
Citation: Madarro-Capó, E.J.;

Ramos Piñón, E.C.; Sosa-Gómez, G.;

Rojas, O. Practical Improvement in the

Implementation of Two Avalanche

Tests to Measure Statistical

Independence in Stream Ciphers.

Computation 2024, 12, 60.

https://doi.org/10.3390/

computation12030060

Academic Editors: Francesco

Cauteruccio and Yudong Zhang

Received: 17 January 2024

Revised: 3 March 2024

Accepted: 8 March 2024

Published: 19 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Practical Improvement in the Implementation of Two Avalanche
Tests to Measure Statistical Independence in Stream Ciphers
Evaristo José Madarro-Capó 1 , Eziel Christians Ramos Piñón 1 , Guillermo Sosa-Gómez 2,* and Omar Rojas 2

1 Instituto de Criptografía, Facultad de Matemática y Computación, Universidad de la Habana,
Habana 10400, Cuba; evaristo.madarro@matcom.uh.cu (E.J.M.-C.)

2 Facultad de Ciencias Económicas y Empresariales, Universidad Panamericana, Álvaro del Portillo 49,
Zapopan 45010, Jalisco, Mexico; orojas@up.edu.mx

* Correspondence: gsosag@up.edu.mx; Tel.: +52-3313682200

Abstract: This study describes the implementation of two algorithms in a parallel environment. These
algorithms correspond to two statistical tests based on the bit’s independence criterion and the strict
avalanche criterion. They are utilized to measure avalanche properties in stream ciphers. These
criteria allow for the statistical independence between the outputs and the internal state of a bit-level
cipher to be determined. Both tests require extensive input parameters to assess the performance of
current stream ciphers, leading to longer execution times. The presented implementation significantly
reduces the execution time of both tests, making them suitable for evaluating ciphers in practical
applications. The evaluation results compare the performance of the RC4 and HC256 stream ciphers
in both sequential and parallel environments.

Keywords: stream cipher; avalanche criterion; bit independence; parallel implementation; statistical
test

1. Introduction

Advancements in wireless communications have made protecting privacy between
communicating parties a very important issue [1]. Stream ciphers are widely used in
practice as an essential solution for protecting the information transmitted in communi-
cations. Currently, there are proposals for secure and efficient stream ciphers in various
communication protocols for encrypting and decrypting messages in networks [2–5]. One
of the encryption schemes in symmetric cryptography is stream ciphers [6,7]. These designs
are based on the specification of a pseudorandom number generator (PRNG) algorithm.
The term “pseudorandom” denotes a sequence of deterministic numbers that mimic an
independent and uniformly distributed variable. The idea of this type of scheme is to
generate a sequence of pseudorandom numbers with the same length as the text to be
encrypted, represented, for example, in ASCII code or binary, and then combine them
element by element using a simple and reversible function (e.g., Exclusive-OR, XOR) [8–10].

Nowadays [11–14], the suitability of these schemes in cryptographic environments is
typically assessed in three ways. One approach is to estimate the numerical characteristics
of the statistical distribution of the sequences generated by the PRNG that defines the
stream cipher [15,16]. The second method involves determining the existence of a statistical
correlation between the internal state and the outputs of the cipher algorithm [17–20].
Meanwhile, the third method involves measuring the resistance of the cipher algorithm
against known attacks [21,22].

A wealth of information on statistical tests designed to assess the randomness of
sequences of pseudorandom numbers is available in the literature. Some statistical test
sets (called “battery” or “suite”) are considered international standards, such as NIST [23],
Dieharder [24], Knuth [25], and Marsaglia [26], among others [27,28]. However, this

Computation 2024, 12, 60. https://doi.org/10.3390/computation12030060 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation12030060
https://doi.org/10.3390/computation12030060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0001-5004-2960
https://orcid.org/0009-0003-2902-1868
https://orcid.org/0000-0001-7793-896X
https://orcid.org/0000-0002-0681-3833
https://doi.org/10.3390/computation12030060
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation12030060?type=check_update&version=1

