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Abstract: Pedigree charts remain essential in oncological genetic counseling for identifying individu-
als with an increased risk of developing hereditary tumors. However, this valuable data source often
remains confined to paper files, going unused. We propose a computer-aided detection/diagnosis sys-
tem, based on machine learning and deep learning techniques, capable of the following: (1) assisting
genetic oncologists in digitizing paper-based pedigree charts, and in generating new digital ones, and
(2) automatically predicting the genetic predisposition risk directly from these digital pedigree charts.
To the best of our knowledge, there are no similar studies in the current literature, and consequently,
no utilization of software based on artificial intelligence on pedigree charts has been made public yet.
By incorporating medical images and other data from omics sciences, there is also a fertile ground for
training additional artificial intelligence systems, broadening the software predictive capabilities. We
plan to bridge the gap between scientific advancements and practical implementation by modernizing
and enhancing existing oncological genetic counseling services. This would mark the pioneering
development of an AI-based application designed to enhance various aspects of genetic counseling,
leading to improved patient care and advancements in the field of oncogenetics.

Keywords: artificial intelligence; machine learning; deep learning; pedigree charts; oncogenetics;
oncological genetic counseling

1. Introduction

Despite the continuous scientific progress that has occurred in recent decades, cancer
is still a leading cause of death and a public health concern worldwide. The latest available
data (2020) report an estimated 18.1 million new cancer cases (excluding non-melanoma
skin cancer) [1], with nearly 10 million deaths [2].

Cancer is a large set of diseases that have in common an altered cellular genomics,
in a multifactorial etiology context. Depending on their onset, tumors can be classified
in sporadic, familial, and inherited ones, the latter accounting for about 10% of all diag-
noses [3]. Hereditary cancers are mainly due to pathogenic autosomal dominant mutations
in high-penetrance susceptibility genes; there are known cancer driver genes that function
as tumor suppressors, oncogenes, or have a role in maintaining DNA stability, usually asso-
ciated with DNA repair and homologous recombination pathways [4]. Examples are genes
such as those responsible for Hereditary Breast and Ovarian Cancer (HBOC) (BRCA1 and
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BRCA2) and Lynch syndrome (MLH1, MSH2, MSH6, and PMS2), whose discovery dates
back to the early 1990s [5]. Since then, thanks to the advent of Next Generation Sequencing
(NGS) and Genome-Wide Association Studies (GWAS), other Cancer Predisposition Genes
(CPGs) have been cloned and isolated, both with high and medium–low penetrance; many
of these have entered clinical practice in the so-called multigenic panels, which today tend
to be preferred to single genetic analyses.

Oncological clinical genetics, also known as oncogenetics, is therefore a rather young
science and with it, the clinical processes that lead to the diagnosis of hereditary cancer
and the management of subjects at high genetic risk of cancer (both at a preventive and
therapeutic level) have been developed. Nowadays, these principles have merged into
the so-called Oncological Genetic Counseling (OGC), a well-established practice within
all oncology services [5]. The first act of the traditional OGC (pre-test session) consists
of the reconstruction of the personal and family history. Furthermore, in addition to the
acquisition of the clinical documentation of the reported cancer cases, the complete pedigree
chart is reconstructed, at least up to the third degree of kinship [5]. At this point, after
the choice of the most suitable subject for the test (named “index case” or “proband”), a
single or multigene germinal analysis is carried out, normally on peripheral blood, and
the result is awaited, to be communicated together with the possible surveillance plan
(post-test session). In other words, from the pre-test session onwards, genetic analyses
are the focus of the clinician’s attention, with the result that pedigree charts are rarely
resumed and updated and, often in a paper format, remain in archives with a limited use.
But these diagrams are full of useful information; they usually report all tumor diseases
(sometimes also others of non-neoplastic nature) along with the age of onset, the results of
any genetic test previously performed on the subjects included in the various generations,
the age of eventual death, etc. Hence, there is a need to recover and rework these pieces
of information and make them available to health professionals and researchers, possibly
with an innovative approach.

Artificial Intelligence (AI) techniques and technologies are probably the best tool from
this point of view. AI could push towards a direct digitization of these data, today usually
available in a semi-digital format [6]. Moreover, AI, by its analytical power and ability
to deduce elements of order in complex systems, can provide a decisive contribution to
a better understanding of the pathogenesis of hereditary and sporadic tumors, as well
as of any association between genes, mutations, tumors, other diseases, and personal
characteristics. Furthermore, digitized pedigree charts can also be utilized as a training
dataset for AI models in order to perform correlation studies and predict the risk of
contracting a neoplastic disease or infer the presence of a pathogenic mutation in a specific
gene, as statistical software such as IBIS (International Breast Cancer Intervention Study-
Online Tyrer-Cuzick model breast cancer risk evaluation tool), BRCAPRO and BOADICEA
(Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm)
currently perform based on some personal parameters [7]. Several studies in oncology
have been carried out by AI, ranging from images, genomics, personalized medicine, multi-
omics, and drug discovery [8–10], as well as diagnostic algorithms like those developed by
Google DeepMind or intelligent assistants such as IBM’s Watson for Oncology [11,12].

CAD (Computer-Aided Detection/Diagnosis) systems are digital instruments which
have emerged over the last 20 years to cope with problems related to the limits of human
perception [13], aiming to analyze and process various types of medical images and produce
an automatic or semi-automatic diagnosis [14]. These tools are often combined with AI
(in particular with Machine Learning (ML)) in order to achieve the most reliable output
possible [15]. CAD systems are increasingly used in the medical practice, above all, in
oncology; this is demonstrated by the thousands of papers published in recent years, of
which, over a hundred were published in 2023 alone (Table 1).
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Table 1. Most influential papers on CAD systems in oncology published in 2023.

