in each, including spatio–temporal I3D
AE, temporal segment C3D, convolutional LSTM, deep learning (CNN/RNN), U-Net, two
U-Net blocks, LSTM network, bidirectional LSTM prediction (BD-LSTM), dual discrim-
inator GAN, and multi-timescale [15] methods. For example, Gianchandani et al. have
used the spatio–temporal I3D AE anomaly detection method [16], Sultani et al. have used
the temporal segment C3D anomaly detection method [9], Ullah et al. have used the
bidirectional LSTM anomaly detection method [17], and Wu et al. have used deep learning
(CNN/RNN) algorithm-based anomaly detection methods [18].

By examining the techniques used in the literature, it can be observed that anomaly
detection techniques such as sparse coding [6,19,20], weakly supervised learning [21,22],
spatio–temporal [4,23], normality learning-based [24–27], Gaussian mixture [28–30], graph-
based [31,32], autoencoder technique [33–35], unsupervised anomaly detection [36,37],
self-supervised learning [38–41] and probabilistic [42,43] models have been used.

In addition to the algorithms and learning methods used, it has been observed that
whether or not a feature extraction technique is used for frame- or pixel-based analysis may
also affect the success of anomaly detection [10].

Georgescu et al. [39] have studied anomaly detection in videos through self-supervised
and multi-task learning using the 3D CNN and YOLOv3 algorithms with the MS COCO
and ResNet-50 methodology. In particular, they approached anomalous event detection in
videos through self-supervised and multi-task learning at the object level. They first utilized
a pretrained detector to detect objects, then trained a 3D convolutional neural network to
produce discriminative anomaly-specific information by jointly learning multiple proxy
tasks: three self-supervised and one based on knowledge distillation. In their experimen-
tal results, they stated that their lightweight architecture outperformed state-of-the-art
methods when applied to three benchmark data sets: Avenue, ShanghaiTech, and UCSD
Ped2 [39].

Hao et al. [44] have studied effective crowd anomaly detection through spatio–temporal
texture analyses using Gabor-filtered textures and SVM algorithms and described two ma-
jor breakthroughs. First, their developed spatio–temporal texture extraction algorithm
was able to effectively extract textures from videos with an abundance of crowd motion
details, which was achieved by adopting Gabor-filtered textures with the highest infor-
mation entropy values. Second, they devised a novel scheme for defining crowd motion
patterns (signatures), in order to identify abnormal behaviors in the crowd, by employing
an enhanced gray level co-occurrence matrix model. In their experiments, various classic
classifiers were utilized to benchmark the performance of the proposed method [44].

Lee V.T. et al. [45] have studied attention-based residual auto-encoders for video
anomaly detection using deep (3D) CNN and ConvLSTM algorithms. They proposed a
system that adopts a spatial branch and temporal branch in a unified network, allowing
for the effective exploitation of both spatial and temporal information. Their experimental
results revealed AUC performance rates of 97.4% for UCSD Ped2, 86.7% for CUHK Avenue,
and 73.6% for ShanghaiTech [45].

In some studies, anomaly detection in crowded scenes has been undertaken using con-
volutional neural network (CNN)-based algorithms. For example, Ravanbakhsh et al. [46]
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have published the study “plug-and-play CNN for crowd motion analysis: an application
in abnormal event detection,” in which they sought to measure local abnormalities by com-
bining the semantic information inherited from existing CNN models with low-level optical
flow [46]. Sabokrou et al. [47] have studied deep and fast anomaly detection in crowded
scenes using fully convolutional neural networks (FCNs) and temporal data; here, a pre-
trained supervised FCN was transferred to an unsupervised FCN, ensuring the detection of
(global) anomalies in scenes [47]. As another example, Smeureanu et al. [48] have studied
the application of real-time deep learning methods for abandoned luggage detection video
recognition, based on a cascade of convolutional neural networks (CNNs) [48].

2.2. Using Data set Types

In the video analysis and anomaly detection studies outlined in the literature, we
found that the UCSD Ped1 [5], UCSD Ped2 [49], subway entrance–exit [43], UMN [50],
Avenue [51], UCF-Crime [9], ShanghaiTech [52], and XD-Violence [53] data sets were
commonly used.