Computation 2024, 12, 60 2 of 13

approach has the limitation of omitting the evaluation of other essential elements in deter-
mining the security of a stream cipher. One of these factors is the statistical independence
between the internal state (comprising all the variables that determine the operation of
the PRNG, including the input) of the cipher and its outputs [29]. Their determination
is essential to avoid powerful cryptographic attacks such as the correlation attack [30,31],
the differential attack [32], or the attack on neutral bits [33]. However, there is a lack of
comprehensive bibliographies on assessments of statistical independence between the
values of the internal state variables of a PRNG and its outputs.

New ways of increasing the effectiveness of these attacks are constantly emerging,
and new attacks are also being developed due to the challenge faced by cryptographic
algorithm designers in identifying any statistical dependencies [34,35]. Thus, to this day,
this topic remains a subject of ongoing study and, simultaneously, a persistent challenge
for developers of stream cipher algorithms.

The avalanche property is conceptualized as the possibility of measuring the impact of
a specific change in a variable X on another variable Y, related in such a way that Y = f (X)
with f , an arbitrary function. The impact of altering certain bit(s) of X on Y has been
studied in [36]. Assuming that f is a stream cipher, this property enables us to determine,
at the bit level, the existence of statistical independence between the outputs and inputs of
the cipher. There are specific criteria for evaluating avalanche properties in cryptography,
including the strict avalanche criterion (SAC) and the bit independence criterion (BIC).
However, both criteria were introduced to evaluate substitution boxes used in the design of
block cipher algorithms [36]. However, an extension of both criteria was recently proposed
for the evaluation of stream ciphers [37–39].

The proposed statistical tests play a fundamental role in evaluating stream ciphers for
cryptographic purposes. Suppose the output elements in a specific cipher depend on only
a few bits of the input. In that case, an attacker can detect these behaviors and use them
to obtain information about the internal state parameters. For a transformation to exhibit
the avalanche effect, on average, half of the output bits should change when a single input
bit is complemented [36]. Both tests require extensive input parameters, which leads to
longer execution times. This study’s main result is the development of an implementation
that substantially reduces the execution time of both tests, making it practical to evaluate
stream ciphers.

2. Motivation of the Research

In cryptography, the avalanche effect is a term associated with a specific behavior
of the mathematical elements used for encryption. It is considered one of the desirable
properties when designing a strong cipher or cryptographic hash function. It is basically
based on the fact that a slight change in the key or the cleartext should result in a significant
change in the ciphertext. In practice, flipping a single bit in the key or cleartext should
cause at least half of the bits in the output value of the cipher or hash to change.

This definition can be used to abstract the more general concept of independence
in stream ciphers and, therefore, a proposal to measure the quality of a PRNG. Total
independence is impossible to achieve since, given a PRNG, the same output is always
obtained for the same input. However, in practice, an ideal PRNG will resemble a random
function where the inputs and internal state do not cause statistical patterns in the outputs.
That is, any cryptographically valid PRNG would satisfy the avalanche effect.

In [37,38], two statistical tests are proposed based on two avalanche properties: the
strict and bit independence criterion. Both tests are presented as an extension of both
criteria for evaluating independence in stream ciphers. In practice, applying either test
over the entire space of possible keys is not feasible. This way, it is applied for a randomly
generated subset of keys of prefixed size l. If both tests are satisfied for all keys in the
subset, then it is assumed that the generator could meet both avalanche criteria.

Given l keys of n bits each, for each i, with 1 ≤ i ≤ n, l sequences of m bits are
generated corresponding to the l differences (in this case, the XOR) between the original

Computation 2024, 12, 60 3 of 13

output of each key and the output of the same key with the i bit inverted. The above process
results in a matrix of l × m, and from this matrix, both criteria, SAC and BIC, require m and
Cm

2 Hamming weight calculations, respectively. It can be noted that, with the increase in the
parameters n, m, and l, an increase in the execution time of the algorithms corresponding
to each test is obtained. This increase is given, in the worst case, by an approximate cubic
and quartic factor for SAC and BIC, respectively.