Study Study Type CAD Application

Kumar, S. et al. [16] Review Breast cancer diagnosis
Singh, S. et al. [17] Review Hepatocellular carcinoma diagnosis

Maida, M. et al. [18] Review Endoscopic screening of colorectal cancer
Loizidou, K. et al. [19] Review Breast cancer detection and classification in mammography

Ramaekers, M. et al. [20] Review Pancreatic cancer diagnosis
Ranjbarzadeh, R. et al. [21] Review Breast tumor localization and segmentation

Jenkin Suji, R. et al. [22] Review Lung segmentation and nodule detection in CT images
Raghavendra, U. et al. [23] Review Brain tumor detection and screening

Hu, L. et al. [24] Research article Assessment of MRI-visible prostate cancer
Kim, H. et al. [25] Research article Screening outcomes of digital mammography

Mansur, A. et al. [26] Review Risk prediction and therapy response in colorectal cancer
Nicosia, L. et al. [27] Research article Assessment of breast ultrasound lesions

Ali, Z. et al. [28] Research article Melanoma lesions segmentation

Nonetheless, to the best of our knowledge, no research article concerning the digi-
tization of pedigree charts exists in the scientific literature to date and no software tools
capable of predicting genetic predisposition risk directly from digital pedigree charts, or
derived from a paper-based source, have yet to be made available. A system will thus be
conceived from scratch, following state-of-the-art techniques from the domain of computer
vision, and taking inspiration from similar problems already known and reported.

A major limiting factor in this issue is symbol recognition in hand-drawn graphs. A
review of the relevant literature led to discover various related fields of interest which
can give suggestions on potentially successful approaches. They cover the problems of
automatic hand-drawn graphical schemes and diagram digitization, from the recognition of
the symbols adopted in the graphs, to the reconstruction of the underlying logical structure.
Some computer vision and understanding problems that we considered similar to the
pedigree chart digitization one are generic symbol recognition, UML (Unified Modeling
Language) graph digitization, flowchart plots, logic circuit analysis, piping and instrumen-
tation diagrams, electrical circuits, generic engineering drawings, and chemical structure
recognition. All these problems share the need to convert hand-drawn graphs, composed
of symbols with (inside or outside) text annotations connected by (single or multiple) edges,
to a digital format.

Among the most recent and interesting papers concerning generic symbol recognition
in hand-drawn diagrams/graphs, it is important to cite [29], in which the YOLSO (You
Only Look for a Symbol Once) engine is described, a specialized single-stage object detector
for fixed-size, non-uniform symbols in maps and historical documents, using a unique grid
approach and fully convolutional architecture for map digitization. It also offers coarse
segmentation. It is a specialized form of YOLO (You Only Look Once) [30], used in many
fields of computer vision, including the recognition of handwritten diagrams: for example,
in [31], the authors focus on recognizing handwritten diagrams, particularly finite automata
images, exploring the use of YOLO and YOLO-Tiny networks for symbol detection and
bit-string processing, and achieving promising results with 82.04% average precision and
97.20% recall in detecting finite automata symbols in a handwritten dataset.

Concerning symbol recognition and graph reconstruction for UML diagrams, [32]
discusses the need for a software that can automatically recognize and convert hand-drawn
engineering diagrams into a format compatible with CASE (Computer-Aided Software
Engineering) tools, reducing manual efforts and time in identifying vulnerabilities and
errors. The authors then propose a solution based on image processing algorithms such as
corner detection, link detection, and classification by descriptors.

Piping and Instrumentation Diagrams (P&IDs) are another interesting field for auto-
matic digitization. For example, recent works [33,34] present methods respectively using
an improved continuous line detection algorithm to extract information from P&IDs, in-
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cluding identifying connection relationships and creating digital P&IDs, and an end-to-end
digitization method based on Deep Neural Networks (DNNs) for converting P&IDs into
digital form by object recognition, topology reconstruction, and diagram generation. A
review of papers on hand-drawn chemical structure reconstruction can be found in [35].

There are two recent works concerning the reconstruction of electrical and logical
circuits [36,37]. The former discusses new advancements in using neural networks for
automatically generating simulation-ready electronic circuits from hand-drawn circuit
diagrams; the proposed algorithm first identifies circuit components using YOLOv5 object
detection, achieving a high accuracy rate of 98.2%. Subsequently, it reconstructs the circuit
schematic using a novel Hough transform-based approach for node recognition. On the
other hand, [37] addresses the relatively understudied area of analyzing handwritten
logic circuits; again, a DNN based on YOLO is used to identify the circuit components
within the handwritten diagram, then a simple boundary tracking method is employed to
recognize the connections among these identified components. The results indicate that the
YOLO algorithm outperformed other Deep Learning (DL) methods such as Faster R-CNN,
Detectron2, and RetinaNet in identifying logic gates within the proposed system.

The field of automatic flowchart digitization is quite rich. Among recent papers, [38]
focuses on recovering handwritten flowcharts used in algorithm programming and design
and outlines a pipeline for recognizing elements within handwritten flowcharts through
Convolutional Neural Networks (CNNs), generating a digitized version of the flow dia-
gram and the C programming code that corresponds to the recognized flowchart. In [39],
the authors introduce an end-to-end multi-task network called FR-DETR (Flowchart Recog-
nition DEtection TRansformer) and present a new dataset designed to enhance the precision
and robustness of flowchart recognition. FR-DETR consists of a Convolutional Neural
Network backbone and a shared multi-scale transformer structure. It performs both symbol
and edge detection by utilizing shared feature maps and separate prediction heads. The
recognition process follows a coarse-to-fine refinement approach. The experimental results
demonstrate the effectiveness of FR-DETR. It achieves an overall precision of 94.0% and a
recall of 93.1% on the newly proposed dataset and even higher precision (98.7%) and recall
(98.1%) on the CLEF-IP (Conference and Labs of the Evaluation Forum—Intellectual Prop-
erty) dataset, outperforming previous methods in flowchart recognition. Finally, in [40], the
proposed process involves several steps, in particular, shape extraction achieved using the
Otsu thresholding algorithm, various morphological operations, including erosion, dilation,
and opening, applied to refine the extracted shapes and enhance their quality and accuracy,
polygon approximation (smoothening the shape outlines) by the Ramer–Douglas–Peucker
algorithm, and handwriting recognition to identify and process the text inside the blocks of
the flowchart. Some of the papers, in particular [38,40], provide their software, which can
be used as a starting point in our experiments.

