
Citation: Isaev, A.; Dobroserdova, T.;

Danilov, A.; Simakov, S. Physically

Informed Deep Learning Technique

for Estimating Blood Flow Parameters

in Four-Vessel Junction after the

Fontan Procedure. Computation 2024,

12, 41. https://doi.org/10.3390/

computation12030041

Academic Editors: Dick De Ridder

Received: 29 December 2023

Revised: 7 February 2024

Accepted: 20 February 2024

Published: 25 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Physically Informed Deep Learning Technique for Estimating
Blood Flow Parameters in Four-Vessel Junction after the
Fontan Procedure
Alexander Isaev 1, Tatiana Dobroserdova 1 , Alexander Danilov 1,2,3 and Sergey Simakov 1,2,3,*

1 Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, 119991 Moscow, Russia;
alexanderisaev23@gmail.com (A.I.); dobroserdovatk@gmail.com (T.D.); a.danilov@inm.ras.ru (A.D.)

2 Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
3 Institute of Computer Sciences and Mathematical Modelling, Sechenov University, 119992 Moscow, Russia
* Correspondence: simakov.ss@phystech.edu

Abstract: This study introduces an innovative approach leveraging physics-informed neural net-
works (PINNs) for the efficient computation of blood flows at the boundaries of a four-vessel junction
formed by a Fontan procedure. The methodology incorporates a 3D mesh generation technique based
on the parameterization of the junction’s geometry, coupled with an advanced physically regularized
neural network architecture. Synthetic datasets are generated through stationary 3D Navier–Stokes
simulations within immobile boundaries, offering a precise alternative to resource-intensive com-
putations. A comparative analysis of standard grid sampling and Latin hypercube sampling data
generation methods is conducted, resulting in datasets comprising 1.1 × 104 and 5 × 103 samples,
respectively. The following two families of feed-forward neural networks (FFNNs) are then compared:
the conventional “black-box” approach using mean squared error (MSE) and a physically informed
FFNN employing a physically regularized loss function (PRLF), incorporating mass conservation
law. The study demonstrates that combining PRLF with Latin hypercube sampling enables the rapid
minimization of relative error (RE) when using a smaller dataset, achieving a relative error value
of 6% on the test set. This approach offers a viable alternative to resource-intensive simulations,
showcasing potential applications in patient-specific 1D network models of hemodynamics.

Keywords: physics-informed neural networks; blood flow dynamics; computational hemodynamics; 3d
mesh generation; Latin hypercube sampling; physically regularized loss function; cardiovascular diseases

MSC: 92B20; 76Z05

1. Introduction

The blood flow dynamics in human vascular connections are critical for simulating
hemodynamics in the presence of cardiovascular diseases and for devising effective treat-
ment strategies. An accurate estimation of the blood flow parameters, such as pressures
and flows, in these complex regions is important for informed clinical decision-making
based on numerical simulations. The intricate interplay between various hemodynamic
factors and the complexity of blood flow, especially in scenarios like the Fontan operation,
pose challenges to an accurate estimation.

Palliative surgery is performed on patients with congenital heart disease (CHD).
Conventionally, the first stage of palliative surgery involves the creation of a systemic-
pulmonary shunt at birth to prepare the lung bed for subsequent operations. The second
stage is the creation of a bidirectional cavopulmonary anastomosis (BCPA), which is the
Glen operation. In the Glen operation, the trunk of the lung is separated from the heart
and the superior vena cava is sutured to the pulmonary artery. The total cavopulmonary
connection (TCPC), also known as the Fontan operation, is the final stage. This is con-
sidered to be a highly effective technique for diverting blood from the inferior vena cava

Computation 2024, 12, 41. https://doi.org/10.3390/computation12030041 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation12030041
https://doi.org/10.3390/computation12030041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-6412-9829
https://orcid.org/0000-0002-4709-4513
https://orcid.org/0000-0003-3406-9623
https://doi.org/10.3390/computation12030041
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation12030041?type=check_update&version=2

Computation 2024, 12, 41 2 of 14

to the pulmonary arteries; however, despite surgical correction, the complication rate
remains high, and patient quality of life is often poor. A model-based understanding of the
Fontan circulation and optimizing the Fontan operation can improve the prognosis for real
patients [1].

3D models of blood flow allow clinicians to test a variety of vessel configurations and
flow conditions. They allow the minimization of pulmonary and TCPC resistance, the
energy dissipation in the TCPC, balance the hepatic and total flow distribution between the
right and left lungs, and avoid regions with excessive or low wall shear stress. Local three-
dimensional blood flow modeling is often used to solve such problems [2,3]. The junction
of the inferior and superior vena cava (IVC and SVC) and the left and right pulmonary
artery (LPA and RPA) forms the domain of integration. A fast evaluation of hemodynamic
parameters without solving complex Navier–Stokes equations is desirable.

In the recent past, the convergence of deep learning and computational fluid dynamics
has demonstrated considerable promise in tackling the aforementioned challenges [4].
Researchers have explored the use of physically informed neural networks (PINNs) to
address the gap between intricate physical phenomena and data-driven predictive models.
The key advantage of PINNs lies in their ability to integrate prior knowledge of the
fundamental physical laws that govern fluid flow. This feature empowers the development
of robust models capable of effectively handling complex vascular geometries.