Executing both tests can constitute a practical problem, given that high parameter
values are usually used for statistical evaluation in cryptography. Examples of these
values can be seen in [37–39]. To increase the applicability of the tests in this work, a
practical improvement is presented in implementing both tests through the use of a parallel
architecture.

3. Statistical Independence in Stream Ciphers

As previously mentioned, the design of statistical tests for measuring statistical in-
dependence in stream ciphers is crucial in cryptography. In [37,38], two algorithms are
proposed to expand the bit independence criterion and the strict avalanche criterion to stream
ciphers to achieve this goal. Both tests are described below, following some definitions.

The avalanche matrix shown in Table 1 forms the foundation for assessing the statistical
independence between the inputs and outputs of a stream cipher f . Both algorithms are
constructed in the same way. Through the SAC, it can be determined if the change in
each input bit uniformly influences each output bit; meanwhile, through the BIC, it can be
determined if this influence implies any correlation between the output bits.

Table 1. SAC matrix Hi = (vi
rj) defined in [37–39].

Avalanche Vectors
Avalanche Variables

vi
·1 vi

·2 . . . vi
·j . . . vi

·k . . . vi
·m

Vi
1 vi

11 vi
12 . . . vi

1j . . . vi
1k . . . vi

1m

...
...

...
...

...
...

...
...

...

Vi
r vi

r1 vi
r2 . . . vi

rj . . . vi
rk . . . vi

rm

...
...

...
...

...
...

...
...

...

Vi
l vi

l1 vi
l2 . . . vi

l j . . . vi
lk . . . vi

lm

Let Vi
r = Yr ⊕ Yi

r = (vi
r1, . . . , vi

rm) be each avalanche vector obtained between the
outputs Yr = f (Xr) and Yi

r = f (Xi
r), with Xi

r = Xr ⊕ ei, 1 ≤ i ≤ n, 1 ≤ r ≤ l. Here,
f : Fn

2 → Fm
2 is the cipher function to be evaluated, n is the input size, m is the output

length, l is the number of inputs X to evaluate, and ei denotes each canonical vector
of dimension n with unit in bit i. It is known that f satisfies the SAC if each variable
vi
·j ∼ B(l, 1/2); that is, vi

·j follows a Binomial distribution, with 1 ≤ j ≤ m. Meanwhile,
the BIC is fulfilled based on the degree of independence between each pair of variables
(vi

·j, vi
·k) with 1 ≤ j, k ≤ m.

3.1. Test of Independence Based on SAC

In the case of the SAC, the null hypothesis H0 of the test is given by:

H0 : HW(vi
·j) ∼ B

(
l,

1
2

)
,

H1 : HW(vi
·j) ̸∼ B

(
l,

1
2

)
.

Computation 2024, 12, 60 4 of 13

The test statistic used under the null hypothesis is:

χ2
vi
·j
=

(
HW(vi

·j)−
l
2

)2

l
4

. (1)

The random variable T is defined by

T =
n

∑
i=1

m

∑
j=1

t(vi
·j, α1), (2)

with

t(vi
·j, α1) =


1, If H0 is rejected for vi

·j
with significance α1

0, otherwise.
(3)

The expected value and the variance of T under the null hypothesis is given by

E(T|H0) = α1 · n · m, σ2(T|H0) = α1 · n · m · (1 − α1). (4)

Thus

ZT =
T − E(T|H0)√

σ2(T|H0)
∼ N(0, 1). (5)

The decision criterion compares the obtained value ZT with the value Z1−α2 so that if
ZT > Z1−α2 , the stream cipher does not satisfy the SAC. The SAC test is summarized in
Algorithm 1.

Algorithm 1 SAC test’s algorithm.