Sultani et al. [9] have studied human behavior and the automatic detection of abnormal
events by creating a 128 h data set (UCF-Crime) containing original video recordings of the
real world [9]. They sought to identify anomalies using a deep multiple-instance ranking
framework by leveraging weakly labeled training videos, where the training labels (i.e.,
anomalous or normal) were set at the video level, instead of the clip level. In their approach,
they considered normal and anomalous videos as bags and video segments as instances
in multiple-instance learning (MIL), facilitating the automatic learning of a deep anomaly
ranking model that predicted high anomaly scores for anomalous video segments [9].

Xia et al. [54] have studied video abnormal event detection using SVM, deep neural
network (DNN), CNN, generative adversarial network (GAN), and one-class neural net-
work (ONN) algorithms. In their experimental results, they achieved AUC rates of 94.9%
on the PED1 data set and 94.5% on the PED2 data set [54].

In some studies, method- and data set-based performance comparisons in relation to
anomaly event detection have been addressed, and the success rates of the methods used
typically differ depending on the data set [53,55].

2.3. Sample Video Anomaly Detection Techniques and Application Types

Anomaly detection in video frames can be used in many different sectors. For example,
studies on anomaly detection in crowded areas have recently been carried out [56].

Some of the studies focused on event-based anomaly detection are also examined here,
and by evaluating their result graphs, it was observed that these studies detected issues
such as fighting, abuse, and shootings with a higher success rate, especially in the context
of social events, while their success rates were lower in relation to detecting events such as
explosions and road accidents [10]. It remains to be investigated whether the inclusion of
human behavior-based learning data in the data sets used is also effective.

Liu et al. [3] have developed an expert real-time system for anomaly detection in
aerators based on computer vision technology and existing surveillance cameras. They
proposed a novel algorithm called the “Reference Frame Kanade–Lucas–Tomasi (RF-KLT)”
algorithm for motion feature extraction in fixed regions. The proposed expert system
performed real-time, robust, and cost-free anomaly detection in aerators using both the
actual video data set and an augmented video data set [3].

In some studies, spatio–temporal-based algorithms have been used as a reference.
Bertini et al. [57] have proposed an approach for anomaly detection and localization in
video surveillance applications based on spatio–temporal features, through capturing a
scene’s dynamic statistics together with its appearance [57]. In another example, Jiang
et al. [58] have studied anomalous video event detection using the spatio–temporal con-
text, and proposed a context-aware method to detect anomalies in which three different
spatio–temporal context levels are considered. In their experiments on real traffic videos,
they identified video anomalies that are hazardous or illegal according to relevant traffic
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regulations [58]. As another example, Li N. et al. [59] have conducted spatio–temporal
context analyses within videos for anomalous event detection and localization. Their
approach employs an unsupervised statistical learning framework based on the analysis
of spatio–temporal video volume configurations within video cubes, which learns global
activity patterns and local salient behavior patterns through clustering and sparse coding,
respectively [59]. In the last example, Li W. et al. [30] have proposed a method for the
detection and localization of anomalous behaviors in crowded scenes and developed a joint
detector of temporal and spatial anomalies [5].

Wang et al. [60] have studied real-time and accurate object detection using an approach
that compresses videos through long short-term feature aggregation. They proposed a
novel short-term feature aggregation method to propagate the rich information present
in key frame features to non-key frame features in a rapid manner. Their experiments
on a large-scale ImageNet VID benchmark achieved a 77.2% mAP (which is on par with
state-of-the-art accuracy) at a speed of 30 FPS using a Titan X GPU [60].

In some studies, GAN algorithms have been used as a reference. As an example, Jiang
et al. [61] have proposed a background-agnostic framework that learns from training videos
containing only normal events. Their framework is composed of an object detector, a set
of appearance and motion auto-encoders, and a set of classifiers [61]. In another example,
Ravanbakhsh et al. [62] have used generative adversarial networks (GANs), which were
trained using normal frames and the corresponding optical flow images, in order to develop
an internal representation of a scene’s normality [62].

Zaheer et al. [63] have studied clustering-assisted weakly supervised learning with
normalcy suppression for anomalous event detection using the UCF-Crime and Shang-
haiTech data sets. They proposed a weakly supervised anomaly detection method that
offers three-stage contributions. In their experimental results, they achieved an 83.03% and
89.67% frame-level AUC on the UCF-Crime and ShanghaiTech data sets, respectively [63].