This article is intended as a research plan and is subdivided as follows: in the Materials
and Methods section, the planned characteristics of our CAD tool will be defined, with
details of our approach for the digitization of hand-drawn pedigree charts and some simple
feasibility tests, alongside the automatic prediction of individuals at risk of genetic mutation
directly on the digitized pedigree charts. Later, the expected results of our CAD will be
described in the Results section and discussed in the Discussion section.

2. Materials and Methods
2.1. Hand-Drawn Pedigree Chart Digitization: Our Approach

Figure 1 shows a sample of a pedigree chart from our database. The difficulties of the
automatic digitization task are evident: scan quality (e.g., document skew/rotation, uneven
illumination, noisy background), variability caused by individual writing style, complex
layout, inconsistent spacing in text, poor text legibility, and deformation in symbol shapes.
All these issues and others suggest that the digitization process should be necessarily
interactive, asking for the realization of a system for rough chart symbol, relationships, and
text recognition, followed by manual refinement.
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official symbology.

Figure 2, obtained from https://opengenetics.pressbooks.tru.ca/chapter/pedigree-
analysis/#LongDesc4.2.1Symbols (accessed on 26 September 2023), shows some symbols
used in pedigree charts.
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Figure 2. Some standard symbols used in constructing a pedigree chart.

Schematically, and disregarding old-fashioned procedures based on the recognition of
symbols by explicit feature calculations (as these methods are strongly dependent on the
symbol shape cleanness and tend to lack sufficient robustness), the approach we will follow
consists of a typical supervised scheme based on DL object detection and recognition, in
which each pedigree symbol would be treated as a different class label for classification,
and the model would identify which symbols are present and their spatial relationships to
reconstruct the pedigree chart structure.

https://opengenetics.pressbooks.tru.ca/chapter/pedigree-analysis/#LongDesc4.2.1Symbols
https://opengenetics.pressbooks.tru.ca/chapter/pedigree-analysis/#LongDesc4.2.1Symbols
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As anticipated, it will be engineered as a semi-interactive tool so to allow error cor-
rection. A preliminary realization step will be the creation of a training database of hand-
drawn pedigree chart symbols compliant to the standard human pedigree nomenclature
recommended by the Pedigree Standardization Work Group or PSWG (formerly Pedi-
gree Standardization Task Force, PSTF) of the National Society of Genetic Counselors
(NSGC) [41–45]. In this standard, adopted worldwide, nomenclature and recommended
pedigree symbols, to be used in clinical practice, publications, and electronic health records,
are established. The most recent standard can be found in [43] and is based substantially
on the use of simple shapes (squares for men, circles for women, 45-degree rotated squares
for non-binary) to denote family member sex, with text annotations to specify age, gender,
dates of birth/death, cause of death, etc., and variations such as filled shapes to indicate
clinically affected individuals, and diagonal lines through the symbols to specify diseased
individuals. Beside symbols and text, pedigree charts also rely on connecting lines to
specify relationships and thus the flow of genetic information within a family is as follows:
horizontal lines are used to represent marriages or partnerships between two individuals,
vertical lines descend from the marital union line to connect parents with their children,
siblings are connected by horizontal lines that run parallel to each other and connect to
their parents’ vertical lines, etc.

2.2. Procedure for Automatic Pedigree Chart Reconstruction

The procedure for automatic pedigree reconstruction for paper charts will consist of
the following steps:

• Pedigree chart scanning, producing image files from paper charts (manual step).
• Automatic recognition of pedigree symbols, line segments, and text parts.
• First correction module: interactive step to improve recognition by adding/refining/

removing symbols, line segments, text, which were not correctly recognized (manual step).
• Connectivity recognition and structure analysis, i.e., finding connections between

symbols, line segments, and text parts, to model the pedigree chart.
• Second correction module: manual intervention to refine the reconstructed chart;
• Saving to a standard format for subsequent elaboration.

The procedure will be mostly implemented in the Python language, possibly with
other convenient languages/environments for the Graphical User Interface (GUI).

Some steps of the reported procedure deserve more details.

2.3. Automatic Recognition of Symbols, Edges, and Text

Many state-of-the-art software tools exist for Optical Character Recognition (OCR), so
a choice of already working solutions will be tested. Among them, Tesseract OCR (https:
//github.com/tesseract-ocr/tesseract) (accessed on 27 September 2023) is one of the most
widely used open-source OCR engines; it is developed by Google and provides support
for multiple languages; its direct Python wrapper is the pytesseract library. Tesseract can
be found, together with other utilities for OCR pre-processing and post-processing, in
OCRopus, which is a collection of OCR-related tools (https://github.com/tesseract-ocr/
ocropy) (accessed on 27 September 2023). Another Python wrapper for tesseract and other
OCR engines, such as CuneiForm and GOCR, is PyOCR (https://github.com/jflesch/
pyocr) (accessed on 27 September 2023), which allows the use of multiple OCR engines
from a single interface. Finally, EasyOCR is a DL-based library for Python, supporting
multiple languages and known for its ease of use. The reported list is not exhaustive but
gives an idea of the wide choice available for text recognition. Text interpretation may be
difficult because abbreviations can vary in accordance with local habits, so this part may
require specific training of the DL procedures, and a heavier interactive step.

Regarding line segment detection (to determine the relationships between relatives),
many approaches are available in the literature. The critical points of line recognition are
the problems of jaggedness, waviness, and similar unforeseen anomalies often present in
hand-drawn graphs, which make recognizing line segments in hand-drawn diagrams a

https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/ocropy
https://github.com/tesseract-ocr/ocropy
https://github.com/jflesch/pyocr
https://github.com/jflesch/pyocr
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challenging computer vision task. Several techniques and approaches can be employed
to tackle this problem, such as various kinds of (possibly generalized) Hough Transforms,
edge detection algorithms such as Canny or Sobel, RANSAC (Random Sample Consensus,
a robust method for fitting models to data with outliers), and ML/DL models. A recent
review paper [46], at the time of writing available as a preprint on the arXiv platform, is
a good basis to start identifying effective procedures and available codes, because many
of the reviewed papers also published their evaluation code. Another reference to extract
inspiration and working code for line detection is https://www.catalyzex.com/s/Line%20
Segment%20Detection (accessed on 27 September 2023).