In [5], PINN was developed to estimate aortic hemodynamics using dimensionless
Navier–Stokes equations and the continuity equation for additional physical regularization.
In [6], cerebral hemodynamics were estimated using PINN. Neural networks were trained
in such a way as to satisfy the conservation of mass and momentum at all junction points
in the arterial tree.

In this paper, we explore the use of PINNs for the estimation of blood flow parameters
in a human vascular junction after the Fontan procedure. The emphasis is on creating
an integrated methodology that combines data generation techniques with advanced
neural network architectures. Following a successful training phase, the neural network
demonstrates the capability to operate without demanding substantial computational
resources during application.

We describe the process of training a physically regularized neural network. It starts
with the creation of synthetic datasets using different sampling methods (standard grid
sampling and Latin hypercube sampling (LHS)) First, a parametric set of 3D meshes was
generated on the basis of the GMSH library [7]. The physiologic ranges of the radii and
angles at the junction of the four vessels are considered. Next, the 3D simulations of blood
flow were conducted for each geometry, employing stationary Navier–Stokes equations
with fixed boundaries within a computational domain that represents rigid (immobile)
vessel walls. The input parameters consist of the mean pressure values at the inflow
and outflow boundaries, while the output parameters comprise the mean flow values
at these boundaries. Ideally, the training dataset should be derived from real patient
data, necessitating a substantial volume of measurements across a broad spectrum of
parameter values—an undertaking that is challenging with current equipment capabilities.
To address this challenge, our approach involves the generation of synthetic data through a
3D stationary Navier–Stokes finite element solver.

Furthermore, we explore different loss functions, the standard “black-box” approach
(mean squared error (MSE)) and physically regularized loss function (PRLF). We propose
a PRLF implementation, which includes a mass conservation condition. The adaptive
moment estimation (Adam) algorithm of optimization is used for loss function minimiza-
tion [8]. We achieve an average relative error of 10% for MSE. The integration of the PRLF
with LHS facilitated convergence on a reduced dataset, yielding a diminished relative error
of approximately 6% on the test dataset.

The paper is organized as follows: In Section 2.1, we describe the methods of dataset
generation, including the parametric mesh generation and a brief mathematical formaliza-
tion for the flow simulations. In Section 3, we describe the general design of the developed

Computation 2024, 12, 41 3 of 14

neural networks and introduce MSE and PRLF. In Section 4, we present the Adam optimiza-
tion technique and discuss the hyperparameter optimization problem. Section 5 contains
the experimental results. The conclusions are presented in Section 6.

2. Dataset Generation

Our objective is to predict the average flow values at the boundaries of a 3D vascular
junction involving the convergence of four vessels, as illustrated in Figure 1. To achieve
this, we adopt a neural network approach, formulating the problem as a multi-variable
regression task. The junction geometry is parameterized by the angles formed between the
vessels and the radii of each vessel, as detailed in Section 2.1. In Section 2.2, we establish
the pressure boundary conditions at each inflow and outflow boundary to facilitate the
computation of incompressible flows. This is achieved by solving the stationary Navier–
Stokes equations within a domain with fixed boundaries. In Section 2.3, we explicate the
LHS method, which, in conjunction with standard grid search sampling, will be employed
to generate the definitive sets of geometries and pressures for training a neural network.

dx α
β

SVC

IVC

RPALPA

Figure 1. Schematic representation of the junction of the following four vessels: inferior vena cava
(IVC), superior vena cava (SVC), left pulmonary artery (LPA), and right pulmonary artery (RPA). The
corresponding vessel radii (r1, r2, r3, r4), vessel junction angles (α, β), and the distance between the
centers of the superior and inferior vena cava (dx) are marked on the scheme.

2.1. Parametric Generation of 3D Domain for a Junction of Four Vessels

To automate the construction of 3D meshes for the junction of four vessels, we have
developed a parametric mesh generation software leveraging the GMSH [7] library. It is
assumed that all vessels lie in a single plane. As inputs, the generator takes two angles
between the vessels at the junction, along with the lengths and radii of the four segments
forming the junction region (refer to Figure 2 left). The computational domain is defined as
the union of several cylindrical tubes (see Figure 2 left). A uniform mesh is constructed
inside the domain (see Figure 2 right).

Following mesh construction, additional mesh optimization from the Ani3D [9] pack-
age is applied. This optimization involves the repartitioning of tetrahedra, with all vertices
lying on the boundary of the region, contributing to the stability of numerical methods for
computing flow in the junction.

Computation 2024, 12, 41 4 of 14

SVC

IVC

RPA
LPA

SVC

IVC

RPA
LPA

Figure 2. Illustration of the mesh generation algorithm for creating a 3D geometric model and
computational domain of a four vessels junction: left—placement of marks on the mesh surfaces,
right—construction of an unstructured mesh from tubular segments.