In other studies, research has been conducted on improving video anomaly detection
algorithms. Sikdar et al. [64] have developed an adaptive training-less framework for
anomaly detection in crowd scenes. Their proposed solution comprises a pipeline consisting
of three major components: namely, an adaptive 3D-DCT model for multiobject detection-
based association, local motion descriptor generation through an improved-saliency guided
optical flow, and anomaly detection based on the Earth mover’s distance (EMD) [64]. Tudor
I. et al. [65], in an attempt to unmask the abnormal events in videos, have proposed a novel
framework for abnormal event detection in videos that requires no training sequences [65].
Xu D. et al. [66] have attempted to detect anomalous events in videos by learning deep
representations of appearance and motion, and proposed Appearance and Motion DeepNet
(AMDN), a novel approach based on deep neural networks that is intended to automatically
learn feature representations. In addition, based on the learned features, multiple one-class
SVM models were used to predict the anomaly scores of each input. Finally, a novel
late fusion strategy was proposed to combine the computed scores and detect abnormal
events [66].

Sarikan et al. [67] have studied the detection of anomalies in vehicle traffic using image
processing and machine learning algorithms. In another study, performance comparisons
of anomaly event detection at the energy consumption level have been discussed, and the
results were evaluated [68].

Kiranyaz et al. [69] have studied real-time phonocardiogram (PCG) anomaly detection.
They deliberately focused on the anomaly detection problem, assuming a reasonably high
signal-to-noise ratio (SNR) in the records. By using 1D convolutional neural networks
trained with a novel data purification approach, they aimed to achieve the highest detection
performance and real-time processing ability with a significantly lower delay and computa-
tional complexity. In their experimental findings, they stated that further improvements
will require a personalized (i.e., patient-specific) approach to avoid the major drawbacks of
a global phonocardiogram (PCG) classification approach [69].
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A recent study has used quantum technologies and hybrid machine learning algo-
rithms to analyze video frames in the healthcare domain [70]. In comparing the use of
the hybrid quantum CNN (HQCNN) algorithm with the classical CNN machine learning
algorithm, it was found that the HQCNN technique performed better in analyzing and
diagnosing medical images [70].

Other than these, different methods have been used for human activity recogni-
tion [71,72], video object detection [73–75], video motion anomaly detection [76–79], online
anomaly detection [80,81], video anomaly detection by injecting temporal information in
feature extraction [82], anomaly detection method with deep support vector data descrip-
tion (DSVDD) using deep learning algorithm [83], video anomaly detection method with
a main-auxiliary aggregation strategy (MAAS) [84], and the analysis of anomalies with
feature embeddings of pre-trained CNNs with the use of novel cross-domain generalization
measures [85] in various studies.

3. Methodology

In this section, the architecture, algorithms, and methodologies used for the develop-
ment of our proposed model are discussed.

3.1. Modeling and Algorithm Selection

Anomaly detection in crowded areas is a very challenging task. In particular, mini-
mizing false positives and achieving a high detection performance is challenging. For this
reason, we propose a hybrid anomaly detection model by combining multiple algorithms
and techniques.

Regarding the choice of algorithm in the proposed model, both supervised and unsu-
pervised learning algorithms are selected, thus enabling a hybrid approach. In anomaly
detection studies in particular, the success rates of unsupervised learning algorithms are
very high when applied for the detection of unusual situations and events that have not
been previously defined. However, when seeking to prevent or minimize false positives,
supervised learning algorithms provide significant advantages. The support vector ma-
chine (SVM) and k-nearest neighbors (kNN) algorithms were found to be preferred as
supervised learning algorithms in the reference literature. In addition, the motion influence
map (MIM) algorithm, which is successful in detecting human behavior and is based on
spatio–temporal (ST) features, is also used effectively in our study [86].

The most important phase of video analysis and anomaly detection is the feature
extraction process, which is also the longest part of the whole process. After the feature
extraction, video frames are sent through both the supervised and unsupervised algorithm
processes separately and are analyzed simultaneously. After this analysis, anomaly detec-
tion is performed, and a scoring (rating) and labeling process is performed on the detected
anomalies. Video frames that are detected as common anomalies in both processes are
labeled as high-grade anomalies.