Regarding pedigree symbols, recognition can be achieved by DL approaches such as
various R-CNNs (Region-based Convolutional Neural Networks) flavors or YOLO (You
Only Look Once), or by ad-hoc methods based on image segmentation, feature calculation,
and a Machine Learning classifier or some rule-based recognition algorithm.

The search for an optimal approach will start from the literature works focusing on the
automatic recognition and digitization of graphs, flowcharts, piping, and instrumentation
diagrams, etc., as they probably share many of the problems we will encounter for pedigree
chart digitization.

The most critical preparatory step to the symbol recognition procedure will be software
training, which of course needs a very rich and large annotated dataset of symbols. At
present, to the best of our knowledge, no large publicly available database of annotated
pedigree symbols exists, so this step necessarily involves the creation of our own dataset.
We intend to proceed by following one or more of the following three different paths:

1. Annotating part of the pedigree charts from our clinical database, with existing
annotation software (e.g., Roboflow Annotate, https://roboflow.com/annotate; Label
Studio, https://github.com/HumanSignal/label-studio (accessed on 27 September
2023); Make Sense, https://www.makesense.ai/) (accessed on 27 September 2023);

2. Building from scratch a new dataset of hand-drawn symbols, containing the various
necessary shapes for pedigree charts;

3. Taking advantage of existing datasets containing hand-drawn shapes (circles, squares,
etc.) and deriving from each shape, by image processing techniques, a number of
pedigree chart symbols according to the NSGC-PSWG standard, for deceased persons
and for persons affected/non affected by the disease; for example, circles can be used
as follows:

(a) As they are (to denote alive women not affected by the disease);
(b) After filling (for deceased women);
(c) After superposing a diagonal line segment (for alive women affected by

the disease).

Some free datasets available online have already been identified, such as https://
github.com/frobertpixto/hand-drawn-shapes-dataset/ (accessed on 27 September 2023).
The sizes of the datasets can then be increased by augmentation techniques (https://www.
datacamp.com/tutorial/complete-guide-data-augmentation) (accessed on 27 September
2023), in particular, by small angle rotations, noise addition, distortion, etc.

2.4. Connectivity Recognition and Structure Analysis

This step consists of modeling the pedigree chart by the automatic reconstruction
of the relationships between pedigree symbols, edges, and text parts (how are symbols
connected by the lines? Where do lines intersect? To which symbol or line segment is
each part of text logically connected?). The result will be an undirected graph encoding
the family pedigree, where the nodes are the pedigree symbols or correspond to junctions
between lines (see Figure 3 for the details), the edges represent family relationships, and
both nodes and edges have convenient attributes storing the details of the relationships
between family members. Proximity check and rule-based algorithms will be used to
establish the relationships between symbols, edges, and text.

https://www.catalyzex.com/s/Line%20Segment%20Detection
https://www.catalyzex.com/s/Line%20Segment%20Detection
https://roboflow.com/annotate
https://github.com/HumanSignal/label-studio
https://www.makesense.ai/
https://github.com/frobertpixto/hand-drawn-shapes-dataset/
https://github.com/frobertpixto/hand-drawn-shapes-dataset/
https://www.datacamp.com/tutorial/complete-guide-data-augmentation
https://www.datacamp.com/tutorial/complete-guide-data-augmentation
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Figure 3. A graph G = (V, E) consists of a set of vertices or nodes (V) and a set of edges €. A vertex
represents an endpoint of an edge, and an edge joins two vertices. In order to model the pedigree
chart as an undirected graph, in addition to the nodes represented by the symbols, supplementary
nodes can be introduced at the connection points between the line segments, so that V = {pedigree
symbol nodes, connection nodes} and E = {suitably split line segments}. Nodes and edges will have
convenient attributes storing the details of the relationships between family members. The figure
clarifies the creation of new nodes, showing some of the nodes by red circles.

2.5. Saving to a Standard Format

Standard file formats exist for digital pedigree charts. Some of the most known
formats are .ped (https://csg.sph.umich.edu/abecasis/Pedstats/tour/input.html, https:
//gatk.broadinstitute.org/hc/en-us/articles/360035531972-PED-Pedigree-format), and
gedcom (https://lisalouisecooke.com/2017/03/11/gedcom-file (accessed on 27 September
2023), Genealogical Data Communication). Saving in standard formats allows to exchange
genealogical data between different software programs for analysis.

2.6. System for De Novo Digitization of Pedigree Charts

The digitization of pedigree charts from paper to digital media constitutes the central
focus of our paper. Our software tool will also include the direct de novo digitization of
pedigree charts. Through an intuitively designed user interface, our software will facilitate
the construction of digital pedigree charts using standard symbology. An exemplary
instance of such software in the existing literature is f-tree (https://holonic-systems.com/
f-tree/en/) (accessed on 27 September 2023) [6], an open-source product developed by
the School of Medicine at Iwata University in Japan. Programs like f-tree, or comparable
alternatives, may serve as benchmarks or control tools to enable the comparison and
validation of the outputs generated by our software. In this way, our system offers a
groundbreaking feature by allowing users to input pedigree charts directly into the software
without the intermediary step of transitioning from a paper format. This innovation
revolutionizes a traditionally manual system heavily reliant on handwritten pedigree charts.
The user-friendly interface streamlines the process, enhancing efficiency and expanding
the scope of pedigree chart digitization beyond conventional paper-based methods.

2.7. Predicting At-Risk Individuals on the Digital Pedigree Chart

During the pre-genomic phase and OGC counseling, the software will indeed act as
a CAD, allowing the semi-automatic digitization of pedigree charts from paper media,
and supporting their completion and refinement by a user-friendly graphical interface,
thus, automating and simplifying the chart creation process as much as possible. Now, by
having a large number of digitized pedigree charts combined with their outcome of the
genetic mutation test present for each, it will also be possible to train new AI algorithms
that “learn” from the examples provided to recognize who carried the mutation. Once

https://csg.sph.umich.edu/abecasis/Pedstats/tour/input.html
https://gatk.broadinstitute.org/hc/en-us/articles/360035531972-PED-Pedigree-format
https://gatk.broadinstitute.org/hc/en-us/articles/360035531972-PED-Pedigree-format
https://lisalouisecooke.com/2017/03/11/gedcom-file
https://holonic-systems.com/f-tree/en/
https://holonic-systems.com/f-tree/en/
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trained, the CAD can indeed take a new digital pedigree chart (never seen before) as input
and predict the at-risk individual(s) directly on the chart, automatically. The idea is to
highlight the at-risk individual(s) with a bounding-box and also provide a risk percentage
for each highlighted subject.