2.2. Calculation of Hydrodynamic Parameters

The blood is assumed to be a viscous, incompressible fluid with viscosity ν = 0.04 cm2s−1

and density ρ = 1 g/cm3. The 3D domain of the junction area of four vessels Ω (see Figure 2
right) with boundary ∂Ω is composed of rigid walls Γ0, two inlets Γin1,2, and two outlets
Γout1,2. The blood flow in Ω is described by the stationary 3D Navier–Stokes equations
as follows:

ρ(u · ∇) u − ν∆u +∇p = 0

div u = 0
in Ω,

u = 0 on Γ0,

ν
∂u
∂n

− pn = 0 on Γin/out,

(1)

where p is the pressure, u is the velocity vector field, and n is the outward normal vector to
the boundary surface. On the immobile side wall, we assume a no-slip and no-penetration
boundary condition. At the inlets Γin1,2 and the outlets Γout1,2, we set the average pressures
p1, p2, p3, and p4 as the boundary conditions.

The LBB-stable Taylor–Hood (P2/P1) finite element method is used for the approx-
imation of (1). The multifrontal sparse direct solver MUMPS [10] based on the exact
factorization of the matrix is applied for solving the resulted system of equations. The
model has been extensively presented in [11]. The solution of the discrete nonlinear prob-
lem results in the velocity vector field and the pressure field in the computational domain.
The average blood flows q at the boundaries Γin1,2 and Γout1,2 are calculated for further
neural network training as follows:

q =
∫

Γin/out

u · n ds. (2)

2.3. Latin Hypercube Sampling

To systematically explore the parameter space and enhance the diversity of our dataset,
we use the LHS [12] method. LHS is a statistical technique designed to ensure a more
uniform and representative sampling of the multidimensional parameter space. In par-
ticular, we hypothesize that this approach will be valuable in capturing a wide range of
physiological variations in vascular junction geometry.

Let P be the parameter space defined by the angles α, β between vessels, and the dis-
tance between the IVC and SVC centers dx and radii r1, r2, r3, r4 of the four segments form
the junction region. For each parameter, LHS guarantees a proportional and stratified sam-
pling. Consider N samples drawn from P , denoted as {(α(i), β(i), dx(i), r(i)1 , r(i)2 , r(i)3 , r(i)4)}N

i=1.
These samples are obtained such that the marginal distribution of each parameter is uni-
formly represented, and the correlations between the parameters are minimized.

Computation 2024, 12, 41 5 of 14

In Section 5, we provide a visual comparison of the dataset that is obtained by the
standard grid search and the dataset that is obtained by the LHS method.

3. Design of the Neural Network

In this section, we develop a FFNN designed to predict the values of the input and
output flows (q1, q2, q3, and q4) based on the geometry of the junction and the pressure
values (p1, p2, p3, and p4).

FFNNs [13] represent a commonly utilized class of neural networks. In FFNNs, data
flows unidirectionally from inputs to outputs without feedback, making it suitable for
solving classification and regression tasks.

A typical FFNN implementation comprises a series of layers, with each layer contain-
ing a set of neurons (refer to Figure 3). The neurons in a layer are connected to the neurons
in the preceding and succeeding layers. Input data traverses the network, and each neuron
performs computations based on its input values, activation function, and connection
weights. The output is then transmitted to the subsequent layer, and this process continues
until reaching the output layer, generating the final output.

Figure 3. The structure of the designed FFNN. Mk is the number of hidden layers, Nk is the number
of neurons in the hidden layers, and k is the index of FFNN implementation.

The specification of a FFNN involves determining the number of layers and neurons,
selecting an activation function for each neuron, defining a loss function that relies on the
connection weights between neurons, implementing a drop-out algorithm for potential
random disconnection of certain neurons from the network, and establishing an optimiza-
tion procedure to minimize the loss function with respect to the weights. Each of these
components is elaborated upon in the subsequent sections.

Determining the appropriate size of a neural network, which encompasses the number
of layers and neurons in each layer, is a critical task that requires manual consideration
based on the specific task and available data. A network that is too small may yield subpar
results, while an excessively large one can exhibit overtraining on known data and perform
poorly on new data.

For our task, the input and output layer sizes are known, with the number of neurons
in the first layer corresponding to the input parameters (eleven), and the last layer matching

Computation 2024, 12, 41 6 of 14

the number of predicted parameters (four). Determining the size of hidden layers presents a
challenge, and we explore two approaches. One method involves an experimental selection
based on numerous numerical experiments and computational resources, especially when
both training and test datasets are available. Alternatively, an initial overestimated size
can be chosen, and neurons are selectively removed during training based on weights
or randomly.

In this study, we employ the drop-out algorithm, as described in [14], which involves
randomly removing neurons. The probability of removal is manually set, which allows the
network to avoid over-adaptation to the input data and mitigates overtraining. This ap-
proach promotes the development of more robust features and enhances the generalization
ability of the neural network.