An architectural diagram of our model is shown in Figure 1. The structure and
components of our proposed model are described in the subsequent sections.

3.2. Model Architecture Diagram

The architecture of the proposed model basically consists of three layers. The layers of
this architecture are as follows (see Figure 1 for an architectural diagram of the model):

(a) Input layer;
(b) Video surveillance and anomaly detection process layer;
(c) Output layer.

We briefly summarize the layers and components of the architectural diagram in the
following subsections:
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Figure 1. Architectural diagram of proposed anomaly detection model using hybrid machine
learning algorithms.

3.2.1. Input Layer

This layer contains the components to be entered into the analysis process and consists
of “Trained Model Data” and “Test Video Data” components. Operations are initiated in
this layer.

3.2.2. Video Surveillance and Anomaly Detection Process Layer

This layer is where the main components of the analysis process are located, in which
anomaly detection is performed. It consists of two main components:

- Anomaly detection with frame-based (kNN, SVM) algorithms;
- Anomaly detection with pixel-based (motion influence map; MIM) algorithms.

3.2.3. Output Layer

This is the layer in which the anomalous data and images detected as a result of the
analysis process are displayed. This layer is interactive and comprises anomaly visualiza-
tion and anomaly reporting and alert components.

3.3. Frame-Based Video Anomaly Detection (FBVAD) Method

For frame-based anomaly detection based on video frames, machine learning algo-
rithms including k-nearest neighbors (kNN) and support vector machine (SVM) are used.
These algorithms are briefly described in the following subsections:

3.3.1. Frame-Based Feature Extraction

Feature extraction is one of the most important aspects of video analysis and anomaly
detection, directly affecting the accuracy of the result. The feature extraction process, as
shown in Figure 2, consists of the following steps:

(i) Obtaining Frames
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Figure 2. Frame-based video feature extraction phases.

In the feature extraction process, when the test video data are loaded, they are first
checked for validity, and it is ascertained whether the frames can be opened. If the frames
cannot be opened, the process is terminated with a warning message. If the frames can
be opened, the content extraction process steps are commenced and progress one by one
for each frame in a loop, passing from the first to last frame of the video data. New and
existing frames are compared.

(ii) Creating Key Frames/Vectors

In this phase of the feature extraction process, key vectors in the frame image are
detected, and the descriptors in the key vector position image are calculated.

(iii) Matching Vectors

In this phase of the feature extraction process, matches are made between the vectors
in the frame image and the key vectors.

(iv) Detecting Features

In this phase of the feature extraction process, the features in the frame are detected.

(v) Feature Matching Matrix

In this phase of the feature extraction process, the detected features and vectors are
located by matching them in relation to the key frames/vectors. The kNN algorithm is used
in this process, for which the value of k is set to 2. Additionally, the uniqueness threshold is
set to 0.80.

(vi) Optical Flow

In this phase of feature extraction, the optical flow is calculated for a sparse feature set
using the iterative Lucas–Kanade method. The “minEigThreshold” value is set to 0.0001 in
the procedure.
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(vii) Feature Description

In this phase of the feature extraction process, all the results are returned as part of
array sets of processed data to the main processing point, from which the process began.

3.3.2. Video Anomaly Detection with k-Nearest Neighbors (kNN) Algorithm

The k-nearest neighbors (kNN) model is used to classify, train, and save the data. The
training process takes the training and test data and their labels as parameters. The value
of the k value is set to 5 for training. Anomaly detection, classification, and scoring are
performed using frame-based feature extraction values.

The Algorithm 1 k-nearest neighbors (kNN) is defined below.

Algorithm 1 k-Nearest Neighbors (kNN)

1. k∗ =
⌊

Bn 4
d+4

⌋
2. w∗

ni =
1
k∗

[
1 + 1

2 − d
2k∗

2/d

{
i1+2/d − (i − 1)1+2/d

}]
3. f or i = 1, 2, . . . k* and
4. w∗

ni = 0
5. f or i = k* + 1, ..., n

3.3.3. Video Anomaly Detection with Support Vector Machine (SVM) Algorithm

The data are classified using the support vector machine (SVM) classifier, and the
model is saved. The training process takes the training and test data and their labels as
parameters. Anomaly detection, classification, and scoring are performed using frame-
based feature extraction values.