Input: f , n, m, α1, α2, D.
Output: If f satisfies the SAC

1: T = 0
2: for i = 1 → n do
3: for r = 1 → l do
4: Compute Vi

r = Yr ⊕ Yi
r

5: end for
6: for j = 1 → m do
7: if χ2

vi
·j
> χ2

α1,1 then

8: T = T + 1
9: end if

10: end for
11: end for
12: if ZT > Z1−α2 then f does not satisfy the SAC
13: else f satisfies the SAC
14: end if

3.2. Test of Independence Based on BIC

In the BIC test, the independence check between each pair (vi
·j, vi

·k), with 1 ≤ j, k ≤ m,

is based on verifying whether si
jk = vi

·j ⊕ vi
·k is balanced. The fact that si

jk is balanced implies

that HW(si
jk) ∼ B(l, 1/2), where HW(·) is the Hamming weight. This adjustment is the

basis of the BIC hypothesis test, given by:

H0 : HW(si
jk) ∼ B

(
l,

1
2

)
,

H1 : HW(si
jk) ̸∼ B

(
l,

1
2

)
.

Computation 2024, 12, 60 5 of 13

The test statistic is

χ2
si

jk
=

(
HW(si

jk)−
l
2

)2

l
4

. (6)

If χ2
si

jk
> χ2

α1,1, then the null hypothesis H0 is rejected with α1 as the significance level.

Based on the random variable T, with:

T = T(n, m, α1) =
n

∑
i=1

Ti(m, α1), (7)

where

Ti(m, α1) = Ti =
m−1

∑
j=1

m

∑
k>j

t
(

vi
·j, vi

·k, α1

)
, (8)

and

t(vi
·j, vi

·k, α1) =


1 If H0 is rejected for vi

·j and vi
·k

with significance α1
0 otherwise.

(9)

It is decided whether f satisfies the BIC, taking into account the number of rejections
of H0. With a significance level of α1, the expected number of rejections of H0 is:

E(T|H0) = α1 · n · Cm
2 , σ2(T|H0) = α1 · n · Cm

2 · (1 − α1). (10)

Thus

ZT =
T − E(T|H0)√

σ2(T|H0)
∼ N(0, 1). (11)

Then, f satisfy the BIC if ZT > Z1−α2 , with a significance level of α2. Algorithm 2
implements the BIC test.

Both tests rely on large input parameters, meaning the execution time increases as the
value of these parameters increases. In practice, one must find an implementation variation
that reduces execution time. One solution is implementing the algorithms corresponding
to each test in a parallel environment [40].

Algorithm 2 BIC test’s algorithm.

Input: f , n, m, α1, α2, D.
Output: If f satisfies the BIC

1: T = 0
2: for i = 1 → n do
3: for r = 1 → l do
4: Compute Vi

r = Yr ⊕ Yi
r

5: end for
6: for each (j, k) do
7: if χ2

si
jk
> χ2

α1,1 then

8: T = T + 1
9: end if

10: end for
11: end for
12: if ZT > Z1−α2 then f does not satisfy the BIC
13: else f satisfies the BIC
14: end if

4. Implementation in the Parallel Environment of the SAC and BIC Algorithms

Multi-core processors have become the standard processor architecture, with dual-
core, quad-core, and octa-core processors commonly available for personal computing.

Computation 2024, 12, 60 6 of 13

The number of threads that can be utilized depends on the available hardware. Thanks to
hyper-threading technology, two threads can be executed simultaneously per processor
core. This practice is recommended [41]. In this manner, parallel programming is commonly
implemented using multi-threading. In this implementation, parallelism is achieved by
creating asynchronous threads that can run in parallel, usually with synchronization points
during execution. A critical aspect of executing multi-threaded programs is scheduling,
which determines the allocation of threads to processors and their execution sequence. The
execution schedule of a multi-threaded program can be integrated into the program itself,
implemented by an external scheduler, or a combination of both.