Before transmitting data to the subsequent layer, the neural network utilizes an activa-
tion function on the weighted sum of signals originating from the neurons of the preceding
layer. Commonly employed activation functions include the sigmoid function [15], which
is defined as follows:

f (x) =
(
1 + e−x)−1 (3)

and the rectified linear unit (ReLU) [16]

f (x) = max(0, x), (4)

where x is the sum of the outputs from the neurons of the previous layer.
Several studies [17,18] have indicated that the choice of activation function is seldom

a decisive factor in training FFNN. Both (3) and (4) yield satisfactory results. However,
research [19] has highlighted the advantages of the rectified linear unit (ReLU) activation
function (4) over the sigmoidal activation function (3). ReLU-based FFNNs demand fewer
computational resources during the training phase, enabling more efficient numerical ex-
periments. Consequently, we opt for ReLU in the design of all our FFNN implementations.

The critical consideration in designing FFNN involves selecting a suitable loss (error)
function. The loss function is denoted as Loss(y, ŷ), where y represents the vector of
predicted values, and ŷ is the vector of true values.

For a loss function to be effective, it must adhere to the following criteria [20]:

1. Non-negativity: The error function’s value cannot be negative, as it serves as a
measure of the disparity between the predicted and actual values;

2. Continuity: The error function needs to be continuous to ensure a smooth relationship
between the input data and model error;

3. Differentiability: Since most optimization algorithms rely on derivatives, the error
function must be differentiable concerning the model parameters.

In this work, we consider and compare the following two error functions: MSE and
PRLF, which we also refer as PINN.

MSE is defined as follows:

MSE(y, ŷ) =
1
n

n

∑
i=1

1
2
(yi − ŷi)

2 (5)

where n is the number of rows in the dataset, yi are predicted values, and ŷi are true values.
MSE functions are commonly used in standard black-box machine learning techniques

without prior knowledge of the system structure and behavior. In addition to MSE we
exploit PRLF, which is an extension of MSE as follows:

PRLF(y, ŷ) = MSE(y, ŷ) + PhysLoss(y, ŷ), (6)

where PhysLoss is a physical component.
In practice, we apply supplementary regularization, imposing penalties on the model

for deviating from physical constraints. This methodology is known as physical regu-

Computation 2024, 12, 41 7 of 14

larization, and neural networks incorporating this technique are commonly known as
PINNs [21].

We enforce the following singular physical constraint on the blood flow within a
junction of four vessels: the preservation of mass condition.

q1 + q2 + q3 = 0. (7)

Finally, we state the physical component of the loss function as follows:

PhysLoss =
ξ

n

n

∑
i=1

(q1i + q2i + q3i)
2 (8)

where n is the number of rows in the dataset and ξ is the weight of the conservation law
component, q1i, q2i, q3i are predicted values of the i-th flow

We employed two distinct error metrics, namely, relative error (RE) and R-squared
(R2), to comprehensively assess the performance of our neural network during the training
process. RE measures the average percentage deviation between the true target values yi
and the predicted values ŷi, providing a relative measure of the model’s accuracy across all
data points. On the other hand, R2 quantifies the goodness-of-fit of the model by assessing
the proportion of the variability in the target variables explained by the model. A higher
R2 value indicates a better fit, with 1 denoting a perfect fit and 0 indicating no explanatory
power. The RE and R2 defined as follows:

RE =
1
n

n

∑
i=1

|yi − ŷi|
ŷi

. (9)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 , (10)

where yi represents the observed target values, ŷi, represents the predicted values, and
ȳ is the mean of the observed values. By incorporating both RE and R2, we obtained a
comprehensive understanding of the model’s accuracy, capturing both the relative deviation
and the overall explanatory power.

4. Neural Network Training

The neural network training relies on the error backpropagation algorithm [22], en-
abling the optimization of network parameters to minimize prediction errors. During
training, input data are introduced to the network’s input layer, and the information is
forwarded through its layers of neurons. The output values are then compared to the
expected correct answers, and an error function is computed to quantify the disparity
between the predictions and the target values; subsequently, the error backpropagation
phase commences. The neurons in the final layer receive information about the error, and,
utilizing the gradient descent algorithm, adjust their weights to diminish the error. This
error propagation process recurs backward through the network, influencing the weights of
the neurons in preceding layers. This iterative process continues for each training example
or mini-batch (a subset of data used for training) until the model reaches optimal weights.
Various implementations of the backpropagation algorithm exist, with Adam [8] being
considered among the most effective at the time of writing this paper.

Adam, short for adaptive moment estimation [8], represents an optimization algorithm
designed to dynamically adjust the learning rate for individual parameters by considering
the first and second moments of the loss function gradient. This adaptive approach
facilitates rapid convergence to the optimal solution and mitigates the influence of data
noise on model training. The Adam algorithm can be succinctly described as follows:

mt = β1mt−1 + (1 − β1)gt (11)

Computation 2024, 12, 41 8 of 14

vt = β2vt−1 + (1 − β2)g2
t (12)

m̂t =
mt

1 − βt
1

(13)

v̂t =
vt

1 − βt
2

(14)

θt = θt−1 − α
m̂t√

v̂t + ϵ
(15)

gt = ∇θtL(θt) =

[
∂L(θt)

∂θt1
,

∂L(θt)

∂θt2
, . . . ,

∂L(θt)

∂θtn

]
(16)

where t is iteration number, β1, β2 ∈ [0, 1] are attenuation coefficients for the moments,
which are selected manually, mt and vt are the first and second moments of the gradients
at the iteration t, which are set to 0 at the first iteration, m̂t and v̂t are adjusted values
of the moments at the iteration t, θt is vector of neural network weights at the iteration
t, gt is gradient of θt, with respect to the loss function L, α is learning rate, which is
selected manually and controls how much the weights of the neural network change at
each iteration, and ϵ is a small number for numerical stability.