3.4. Pixel-Based Video Anomaly Detection (PBVAD) Method

The motion influence map (MIM) algorithm is used for pixel-based anomaly detection
in video frames. The general architectural framework of the motion influence map (MIM)
algorithm is described below.

3.4.1. Motion Influence Map (MIM) Algorithm

The motion influence map (MIM) algorithm basically consists of four steps, which are
listed below:

(i) Optical flow;
(ii) Calculation of the effect of movement between blocks;
(iii) Calculation of impact weights between both blocks;
(iv) Calculation of motion ray (direction) weights for each block.

A diagram of pixel-based feature extraction using the motion influence map (MIM)
algorithm is shown in Figure 3 below [86].
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The Algorithm 2 motion influence map (MIM) is defined below.

Algorithm 2 Motion Influence Map (MIM)

INPUT : MV � motion vector set, BS � block size x y, CB � a centri o f blocks
OUTPUT : MIP � motion in f luence map

for i ∈ BS(x) do
for j ∈ BS(y) do

bi =
1
j ∑j OFj

i
Td =∥ bi ∥ ×BS
OFk =∥ MVij1 ∥
+TAFi = ∠OFk +

π
2

−TAFi = ∠OFk − π
2

for p ∈ BS(x) do
for q ∈ BS(y) do

Calculate the Euclidean Distance ED(i, j, p, q) between CB(i, j, p, q)
if E(i, j, p, q) < Td then

Calculate the Angle Aij between bi and bj
if +TAFi < Aij < −TAFi then

MIPpq (∠ bi) = MIPpq (∠ bi + exp
(

ED(i,j,p,q)

∥MVij0∥

)
)

end if
end if

end for//(q)
end for//(p)

end for//(j)
end for//(i)

3.4.2. Pixel-Based Video Anomaly Detection with Motion Influence Map (MIM) Algorithm

The motion influence map (MIM) algorithm is used for pixel-based anomaly detection
in video frames. The general architectural framework of the motion influence map (MIM)
algorithm is depicted in Figure 4 below.
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Motion information is computed at the pixel and cluster levels by inputting a sequence
of video frames. The kinetic energy of each block is then calculated to structure the
motion influence map. After creating a motion influence map of the frame (scene), we can
identify the set containing an event suspected of having a characteristic motion vector. This
event is tracked through several consecutive scenes, such that we can extract the feature
bundle for each adjacent block through a megablock containing a certain number of scenes.
Thus, each frame will be divided into a group of megablocks, each containing the motion
influence information. Finally, by summing up the vectors of motion influence in each
frame separately, we extract the temporal and spatial properties of several megablocks.
In order to not classify normal events as suspicious, anomalous events are separated. To
identify the centers of normal events in the image frames, the k-means algorithm is first
applied. Then, the Euclidean distance law is applied to the monitored image frame and the
centers of other image frames to detect the anomalous event. If the event exceeds a certain
threshold, it is recognized as an anomalous event scene.

4. Experiments and Results

This section discusses the implementation and test results in detail. In addition, the
data sets used for the implementation of the proposed application, evaluation criteria, test
results, and detected anomalies are assessed.

4.1. General Information on Implementation and Test Environment

The test application was developed in Windows Visual Studio using the C# program-
ming language. A C#-compatible version of the OpenCV library was used for the video
analysis and computer vision processing. In addition, the Python programming language
was used for some of the development and testing steps. For the test environment, we used
a computer with Windows 10 64-bit operating system, i7 and 4 dual-core CPUs, an 8-core
2.8 GHz Intel processor, and 32 GB RAM.

4.2. Data Set Selection and Implementation

Most recent studies on common data sets, such as UCSD Ped1 [87] and UCSD Ped2 [8],
have yielded success rates of 97.1% and above. However, as the success rates reported in
studies utilizing the UCF-Crime [9] data set are generally lower than those for other data
sets [10], the UCF-Crime data set was preferentially used in our research and testing process.