To this end, classifiers based on both typical ML paradigms (decision trees, support
vector machines, naive bayes) and DL (CNN) or Transfer Learning (TL) (using already
trained convolutional neural networks) will be designed and implemented. Thus, multiple
learning models will be used for the same data source, ensuring great diversity between
them. The algorithms will be appropriately evaluated with dimensionality reduction
techniques and information content preservation.

The performance of the intelligent risk prediction model on pedigree charts will be
compared with that obtainable from predictive models already mentioned and used in the
clinical field. These models, based on statistical predictions, assess a certain probability
using personal and family medical history. Among these, we find the BCRAT (Breast Cancer
Risk Assessment Tool), also known as the Gail model, a breast cancer risk assessment
tool developed to estimate a woman’s risk of developing invasive breast cancer over
the next 5 years and up to the age of 90. This tool uses a combination of risk factors,
including age, reproductive history, family history of breast cancer, and previous breast
biopsies. BOADICEA is another risk prediction model, estimating individual risk for breast
and ovarian cancer based on family history and specific genetic mutations (like BRCA1
and BRCA2). Unlike the Gail model, BOADICEA considers the detailed family history,
including first, second, and third-degree relatives, and can also incorporate genetic test
results. Other commonly used models are IBIS, which provides the breast cancer risk
using the Tyrer–Cuzick index, in percentage (https://ibis-risk-calculator.magview.com/)
(accessed on 27 September 2023), and BRCAPRO, which instead returns the risk of having
BRCA1/2 mutations (https://projects.iq.harvard.edu/bayesmendel/brcapro) (accessed on
27 September 2023).

Although these tools can be used to be compared with the results that will come from
our CAD, recent studies [47] have highlighted that such statistical models have limitations
in their predictive capacity, especially when compared with more advanced methods like
Machine Learning algorithms on the same data. AI may indeed show significant capability
in improving the accuracy of classifying women with and without breast cancer.

Precisely for this reason, the goal of our CAD system is to surpass the limitations of
traditional statistical models, offering specialists a powerful and integrated tool that can
identify high-risk patients more efficiently, allowing for preventive interventions and per-
sonalized therapies. This integrated CAD will be a significant aid during OGC, providing
the specialist with an initial indication of at-risk individuals along with an associated risk
percentage. The specialized oncologist will then decide whether the individual should
undergo mutational testing. Once the mutational status has been determined, individuals
carrying the mutation(s) will enter the Surveillance Protocol for cancer diagnosis.

2.8. Preliminary Tests

Although this paper essentially reports a research plan and a project definition, with
the purpose of sharing ideas and purposes and to stimulate collaborations, some prelim-
inary tests were performed to obtain insights and suggestions about project feasibility.
We started from the fundamental problem of symbol and text recognition followed by
connectivity assessment, because once the basic graphic elements and text are detected and
correctly connected, structural analysis can be faced by reconstructing attributed graphs,
and the obtained trees can be used to build the necessary database for ML experiments.

The approach we started from was based on digital image processing and was devel-
oped in python with OpenCV, scikit-image, and EasyOCR.

Digital images of some test genealogical trees were obtained by scanning (image
resolution around 2300 × 1600) and were initially preprocessed with a simple chain of filters
(currently consisting of conversion to gray values, application of an adaptive threshold

https://ibis-risk-calculator.magview.com/
https://projects.iq.harvard.edu/bayesmendel/brcapro
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filter, skeletonization) to pass from the raw images to their black and white versions (see
Figure 4 for an example). Then, the images were fed to the recognition pipeline.
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Figure 4. Example of preprocessing, from the original document scan (left), to the image obtained
by an adaptive threshold filter (center), and finally to the skeletonized diagram (right). Some lines,
in particular the oblique segments, appear as double after skeletonization because of the particular
pen used, and give origin to double lines after the Hough transform. The defect is removed with line
merging (see text and Figures 5 and 6).
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some lines were merged so that now only the essential five segments survive), and connection locating
(right; found connections in blue).
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Figure 6. In this example, the problem of double lines due to the specific pen employed, is evident in
the diagonal segment. The problem is solved by segment merging (rightmost picture). The diagram
fragment was effectively reduced to the minimum number of segments (four for the square, one for
the diagonal line, and one for the vertical line).
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As the first step, a module for separating text from graphics (symbols and connection
lines) was developed; in this way, an independent analysis of text and genealogical tree
symbols could be performed and many problems of false positives in symbol detection due
to text misinterpretation could be avoided.

Text windows were located by EasyOCR, which was also used to obtain a first guess
of text meaning. It was soon clear that hand-drawn text recognition was a very tough
task because text mainly consisted of some key words (which were often recognized by
OCR, such as “melanoma”), first names (for which a database will be created and used for
training or for a posteriori automatic correction), family names (more difficult to deduce),
and specific abbreviations. The difficulty was expected and will be tackled in the interactive
stage of the software, where a click on each text window will prompt the user to correct
the text.

Then, we worked on line segments and, consequently, squares/rectangles. The Hough
transform in OpenCV was used to find all the “straight” line segments. The algorithm
was sensitive and found all the segments in the diagram, with much redundancy and
with defects (fragmented or multiple segments). The problem of redundancy and the
presence of defects were solved by implementing line merging [48] which was used to
collapse similar segments into one, where similarity was defined in terms of tolerances in
the angle and distance between the segments, both for overlapping and non-overlapping
lines. After line merging, connections between the endpoints of different segments were
found by simply locating the pairs of endpoints close to each other according to a defined
threshold. On the other hand, connections between a segment endpoint and an internal
point of another segment were also searched for, by assessing the closeness of the endpoint
to each of the points of the segment, computed by Bresenham’s line algorithm. The
two types of connections were labeled in a different way, as the distinction is useful for
structure analysis. See Figures 5 and 6 for two examples of line detection, line merging,
and connection assessment.