Hyperparameters [23] are integral settings for FFNN, defining its structure and func-
tionality while influencing the network’s capacity to learn and generalize to unseen data.
This set encompasses parameters like the number of hidden layers, the quantity of neurons
within these layers, the weight assigned to the physical component in the error function,
the batch size, the method for initializing neural network weights, and the learning rate for
the optimization algorithm.

Optimizing hyperparameters during training through gradient-based methods is
unfeasible. Instead, various heuristic approaches are employed to determine suitable
values. In this study, we employ the grid search method for hyperparameter selection.
Finally, the hyperparameters of the FFNN are given in Table 1.

Table 1. Hyperparameters of the FFNN.

Parameter Value

Hidden layers 3
Neurons in the hidden layers 128

Drop-out rate 0.25
Learning rate 1 × 10−4

5. Results

The dataset for neural network training was created basing on the junction of four
vessels with various angles, radii, and boundary pressures. The length of all segments was
set to 7 cm. The radii of the SVC (r1), LPA (r2), and RPA (r4) ranged from 0.7 to 2.3 cm. At
each iteration of mesh generation, these radii were equal to each other. The radius of the
IVC (r3) ranged from r1 to 2.5 · r1 for each value of r1. The distance between the centers of
the SVC and IVC (dx) ranged from 0 to r1 + r3 for each combination of values r1 and r3.
Angles ranged from 60 to 120 degrees. The pressures ranged from −100 to 100 Pa.

Next, we used the following two different approaches to generate the meshes: generat-
ing data on a grid with an uniform step size, and LHS In the first case, the following steps
were used: r1, r2, and r5 were ranged with step 0.4. The r3 range step was chosen so that
2 different values between r1 and r1 · 2.5 were obtained. The dx range step was chosen so
that two different values between 0 to r1 + r3 were obtained. The angles were ranged with
step 30. The pressures were ranged with step 50. In the end, 180 grids were generated. On

Computation 2024, 12, 41 9 of 14

each grid, 64 iterations of flow calculations were performed. As a result, 1.1 × 104 samples
of data were generated by the first method.

In the second case, the Latin hypercube sampling method was used. When using this
method, the required number of final samples and parameter intervals are specified. We
generated 100 meshes using this method. Then, also using the Latin hypercube method,
50 pressure combinations were generated for each mesh to calculate the flows. Finally,
5 × 103 samples of data were generated by the second method. In contrast to the conven-
tional grid search method, Latin hypercube sampling (LHS) was anticipated to augment the
diversity within our dataset. To elucidate the distinctions between the acquired datasets,
we employed principal component analysis (PCA) [24] to reduce their dimensionality.
The visual representation (refer to Figure 4) substantiates the superior dataset diversity
achieved through the utilization of LHS.

−2 −1 0 1 2 3
Component 1 −2

−1
0

1
2

Co
mp
on
en
t 2

−1.0
−0.5
0.0
0.5
1.0
1.5

Co
m
po

ne
nt
 3

−4
−2

0
2

4
Component 1 −1.5

−1.0
−0.5

0.0
0.5
1.0
1.5

Co
mp
on
en
t 2

−1.0
−0.5
0.0
0.5
1.0
1.5

Co
m
po

ne
nt
 3

Figure 4. Comparison of datasets obtained using different sampling methods : left—dataset obtained
by standard grid search, right—dataset obtained using LHS.

The 80% random subset of the dataset was used for training the FFNNs and the
remaining 20% was used for testing. The technical stack for FFNNs training is shown in
Table 2.

Table 2. Parameters of the technical stack.

Parameter Value

CPU AMD Ryzen 7 5800X (16) 3.800 GHz
GPU NVIDIA GeForce GTX 1660 Ti
RAM 32 GB RAM

The construction of the ultimate algorithm entails a two-step experimental process.
Initially, we will assess neural networks trained on both a standard dataset and a LHS
dataset, utilizing the MSE loss function for training. Subsequently, a similar comparative
analysis will be conducted employing the PINN error function. Throughout these investi-
gations, the inter-neuronal connections are characterized by a ReLU transfer function, and
the optimization task is executed using the Adam algorithm. Ultimately, the evaluation of
all the trained models will be based on the comparison of RE and R2 values extracted from
the best training iterations.