The UCF-Crime data set is a large-scale anomaly detection data set containing 1900 un-
processed videos captured by road, street, and indoor surveillance cameras in the real
world, with a total duration of 128 h [9]. Unlike the static backgrounds in the ShanghaiTech
data set, UCF-Crime features complex and diverse backgrounds. The training and test sets
contain the same numbers of normal and abnormal videos. The data set covers 13 different
anomaly classes through 1610 training videos with video-level labels and 290 test videos
with frame-level labels.

In the implementation process, the algorithms to be used were first determined. Neces-
sary installations and configurations were developed for the algorithms in the development
environment. The data sets were then made available in the test environment, and experi-
mental studies were carried out.

The reference data for the UCF-Crime data set used in our test study are presented (by
category) in Table 1 below.

Table 1. Reference information for UCF-Crime data set used in our study.

Data Set File Frame Video Length

Abuse Abuse002_x264.mp4 865 00:28 s
Assault Assault002_x264.mp4 2523 01:24 s
Burglary Burglary012_x264.mp4 1698 00:56 s
Explosion Explosion045_x264.mp4 757 00:25 s
Fighting Fighting006_x264.mp4 944 00:31 s
Road accidents Road Accidents002_x264.mp4 347 00:11 s
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4.3. Test Results and Anomaly Detection Evaluation

As mentioned above, the UCF-Crime data set was taken as a reference in our study,
and anomaly detection tests were carried out on subdata sets concerning the categories
of abuse, assault, burglary, explosion, fighting, and road accidents. In our study, image
clarity was the main issue directly affecting the anomaly detection success rates of the
algorithms, and the anomaly detection performance was quite low when using camera
data with unclear, low quality images. On the other hand, the distance and proximity of
the camera to the crime scene were found to be the main factors that directly affected the
performance of the anomaly detection algorithms.

The performance results on the UCF-Crime data set, regarding pixel-based video
anomaly detection (PBVAD) using the MIM algorithm and frame-based video anomaly
detection (FBVAD) using the kNN and SVM algorithms, are shown in Table 2 and Figure 5
below. In the table and graph, the AUC results for each algorithm are shown separately,
based on the considered categories.

Table 2. Video anomaly detection AUC rate results for the tested algorithms.

Data Set FBVAD-kNN
AUC (%)

FBVAD-SVM
AUC (%)

PBVAD-MIM
AUC (%)

Abuse 98.80 77.60 74.20
Assault 97.90 75.13 86.60

Burglary 96.60 75.11 75.80
Explosion 99.30 78.70 73.10
Fighting 96.80 77.20 78.80

Road accidents 98.30 80.10 95.80
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The AUC performance and score results on the UCF-Crime data set for pixel-based
video anomaly detection (PBVAD) using the MIM algorithm and frame-based video
anomaly detection (FBVAD) using the kNN and SVM algorithms are shown in Tables 3–5 be-
low, which list the AUC, precision, sensitivity, and F-Score values for each of the categories
in the UCF-Crime data set.

Table 3. Video anomaly detection AUC rate and results for FBVAD-kNN algorithm.

Data Set AUC Precision Sensitivity F-Score

Abuse 98.80 0.998 0.9762 0.974
Assault 97.90 0.996 0.9569 0.955

Burglary 96.60 0.993 0.9325 0.928
Explosion 99.30 0.999 0.9875 0.984
Fighting 96.80 0.994 0.9372 0.925

Road accidents 98.30 0.998 0.9565 0.955

The AUC performance and score results for FBVAD using the SVM algorithm, based
on the UCF-Crime data set, are shown in Table 4 below.

Table 4. Video anomaly detection AUC rate and results for FBVAD-SVM algorithm.

Data Set AUC Precision Sensitivity F Score

Abuse 77.60 0.998 0.7757 0.874
Assault 75.13 0.992 0.7515 0.857

Burglary 75.11 0.992 0.7520 0.858
Explosion 78.70 0.995 0.7873 0.881
Fighting 77.20 0.994 0.7722 0.871

Road accidents 80.10 0.996 0.8012 0.890

The AUC performance and score results for PBVAD using the MIM algorithm, based
on the UCF-Crime data set, are shown in Table 5 below.

Table 5. Video anomaly detection AUC rate and results for PBVAD-MIM algorithm.