The detection of squares/rectangles was tackled by searching for cyclic connections
between quasi-horizontal (H) and quasi-vertical (V) segments (i.e., sequences like H-V-H-V
in which connections between segment endpoints were previously discovered). The code
was tested on a few sample images, demonstrating reasonable detection accuracy.

Finally, some tests were performed for circle/ellipse recognition. In this case, the
number of false positives was quite high and a simple algorithm for ellipse merging (which
was coded and tested) was not sufficient to reduce them and to sufficiently clean the result.
In this case, a method of reduction of false positives, or a totally different approach, possibly
based on ML, is in order; our tests are now going in this direction.

It is evident from what has been exposed that the methods which have been imple-
mented only skim the surface of this very complex problem. It is also clear that many
“magic numbers” (thresholds, tolerances) are at present only hard coded instead of being
deduced from the image itself, making the system more adaptive must be one of next goals.
Nonetheless, these feasibility tests suggest that recognition starting from simple image
processing procedures (already explored in other works, such as [40]) is a good starting
point, to be completed with more complex and smart approaches.

3. Results

The pedigree chart is the primary foundational tool in OGC. It is utilized to assess the
risk an individual has of inheriting a mutation predisposing them to hereditary cancer. Thus,
the pedigree chart is central to the entire research process. The processes of developing a
CAD tool capable of digitizing paper-based pedigree charts or the automatic generation of
new digitized ones followed by the prediction of high-risk individuals, as envisaged in our
research plan, would introduce significant and competitive innovations in both process
and service. The main outcomes will be defined in the next sections.
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3.1. Digitizing Paper-Based Pedigree Charts

The first innovation of our CAD extends to the ability to digitize pedigree charts that
have been previously collected in paper format. Traditionally, pedigree charts, valuable for
understanding the family history of diseases, are managed in paper format, often entailing
time-consuming and error-prone processes. Current hospital operational systems are based
on a mix of generic software platforms related to the implementation of electronic health
records, or other platforms—not necessarily open ones—present in the hospital. These sys-
tems are unable to represent diverse information in a structured manner (e.g., relationships
among different individuals in a study), forcing medical personnel to manually collect data,
including reconstructing pedigree charts on paper. This makes managing such complex
data difficult, leading to information loss and rendering it unavailable for further analysis.
In a context where healthcare service digitization is viewed as a pivotal turning point for
the evolution of the sector, our software tool fully embraces this perspective and aims to
simplify and enhance this process by building a software tool specifically designed for
pedigree chart management. Beyond significant time savings, this transition reduces the
risks associated with manual data entry errors, ensuring the accuracy and reliability of the
collected information. Our tool will not only digitize existing paper charts but will also be
capable of creating new ones from scratch. The introduction of this digitization represents
a seamless transition for healthcare professionals, moving from traditional paper-based
record keeping to an efficient digital data entry system.

3.2. Predicting High-Risk Individuals

Beyond digitization, our software tool will empower genetic oncologists to identify
individuals within the pedigree chart who are at an elevated risk of genetic mutation
predisposition. The software will also indicate the percentage of risk for each individual
directly on the pedigree chart. To the best of our knowledge, there is no existing AI model
in the literature that functions as a CAD system capable of predicting the percentage of
this risk directly on the digital pedigree chart, whether newly digitized or derived from
a paper-based source. The prediction of at-risk individuals could significantly support
physicians during OGC in selecting ideal candidates for genetic testing. The advantage
our CAD tool would offer should be considered keeping in mind that determining the
appropriateness of a genetic test for suspected hereditary cancer is challenging, particularly
for the hereditary forms of the most common tumors in the population. When there are
no pathognomonic characteristics of hereditary disease but only data on the prevalence of
the mutation in subgroups of cases selected for different criteria, the criteria for accessing
genetic tests represent a compromise between containing costs and offering a test that can
significantly impact prevention possibilities. These criteria are often superimposable on
the criteria for sending individuals to OGC. A distinctive aspect of OGC is the need to
involve other family members beyond the individual seeking consultation. This occurs
in the preliminary phase of the approach to choose the most suitable family member
for the search for a possible “unknown mutation”. When the individual seeking OGC
is a healthy person, it is typically proposed to involve a close relative who has already
developed the disease. The result of the genetic test will then inform decisions about the
presence or absence of predisposition in the family. Analyzing the family member with the
highest likelihood of mutation first allows, if the genetic test is normal, the conclusion that
the family’s oncological history is probably not attributable to mutations in the analyzed
gene. If the genetic test is positive, all willing family members can benefit from the test
to identify the “specific mutation”, thereby reducing the costs and time of the diagnostic
process. Conversely, if a healthy family member is analyzed first and the genetic test for
the search for an “unknown mutation” is normal, it becomes challenging to determine
whether the subject has not inherited the mutation present in the family or if there is no
mutation in the family (in the analyzed gene/s). The estimate of the oncological risk must
consider this limitation of the test. In current practice, selecting the most suitable candidate
for the family’s diagnostic genetic test can be exceedingly difficult or even impossible,
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sometimes due to reasons beyond the control of the person undergoing OGC (e.g., no living
or willing patient to undergo the genetic test). In this context, the sinnovative approach of
a software able to recognize high-risk individuals represents a pioneering initiative aimed
at addressing and rectifying challenges and disparities in the current landscape of OGC
and genetic testing; it will aid clinical geneticists and oncologists in selecting candidates,
potentially allowing for an evidence-based approach. This is especially crucial given the
inherent complexity and variability of genetic variants encountered in large populations.

3.3. Future Extensibility: The Potential of a Clinical Decision Support System

During the pre-genomic phase and OGC counseling, our CAD is thought to (1) perform
the semi-automatic digitization of pedigree charts from paper media, and support their
completion and refinement (but also the creation from scratch) by a user-friendly graphical
interface, thus automating and simplifying the chart creation process; (2) predict subjects at
risk of carrying the mutations and their risk percentage on these digital pedigree charts,
while also considering national recommendations.