In the initial phase, a distinct superiority of the neural network trained on the standard
dataset over its counterpart trained on the LHS dataset is evident. Figure 5 illustrates the
convergence trajectories of these FFNNs. The RE value of the neural network trained on the
standard dataset converges to a range of 8–10%, whereas the RE value of the neural network
trained on the LHS dataset converges to 10–13%. Both neural networks converge to a high
R2 value (Figure 5 bottom left, bottom right), approaching unity; however, the convergence
rate of the neural network trained on the standard dataset is notably higher. At this
juncture, the interim inference can be made that, when utilizing MSE as the loss function,
the convergence of the neural network trained on the standard dataset surpasses that of

Computation 2024, 12, 41 10 of 14

the neural network trained on the LHS dataset. It is plausible that achieving comparable
convergence with MSE would necessitate augmenting the size of the LHS dataset to at least
match that of the standard dataset.

0 200 400 600Epoch
0

1000

2000

3000

M
SE

 tr
ai
n
Lo

ss

Standart dataset
LHS dataset

0 200 400 600Epoch
0

1000

2000

3000

M
SE

 te
st
 L
os

s

Standart dataset
LHS dataset

0 200 400 600Epoch

0.5

1.0

1.5

M
SE

 tr
ai
n
R
E,
 %

Standart dataset
LHS dataset

0 200 400 600Epoch

0.5

1.0

1.5

M
SE

 te
st
 R
E,
 %

Standart dataset
LHS dataset

0 200 400 600Epoch
0.4

0.6

0.8

1.0

M
SE

 tr
ai
n
R
2

Standart dataset
LHS dataset

0 200 400 600Epoch
0.4

0.6

0.8

1.0

M
SE

 te
st
 R
2

Standart dataset
LHS dataset

Figure 5. Convergence of the classic FFNN with MSE: upper left—PRLF on training set, upper
right—PRLF on test set, middle left—RE on training set, middle right—RE on test set, bottom
left—R2 on training set, bottom right—R2 on test set.

During the second phase, we observe a comparable convergence pattern in both the
neural network trained on the standard dataset and the one trained on the LHS dataset.
Figure 6 illustrates the convergence trajectories of these FFNNs. Both networks converge to
RE values within the range of 6–7%, indicating a satisfactory convergence. Furthermore,
the R2 value approximating 1 (Figure 6 bottom left, bottom right) signifies that both
neural networks accurately capture the target variables variance in both datasets. These
observations are corroborated by the test dataset, as depicted in Figure 6 upper right,
middle left. Notably, the neural network trained on the LHS dataset exhibits fewer outliers
in the RE convergence graph. Simultaneously, a significant reduction in PRLF and RE is
observed after the 200th iteration in the neural network trained on the standard dataset. This
suggests that the neural network finds it more straightforward to adapt to the samples from
the standard dataset compared to those from the LHS dataset. In essence, the utilization
of the LHS dataset serves as an additional regularization method for the neural network,
expanding the parameter space. Despite the LHS dataset being almost half the size of
the standard dataset, the neural network achieves a satisfactory RE value, indicating the
superiority of the LHS dataset generation approach in this step.

Computation 2024, 12, 41 11 of 14

0 200 400 600Epoch
0

1000

2000

3000

PI
N
N
 tr
ai
n
Lo

ss

Standart dataset
LHS dataset

0 200 400 600Epoch
0

1000

2000

3000

PI
N
N
 te

st
 L
os

s

Standart dataset
LHS dataset

0 200 400 600Epoch

0.5

1.0

PI
N
N
 tr
ai
n
R
E,
 %

Standart dataset
LHS dataset

0 200 400 600Epoch
0.0

0.5

1.0

1.5

PI
N
N
 te

st
 R
E,
 %

Standart dataset
LHS dataset

0 200 400 600Epoch

0.4

0.6

0.8

1.0

PI
N
N
 tr
ai
n
R
2

Standart dataset
LHS dataset

0 200 400 600Epoch

0.4

0.6

0.8

1.0

PI
N
N
 te

st
 R
2

Standart dataset
LHS dataset

Figure 6. Convergence of the classic FFNN with PRLF: upper left—PRLF on training set, upper
right—PRLF on test set, middle left—RE on training set, middle right—RE on test set, bottom
left—R2 on training set, bottom right—R2 on test set.

Finally, we performed a comparison of the trained neural networks’ performance based
on the optimal RE values on the test set in Table 3. Given that all neural networks achieved
exceptionally high R2 values, we excluded this metric from the comparative analysis.

Table 3. RE of trained models on the test set.

Standard Dataset LHS Dataset

MSE 8% 10%
PRLF 6% 6%

6. Conclusions

In this study, we introduce a novel approach for efficiently computing the flows
at the boundaries of a four-vessel junction using the physics-informed neural network
(PINN) methodology. Our methodology involves the development of a 3D mesh generation
technique, which is based on the parameterization of the four vessels’ junction through the
geometry of the connected vessels. This is coupled with an advanced physically regularized
neural network architecture. The synthetic dataset is generated through the solution of 3D
stationary Navier–Stokes equations within the generated domains, where the boundaries
remain immobile. The boundary conditions are set by specifying pressures at the inlets

Computation 2024, 12, 41 12 of 14

and outlets, and the flow is computed as the outcome of the simulations. This innovative
approach integrates mesh generation, physically informed neural networks, and synthetic
dataset generation to efficiently compute flows at complex vascular junctions.