Data Set AUC Precision Sensitivity F Score

Abuse 74.20 0.484 0.7419 0.652
Assault 86.60 0.731 0.8657 0.845

Burglary 75.80 0.516 0.7581 0.681
Explosion 73.10 0.462 0.7308 0.632
Fighting 78.80 0.576 0.7879 0.731

Road accidents 95.80 0.917 0.9583 0.957

The confusion matrix reference and prediction values for pixel-based video anomaly
detection (PBVAD) using the MIM algorithm and frame-based video anomaly detection
(FBVAD) using the kNN and SVM algorithms, based on the UCF-Crime data set, are shown
in Tables 6–8 below. The tables report the number of samples, actual positives, actual
negatives, true positives, true negatives, and false negatives for each of the categories in
the UCF-Crime data set.

Table 6. Video anomaly detection confusion matrix reference for FBVAD-kNN algorithm.

Data Set Samples Actual
Positives

Actual
Negatives

True
Positives

True
Negatives

False
Negatives

Abuse 865 194 671 184 671 10
Assault 2523 627 1896 573 1896 54

Burglary 1698 422 1276 365 1276 57
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Table 6. Cont.

Data Set Samples Actual
Positives

Actual
Negatives

True
Positives

True
Negatives

False
Negatives

Explosion 757 161 596 156 596 5
Fighting 944 215 729 185 729 30

Road accidents 347 69 278 63 278 6

The confusion matrix reference and prediction values for FBVAD using the SVM
algorithm, based on the UCF-Crime data set, are shown in Table 7 below.

Table 7. Video anomaly detection confusion matrix reference for FBVAD-SVM algorithm.

Data Set Samples Actual
Positives

Actual
Negatives

True
Positives

False
Negatives

Abuse 865 865 0 671 194

Assault 2523 2523 0 1896 627

Burglary 1698 1698 0 1276 422

Explosion 757 757 0 596 161

Fighting 944 944 0 729 215

Road accidents 347 347 0 278 69

The confusion matrix reference and prediction values for PBVAD using the MIM
algorithm, based on the UCF-Crime data set, are shown in Table 8 below.

Table 8. Video anomaly detection confusion matrix reference for PBVAD-MIM algorithm.

Data Set Samples Actual
Positives

Actual
Negatives

True
Positives

True
Negatives

False
Negatives

Abuse 865 31 834 15 834 16

Assault 2523 67 2456 49 2456 18

Burglary 1698 31 1667 16 1667 15

Explosion 757 26 731 12 731 14

Fighting 944 33 911 19 911 14

Road accidents 347 12 335 11 335 1

The feature extraction and anomaly detection durations recorded in our tests for each
algorithm are shown in Table 9.

Table 9. Feature extraction and anomaly detection durations for tested algorithms.

Data Set Frame
Count

Video
Length
(min:s)

FBVAD
-kNN

(min:s)

FBVAD
-SVM
(min:s)

PBVAD
-MIM
(min:s)

Abuse 865 00:28 00:40 00:40 00:40

Assault 2523 01:24 02:12 02:12 02:12

Burglary 1698 00:56 01:05 01:05 00:43

Explosion 757 00:25 00:36 00:36 00:29

Fighting 944 00:31 00:44 00:44 00:43

Road accidents 347 00:11 00:13 00:13 00:17
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Examples of normal and anomalous video frames based on the UCF-Crime data set
derived from our tests are shown in Table 10 below.

Table 10. Anomalous and normal examples from video frames used in the test study.

Data Set Normality Frame Anomaly Frame-I Anomaly Frame-II

Sample-1:
Burglary018

Normality
Frame No.: 16–130

Anomaly/Burglary
Frame No.: 232

Anomaly/Burglary
Frame No.: 510
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The AUC–ROC graphs obtained from our tests on the abuse, assault, burglary, ex-
plosion, fighting, and road accident subdata sets of the UCF-Crime data set are shown in
Figure 6 below.
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4.4. Comparison of the Results

The video anomaly detection performance based on the UCF-Crime data set used
in our study was also compared with that in other studies, and the results are shown in
Table 11 and Figure 7. Compared to two of the previous studies [9,10], our study achieved
better results in all categories.

Table 11. Comparative accuracy rates for video anomaly detection on UCF-Crime data set.