Our CAD system can also be envisioned as a comprehensive product that integrates
the functionalities of a CAD with those of a Clinical Decision Support System (CDSS),
serving as a predictive model for disease management. To elucidate this capability, a
premise is useful, namely, in the post-genomic phase, upon obtaining the genetic test
results, only individuals exhibiting the mutation—thus considered at risk—are enrolled in
the Surveillance Protocol. Within this protocol, they are encouraged to undergo screenings
for the diagnosis of hereditary tumors. Specifically, at-risk individuals undergo various
imaging procedures, such as Magnetic Resonance Imaging (MRI) and mammography for
breast cancer, and ovarian ultrasound for ovarian cancer. Individuals testing negative in
the screenings are monitored over time, repeating periodic imaging exams. On the other
hand, those testing positive in the screenings and diagnosed with cancer are overseen
by oncologists, and they may undergo surgery or radiotherapy after medical imaging
assessment and biopsy, which is considered the gold standard for diagnosis in this context.
This represents the standard clinical procedure for at-risk patients.

Looking ahead, as a significant volume of medical images is generated, our planned
software would have the potential to integrate additional AI algorithms. These algorithms
can serve as predictive models, responding to specific questions for which they have been
trained. Consequently, they can predict new prognostic variables even in the post-genomic
test period, assisting oncologists in managing individuals within the Surveillance Protocol
for cancer screening. During this phase, the software functions as a CDSS. These intelligent
models can be trained to predict new prognostic variables or support genetic oncologists in
managing cancer lesions. Some of these possibilities include the following:

- Automatic lesion segmentation: Medical images could be analyzed by expert radi-
ologists and manually outlined. These annotated images can be used to train an AI
system to autonomously identify lesions in new images. Once optimized, this model
could be integrated into the software, assisting oncologists in operator-independent
lesion localization, contouring, and size assessment.

- Radiomics and radiogenomics analysis: After identifying a lesion, radiomics anal-
yses can be conducted, extracting quantitative information from images that is not
immediately visible to the human eye. This “feature extraction”, combined with
genetic data, would provide a more in-depth view of a patient’s specific tumor. This
advanced model, once developed, could be integrated into the software, aiding in
tumor diagnosis and characterization.

- Therapeutic monitoring: In the post-diagnosis phase, if a tumor is detected, medical
images can serve as a crucial tool to monitor treatment efficacy. These images can be
used to train predictive systems aimed at tracking therapy progress over time. For
example, by comparing automatically segmented lesions before and after treatment,
quantitative differences can be assessed to determine if there has been a reduction in tu-
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mor size. This data-driven approach allows for a more precise evaluation of treatment
outcomes and helps clinicians make informed decisions regarding patient care.

- Risk candidate identification: Those with genetic mutations might not necessarily
manifest a tumor during their lifetime. Ideally, by analyzing omics data collected
from each individual, such as genomics, transcriptomics, proteomics, metabolomics,
pathomics, and radiomics, and observing whether they develop the disease in specific
time intervals (e.g., 2, 3, or 5 years), an advanced system could be trained to predict
cancer risk. This system, using a combination of clinical, genetic, and other data, could
determine the circumstances under which an individual might fall ill. Once optimized,
the system could assess risk based on the data of an individual undergoing these
tests for the first time. This would not only provide a tool for risk estimation but also
identify the primary risk factors. Once developed, this model could be integrated
into the software, providing evaluations based on an individual’s omics data and
risk factors.

These are just a few examples. Naturally, only with data analysis will it be possible
to understand which other outcomes could be achieved. The models thus trained can be
integrated into the software and function as a CDSS in the post-genetic test phase, providing
enormous value in the Surveillance Protocol for patient management. This extension of our
CAD, connects the fields of imaging and genetics, providing a holistic and personalized
approach to patient care.

4. Discussion

While it is widely recognized that 5 to 10% of breast cancers and up to 15% of ovarian
cancers exhibit a hereditary predisposition [49], the pressing challenge lies in uncovering
these cases. There is an urgent need to pinpoint individuals at risk who should undergo
genetic testing, along with their at-risk family members, to determine their susceptibility to
hereditary–familial tumors.

In the era of omics sciences and big data, the application of AI principles in medicine,
especially in oncology, is already a reality. ML and DL techniques are used today to
predict therapy responses, disease progression, early radiological identification of the
disease, and the discovery and validation of new diagnostic biomarkers. Nevertheless,
some types of health data have remained on the sidelines of this remarkable revolution.
An example is the pedigree charts in genetic oncology, crucial for identifying individuals
within a family—based on current national and international guidelines—who can be
evaluated to assess their genetic predisposition to an increased risk of developing new
neoplastic diseases.

As far as we know, there are no examples in the literature today about the use of
AI-based technologies on these datasets, which essentially remain in the patient’s and their
family’s paper or electronic file, without further use. The development of an automated
CAD system for the digitization of hand-drawn pedigree charts and the prediction of at-risk
individuals, is a complex and promising endeavor poised to reshape the landscape of OGC,
clinical research, and patient care within the realm of genetic oncologists.

Our CAD should be seen in the broader context of the European Union. The European
Union views the digitization process as an essential tool in the service of cancer care (The
European Digital Strategy—Shaping Europe’s digital future (europa.eu)). The development
of strategies to overcome the “barriers” opposing a full digital transformation and the
exploitation of the resulting data in terms of interoperability is deemed indispensable for
clinical care, research, and planning purposes. Digital health encompasses all Information
and Communication Technologies (ICTs) required for the functioning of the health system
(from electronic prescriptions to telemedicine and telecare, to information supporting
epidemiological studies and clinical research). In Italy, the transition to digital health is
one of the prerequisites for achieving the country’s health objectives, helping to simplify
access to health and social care services and redesigning a national health service model
that guides the patient in using health services, meeting their needs while containing
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costs. This need is acknowledged by the State-Regions Conference and incorporated into
the verification of Essential Levels of Care. To this end, it is essential to ensure national
governance of the digitization process with a strategic, systemic, and integrated vision that,
thanks to coordinated and flexible technical protocols, allows the interoperability of ICT
systems, reducing the risk of local misalignments. The transition to digital health, acting
transversally across various areas, supports different organizations in accelerating the
achievement of strategic objectives, namely reducing the incidence of tumors, improving
diagnosis and treatment, reducing cancer mortality, and enhancing the quality of life of
patients and long-term survivors. Digitizing healthcare services is then a crucial step
towards the modernization of the healthcare system.