We conducted a comparative analysis of two data generation approaches, namely,
standard grid sampling and Latin hypercube sampling. The resulting datasets comprised
1.1× 104 and 5× 103 samples, respectively, encompassing a diverse range of physiologically
plausible cases. Subsequently, we compared the following two families of FFNNs: one
employing the conventional “black-box” methodology with MSE and the other adopting a
physically informed FFNN approach with a physically regularized loss function (PRLF).
In this context, we introduced the PRLF implementation, which incorporates the mass
conservation law. The analysis revealed that the combination of PRLF with the Latin
hypercube sampling (LHS) method enables the rapid minimization of the relative error
(RE) using a smaller dataset. This amalgamation of methods facilitated the attainment of a
relative error value of 6% on the test set.

The extensive utilization of 3D models necessitates substantial computing resources.
Our approach offers a viable alternative by replacing these resource-intensive simulations
with a rapid and precise algorithm. The developed technique holds potential for establish-
ing boundary conditions in patient-specific 1D network models of hemodynamics in the
future [25–27].

Further validation with a broader range of parameters is necessary. In this study, the
true optimization of FFNN hyperparameters was not explicitly conducted. Nevertheless,
undertaking such optimization represents a crucial step in enhancing our methodology.
For instance, this process could lead to the elimination of less significant neurons, whose
contributions do not substantially impact the final predicted values.

In the mesh generation phase, we make the assumption that all segments of the four-
vessel junction lie within a single plane. This assumption remains valid for our study, given
that the influence of the gravity field is not considered. However, a more limiting assump-
tion is the adoption of a stationary incompressible flow model with immobile boundaries.
The incorporation of an unsteady flow model or even fluid–structure interaction simula-
tions has the potential to significantly enhance our approach. It is imperative to validate
the developed technique with data obtained from real patients. This step is essential for
ensuring the reliability and applicability of the methodology in clinical scenarios.

The findings of this research showcase the substantial potential of PINNs in accurately
predicting blood flow parameters. Furthermore, the study highlights the capability of
PINNs in constructing innovative computational techniques for conducting patient-specific
hemodynamic simulations. The simple practical application of our PINN model based on
PRLF, is the analysis of the blood flow parameters in the junction of the vessels after the
Fontan procedure.

Author Contributions: Conceptualization, T.D. and S.S.; methodology, A.I. and S.S.; software, A.I.,
T.D. and A.D.; validation, A.I. and T.D.; data curation, A.I.; writing—original draft preparation,
A.I. and S.S.; writing—review and editing, A.I., T.D., A.D. and S.S.; visualization, A.I. and A.D.;
supervision, S.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by the Russian Science Foundation, grant number
21-71-30023.

Data Availability Statement: Dataset available on request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BCPA Bidirectional cavopulmonary anastomosis
CHD Congenital heart disease

Computation 2024, 12, 41 13 of 14

FFNN Feed-forward neural networks
IVC Inferior vena cava
LHS Latin hypercube sampling
LPA Left pulmonary artery
MSE Mean squared error
PINN Physics-informed neural network
RE Relative error
RPA Right pulmonary artery
PRLF Physically regularized loss function
R2 R-squared error
SVC Superior vena cava
TCPC Total cavopulmonary connection

References
1. De Zélicourt, D.; Kurtcuoglu, V. Patient-Specific Surgical Planning, Where Do We Stand? The Example of the Fontan Procedure.

Ann. Biomed. Eng. 2015, 44, 174–186. [CrossRef]
2. Siallagan, D.; Loke, Y.H.; Olivieri, L.; Opfermann, J.; Ong, C.; De Zélicourt, D.; Petrou, A.; Daners, M.; Kurtcuoglu, V.; Meboldt,

M.; et al. Virtual surgical planning, flow simulation, and 3-dimensional electrospinning of patient-specific grafts to optimize
Fontan hemodynamics. J. Thorac. Cardiovasc. Surg. 2018, 155, 1734–1742. [CrossRef]

3. Yang, W.; Chan, F.; Reddy, V.; Marsden, A.; Feinstein, J. Flow simulations and validation for the first cohort of patients undergoing
the Y-graft Fontan procedure. J. Thorac. Cardiovasc. Surg. 2015, 149, 247–255. [CrossRef]

4. Kutz, J. Deep learning in fluid dynamics. J. Fluid Mech. 2017, 814, 1–4. [CrossRef]
5. Du, M.; Zhang, C.; Xie, S.; Pu, F.; Zhang, D.; Li, D. Investigation on aortic hemodynamics based on physics-informed neural

network. Math. Biosci. Eng. 2023, 20, 11545–11567. [CrossRef] [PubMed]
6. Sarabian, M.; Babaee, H.; Laksari, K. Physics-Informed Neural Networks for Brain Hemodynamic Predictions Using Medical

Imaging. IEEE Trans. Med. Imaging 2022, 41, 2285–2303. [CrossRef] [PubMed]
7. Geuzaine, C.; Remacle, J. Gmsh: A 3-D Finite Element Mesh Generator with Built-in Pre- and Post-Processing Facilities. Int. J.