Data Set Sultani [9] Tian [10] PBVAD-
MIM (Ours)

FBVAD-
kNN (Ours)

Abuse 70.3 55.9 74.2 98.80

Assault 54.6 70.7 86.6 97.90

Burglary 70.1 59.5 75.8 96.60

Explosion 48.7 45.2 73.1 99.30

Fighting 70.3 70 78.8 96.80

Road accidents 59.8 55.9 95.8 98.30
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4.5. Discussion

In this study, when using frame-based algorithms, the anomaly detection rates for the
different categories were similar; however, when using the pixel-based algorithm, large
differences were observed between the categories. In pixel-based anomaly detection, the
performance rates were better when using video frames with large differences between
the pixels (e.g., those in the assault, fighting, and road accident categories) than in video
frames with small differences between the pixels (e.g., those in the abuse, burglary, and
explosion categories). Through a careful examination of the result tables (Tables 2 and 11)
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and graphs (Figures 5 and 7), the category-based differences in the performance rates and
the similarities between frame- and pixel-based algorithms can be more clearly understood.

The video anomaly detection performance based on the UCF-Crime data set used in
our study was also compared with that of the previous studies [9,10]; our study achieved
better results in all categories as shown in Table 11 and Figure 7. In particular, our frame-
based video anomaly detection (FBVAD) results derived using the kNN algorithm were
much better than the results derived using the PBVAD-MIM algorithm, as well as the
results of the other studies [9,10].

On the other hand, the accuracy of our results for pixel-based video anomaly detection
(PBVAD), derived using the MIM algorithm and applied to the road accident, assault and
explosion categories, was higher than that in the other mentioned studies. Furthermore,
although the accuracy of our results for PBVAD using the MIM algorithm were better
than those of other studies for the assault, burglary, explosion, and fighting categories, the
results were similar.

5. Conclusions

For this study, the data sets, feature extraction techniques, developed models, al-
gorithms, development environments, analysis results, and accuracy rates reported in
studies on similar topics were examined in detail. Subsequently, we proposed a hybrid
video anomaly detection model combining multiple machine learning algorithms with
pixel-based video anomaly detection (PBVAD) and frame-based video anomaly detection
(FBVAD) models. For the PBVAD model, the motion influence map (MIM) algorithm based
on spatio–temporal (ST) features was used, while in the FBVAD model, the k-nearest neigh-
bors (kNN) and support vector machine (SVM) machine learning algorithms were used in
a hybrid manner. On the considered UCF-Crime data set, the AUC scores derived using
our FBVAD-kNN algorithm were as follows: abuse, 98.8%; assault, 97.9%; burglary, 96.6%;
explosion, 99.3%; fighting, 96.8%; and road accidents, 98.3%. Furthermore, the success
rates when using our PBVAD-MIM algorithm were as follows: abuse, 74.2%; assault, 86.6%;
burglary, 75.8%; explosion, 73.1%; fighting, 78.8%; and road accidents, 95.8%.

It was observed that the success rates reported in previous studies based on the UCF-
Crime data set using the multiple instance learning (MIL) and robust temporal feature
magnitude learning (RTFM) techniques were lower than those in our study. However, our
frame-based video anomaly detection (FBVAD) results derived using the kNN algorithm
were much better than the results derived using the PBVAD-MIM algorithm.

Based on the results of our study, it was observed that anomalous video frames of
events such as abuse, assault, burglary, fighting, explosions, and road accidents can be
automatically detected in near real time. Thus, the use of the proposed model can make it
easier for security guards, operators, or other concerned parties to detect issues faster and
take action when using such videos. By detecting anomalous situations in near real time,
possible harm can be completely prevented or minimized, providing significant benefits
for human health and public safety. At the same time, this study offers many indirect
contributions, such as environmental protection and the efficient use of time, facilities, and
resources. Another contribution of our study is that its findings can serve as a reference for
developing alarm and warning systems based on the detection of anomalous situations in
real time, which can serve to increase city and public safety. In the same manner, alarm
systems can be developed regarding contexts such as work accidents, burglary, and arson.

Further studies on certain topics may be useful. First, in addition to assessing the
performances yielded in similar studies, research should focus on shortening the processing
times and reducing energy consumption. Second, new algorithms and techniques which
allow for video anomaly detection to be performed more efficiently on less powerful
hardware should be developed.
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