Turning now to the specifics of the Italian context, it is also important to mention the
“National Oncological Plan” [50] approved on 27 January 2023, with the State-Regions
agreement. It is a planning and guidance document for the prevention and fight against
cancer from 2023 to 2027. This Plan identifies objectives and strategic lines consistent
with the European Plan against Cancer (Europe’s Beating Cancer Plan) [51] and must be
embraced by the Regions and Autonomous Provinces with their own measures, adopting
the most suitable organizational solutions in relation to the needs of their own program-
ming. This document aims to define a global and cross-sectoral approach to reduce human
suffering and the socio-economic burden of tumors. According to the plan, screening
and personalized care for subjects at high hereditary–familial risk should be emphasized.
This plan, in fact, considers it necessary to pursue the personalization of preventive ac-
tions through the identification of high-risk subjects and the establishment of intensified
surveillance and specific prevention programs that complement screenings, integrating
with them from a structural and operational point of view. It is clear that there is a need to
intervene with strategies aimed at increasing the number and quality of life of people at
risk. In addition, the document insists on the role of prevention based on the identification
of disease determinants, on quantifying risk, and on recognizing the role of genetic and
environmental components as factors contributing to the onset of the disease.

In this scenario, early detection of hereditary breast and ovarian cancers targeting
the BRCA1/2 gene mutation is of absolute importance, especially since drug therapy
with PARP inhibitors is already available for these mutations. However, although the
National Plan from the Italian Minister of Health for 2014–2019 and the subsequent one for
2020–2025 [52] anticipated the adoption of organized pathways for the prevention of breast
and ovarian cancer associated with pathogenic variants of the BRCA genes in all Italian
Local Health Authorities by 2019, in reality, the Clinical Pathway “High Hereditary-Familial
Risk for carriers of pathogenic BRCA variants” has not yet been approved in all regions.
Only in some is the exemption from the ticket payment recognized for surveillance tests
of high-risk healthy individuals, as reported in the latest National Plan for 2023–2027 [50].
Similar evaluations can obviously also be carried out on other and less well-known CPGs,
the list of which increases together with the development of new studies and innovative
instrumental methods.

Recognizing the crucial role of organized pathways for the prevention and early
diagnosis of hereditary cancers, a CAD capable of digitizing pedigree charts and predicting
at-risk subjects, aligns perfectly with the objectives set by the National Plans. Additionally,
in the future, the tool can function as an integrated system to monitor mutation carriers,
serving as CDSS in the post-genomic test phase, assisting the genetic oncologist in managing
the individual within the Surveillance Protocol to assess the presence of the tumor and its
prognosis. Not only will this expedite the risk identification process functioning as a CAD,
but by integrating medical images and omics data, it will provide a comprehensive and
personalized risk profile of that at-risk individual.

We aim to bridge the gap between scientific advancements and practical implemen-
tation by modernizing and enhancing existing OGC services currently in place across
the country. The integration of our innovative software into existing healthcare systems
represents a significant step towards achieving the goals outlined in the national plans and
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also a proactive approach to improving the overall health and well-being of individuals at
high risk.

5. Conclusions

Considering the tens of millions of cases diagnosed every year throughout the world [1]
and that in approximately 10% [3] (and perhaps even more for some types of cancer) of
these a hereditary mechanism is involved, we can understand how the problem is not
negligible in numerical terms and how important it is to introduce innovations in the
clinical practice and management of this fraction of cancer patients.

Traditionally, pedigree charts, essential for identifying individuals with an increased
risk of developing hereditary tumors, have been maintained in physical form, often result-
ing in time-consuming and error-prone processes. Our plan is to introduce and automate
a CAD system that can digitize existing hand-drawn pedigree charts. This involves the
recognition of symbols, line segments, text parts, the reconstruction of the pedigree chart
structure, and their de novo creation, heralding a significant process and service innova-
tion in the medical care workflow. The introduction of this digitization process presents
healthcare professionals with a seamless transition from the conventional paper-based
record keeping to efficient and error-reducing digital data entry. Beyond the significant
time savings, this transition mitigates the risks associated with manual data entry errors,
ensuring the accuracy and reliability of the collected information.

In addition, our CAD tool would hopefully predict a genetic predisposition risk
directly from these digital pedigree charts. This new system has the potential to streamline
and enhance various aspects of genetic counseling, research, and healthcare, leading to
improved patient care and advancements in the field of oncogenetics. By incorporating
medical images and other outcomes from omics sciences, there is also a fertile ground
for training additional AI systems, broadening the software predictive capabilities. In
conclusion, by focusing on the digitization of paper pedigree charts and the prediction of
high-risk individuals, we aim to revolutionize the way familial and hereditary cancer risk
information is collected and managed.
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List of Abbreviations

Abbreviation Meaning
BCRAT Breast Cancer Risk Assessment Tool
BOADICEA Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm
CAD Computer-Aided Detection/Diagnosis
CASE Computer-Aided Software Engineering
CDSS Clinical Decision Support System
CLEF-IP Conference and Labs of the Evaluation Forum—Intellectual Property
CNN Convolutional Neural Networks
CPG Cancer Predisposition Gene
CT Computed Tomography
DL Deep Learning
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DNN Deep Neural Network
FR-DETR Flowchart Recognition Detection Transformer
GUI Graphical User Interface
GWAS Genome-Wide Association Studies
HBOC Hereditary Breast and Ovarian Cancer
IBIS International Breast Cancer Intervention Study
ML Machine Learning
MRI Magnetic Resonance Imaging
NGS Next Generation Sequencing
NSGC National Society of Genetic Counselors
OCR Optical Character Recognition
OGC Oncological Genetic Counseling
P&ID Piping and Instrumentation Diagram
PSTF Pedigree Standardization Task Force
PSWG Pedigree Standardization Work Group
RANSAC Random Sample Consensus
R-CNN Region-based Convolutional Neural Network
TL Transfer Learning
UML Unified Modeling Language
YOLO You Only Look Once
YOLSO You Only Look for a Symbol Once
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