Numer. Methods Eng. 2009, 79, 1309–1331. [CrossRef]
8. Kingma, D.; Adam, J.B. A Method for Stochastic Optimization. In Proceedings of the 2nd International Conference on Learning

Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014.
9. Vassilevski, Y.; Lipnikov, K. An adaptive algorithm for quasioptimal mesh generation. Comp. Math. Math. Phys. 1999,

39, 1468–1486.
10. Amestoy, P.R.; Duff, I.S.; L’Excellent, J.Y.; Koster, J. A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic

Scheduling. SIAM J. Matrix Anal. Appl. 2001, 23, 15–41. [CrossRef]
11. Vassilevski, Y.; Olshanskii, M.; Simakov, S.; Kolobov, A.; Danilov, A. Personalized Computational Hemodynamics. Models, Methods,

and Applications for Vascular Surgery and Antitumor Therapy; Academic Press: Cambridge, MA, USA, 2020.
12. Helton, J.; Davis, F. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng.

Syst. Saf. 2003, 81, 23–69. [CrossRef]
13. Bebis, G.; Georgiopoulos, M. Feed-forward neural networks. IEEE Potentials 1994, 13, 27–31. [CrossRef]
14. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
15. Sridhar, N. The generalized sigmoid activation function: Competitive supervised learning. Inf. Sci. 1997, 99, 69–82. [CrossRef]
16. Nair, V.; Hinton, G. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the International

Conference on Machine Learning, Haifa, Israel, 21–24 June 2010.
17. Pretorius, A.; Barnard, E.; Davel, M. ReLU and sigmoidal activation functions. In Fundamentals of Artificial Intelligence Research;

Springer: Berlin/Heidelberg, Germany, 2019.
18. Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation Functions: Comparison of trends in Practice and Research for

Deep Learning. arXiv 2018, arXiv:1811.03378.
19. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Commun. ACM 2012,

60, 84–90. [CrossRef]
20. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; Adaptive Computation and Machine Learning; MIT Press: Cambridge,

MA, USA, 2016.
21. Amin, M.; Meidani, H. Physics-Informed Regularization of Deep Neural Networks. arXiv 2018, arXiv:1810.05547v1.
22. Rojas, R. The Backpropagation Algorithm. In Neural Networks: A Systematic Introduction; Springer: Berlin/Heidelberg, Germany,

1996; pp. 149–182. [CrossRef]
23. Claesen, M.; De Moor, B. Hyperparameter Search in Machine Learning. arXiv 2015, arXiv:1502.02127.
24. Maćkiewicz, A.; Ratajczak, W. Principal Components Analysis (PCA). Comput. Geosci. 1993, 19, 303–342. [CrossRef]
25. Müller, L.O.; Watanabe, S.M.; Toro, E.F.; Feijóo, R.A.; Blanco, P.J. An anatomically detailed arterial-venous network model.

Cerebral and coronary circulation. Front. Physiol. 2023, 14, 1162391. [CrossRef] [PubMed]

http://doi.org/10.1007/s10439-015-1381-9
http://dx.doi.org/10.1016/j.jtcvs.2017.11.068
http://dx.doi.org/10.1016/j.jtcvs.2014.08.069
http://dx.doi.org/10.1017/jfm.2016.803
http://dx.doi.org/10.3934/mbe.2023512
http://www.ncbi.nlm.nih.gov/pubmed/37501408
http://dx.doi.org/10.1109/TMI.2022.3161653
http://www.ncbi.nlm.nih.gov/pubmed/35320090
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1137/S0895479899358194
http://dx.doi.org/10.1016/S0951-8320(03)00058-9
http://dx.doi.org/10.1109/45.329294
http://dx.doi.org/10.1016/S0020-0255(96)00200-9
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1007/978-3-642-61068-4_7
http://dx.doi.org/10.1016/0098-3004(93)90090-R
http://dx.doi.org/10.3389/fphys.2023.1162391
http://www.ncbi.nlm.nih.gov/pubmed/37435309

Computation 2024, 12, 41 14 of 14

26. Simakov, S.S.; Gamilov, T.M.; Liang, F.; Gognieva, D.G.; Gappoeva, M.K.; Kopylov, P.Y. Numerical evaluation of the effectiveness
of coronary revascularization. Russ. J. Numer. Anal. Math. Model. 2021, 36, 303–312. [CrossRef]

27. Gognieva, D.; Mitina, Y.; Gamilov, T.; Pryamonosov, R.; Vassilevski, Y.; Simakov, S.; Liang, F.; Ternovoy, S.; Serova, N.; Tebenkova,
E.; et al. Noninvasive Assessment of the Fractional Flow Reserve with the CT FFRc 1D Method: Final Results of a Pilot Study.
Glob. Heart 2021, 16, 1. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1515/rnam-2021-0025
http://dx.doi.org/10.5334/gh.837
http://www.ncbi.nlm.nih.gov/pubmed/33598381

	Introduction
	Dataset Generation
	Parametric Generation of 3D Domain for a Junction of Four Vessels
	Calculation of Hydrodynamic Parameters
	Latin Hypercube Sampling

	Design of the Neural Network
	Neural Network Training
	Results
	Conclusions
	References