C++ incorporates support for concurrent operations through the thread library [42], de-
signed for parallel execution. This library was selected because it enables the simultaneous
execution of multiple functions, allows the passing of multiple parameters to a thread, and
facilitates the writing of multi-threaded C++ programs without relying on platform-specific
extensions. This will enable the writing of portable multi-threaded code [43]. The C++
programming language was used to implement both algorithms. The developer creates and
manages threads using the C++ threading library. The SAC and BIC algorithms perform n
iterations in the outer for loop to compute the n avalanche matrices and statistics. For both
algorithms, threads were utilized to create a loop in parallel, with each thread being controlled.
To implement a parallel for loop in C++11, the following function Listing 1 is defined:

Listing 1. Function parallelFor to create a loop in parallel

1 void p a r a l l e l F o r (unsigned n ,
2 std : : funct ion < void (i n t begin , i n t end) >func)
3 {
4 unsigned n_threads = thread : : hardware_ concurrency () ;
5
6 unsigned chunk _ s i z e = n/n_ threads ;
7 unsigned chunk_ remainder = n % n_threads ;
8
9 vector <thread >my _ threads (n_threads) ;
10
11 / / S t a r t i n g t h r e a d s
12 for (unsigned i = 0 ; i < n_threads ; ++ i)
13 {
14 i n t s t a r t = i * chunk_ s i z e ;
15 my_threads [i]= thread (func , s t a r t , s t a r t +chunk_size) ;
16 }
17
18 / / Remaining e l e m e n t s
19 i n t s t a r t = n_threads * chunk_size ;
20 func (s t a r t , s t a r t + chunk_remainder) ;
21
22 / / E x e c u t i o n o f t a s k s in p a r a l l e l u n t i l f i n i s h e d
23 for_each (my_threads . begin () , my_threads . end () ,
24 std : :mem _fn (& std : : thread : : j o i n)) ;
25 }

The above function can be used to parallelize a for Listing 2 , as follows in Listing 3:

Listing 2. Sequential for loop

1 for (i n t i =0 ; i <n ; i ++)
2 {
3 compute (i) ;
4 }

Listing 3. Parallel for loop

1 p a r a l l e l F o r (n , [&] (i n t s t a r t , i n t end)
2 {
3 for (i n t i = s t a r t ; i <end ; i ++)
4 compute (i) ;
5 }) ;

Computation 2024, 12, 60 7 of 13

The parallelFor function splits a for loop into multiple smaller loops assigned to a
thread and creates 2k threads (hyper-threading-based), where k is the number of cores in
the machine where the algorithm is running. The parallelFor function uses the parameter
n, which is the number of iterations of the cycle, equivalent to the number of input bits of
the cipher and std :: f unction < void(int begin, int end) > f unc, where f unc is a class that
contains a function and in line 23 the for each is used to execute the join() function of each
thread as shown in [42,43].

Applying the above, the parallel implementation of Algorithms 1 and 2 can be writ-
ten as:

In Algorithm 3, the function ComputeSAC(i, f) is the implementation of steps 3 to 7 in
Algorithm 1; in other words, it computes the i-th avalanche matrix and counts the number
of rejections in the m columns of the null hypothesis in this matrix, this i-th value is stored
in an array to avoid race conditions [44]. In Algorithm 4, the function ComputeBIC(i, f)
counts the number Ti of rejections complementing the i-th bit in the input among the
Cm

2 pairs of columns in the avalanche matrix Hi, which corresponds to steps 3 to 7 in
Algorithm 2. The parallel code section in Algorithms 3 and 4 corresponds to steps 3 and 4.

Algorithm 3 Parallel SAC.

Input: f , n, m, α1, α2, D.
Output: If f satisfies the SAC or not,

1: T = 0
2: rejections = [1, n];
3: parallelFor, i = 1, 2, . . . , n;
4: rejections[i] = ComputeSAC(i, f);
5: for i = 1 → n do
6: T = T + rejections[i];
7: end for
8: if ZT > Z1−α2 then f does not satisfy the SAC
9: else f satisfies the SAC

10: end if

Algorithm 4 Parallel BIC.

Input: f , n, m, α1, α2, D.
Output: If f satisfies the BIC or not,

1: T = 0
2: rejections = [1, n];
3: parallelFor i = 1, 2, . . . , n;
4: rejections[i] = ComputeBIC(i, f);
5: for i = 1 → n do
6: T = T + rejections[i];
7: end for
8: if ZT > Z1−α2 then f does not satisfy the BIC
9: else f satisfies the BIC

10: end if

Once the threads are created, the work is assigned to each thread and divided equally
among them. For instance, in the case of the SAC algorithm, if one had n = 256 and eight
threads, then each thread would need to execute 32 operations. It is essential to ensure
proper memory distribution because assigning a block to more than one stream can lead
to race conditions [44]. The parallel implementation of the for loop handles each thread’s
creation, initialization, and termination. Due to the cost of dynamic memory management
in both algorithms, selecting a dynamic memory allocator can play an important role in
reducing wall clock time. For this purpose, GCC’s dynamic memory manager works very

Computation 2024, 12, 60 8 of 13

well, but alternative options can be found in [45]. In this work, the implementation utilized
the GCC’s default dynamic memory allocator.

5. Experiments and Discussion

The increase in speed that was obtained was calculated by comparing the time be-
tween the sequential and parallel implementations of the SAC and BIC algorithms [46],
independently of each other, and is given by

A(n, m, L) =
Ts(n, m, L)
Tp(n, m, L)

,

where Ts(n, m, L) is the execution time of the sequential algorithm, and Tp(n, m, L) is the
execution time of the parallel algorithm.

However, to accurately evaluate the effectiveness of the parallel and sequential al-
gorithms, the execution time was measured in both cases using the same method and
accuracy to ensure valid comparisons. This is because the main objective of this work
is to improve the practical application of each algorithm. In [37,38], the computational
complexity of each algorithm is specified, respectively, providing a basis for comparing
them. The computer used for the experiments has the following technical specifications:
an 11th Gen Intel(R) Core(TM) i5-1135G7 2.40 GHz (Intel, Santa Clara, CA, USA), with
four cores, and 8 GB of RAM. Additionally, the computer has hyper-threading enabled.
With four cores, hyper-threading enables the CPU to support two threads on a single core,
allowing for the simultaneous execution of eight threads. The experiments have been
conducted for the following scenarios of the problem.

5.1. Experiments in RC4 Stream Cipher

The suggestions in [39] were considered to choose the parameters. It is known that
in the RC4 stream cipher [47], there is a statistical dependency between the first 4 bytes of
the output and long keys. It was used as a parameter n = 2048, m = 32, and for the size of
the set of pseudorandom vectors input D, the following values were used: |D| = L, where
L ∈ {1000, 4096, 5000, 8192, 10,000, 15,000, 16,384}. Table 2 shows the improvement in the
execution time of the parallel algorithm compared to the sequential algorithm, with an
average execution time that was approximately 2.3 and 2.4 times faster in each case for BIC
and SAC, respectively.

Table 2. Runtime results in RC4 for n = 2048, m = 32. Time in seconds.

L

BIC SAC

Parallel Sequential Increase in
Speed Parallel Sequential Increase in

Speed

1000 48 127 2.645833 40 106 2.650000

4096 225 533 2.368889 183 460 2.513661

5000 280 635 2.267857 229 585 2.554585

8192 469 1071 2.283582 389 940 2.416452

10,000 576 1307 2.269097 491 1134 2.309572

15,000 884 1965 2.222851 759 1721 2.267457

16,384 950 2135 2.247368 794 1891 2.381612

Figure 1 shows the execution times of the sequential and parallel algorithms for both
algorithms, respectively, with the parameters specified applied to the RC4 cipher, where
the improvement in execution time is observed.

Computation 2024, 12, 60 9 of 13

L

T
im

e
in

 s
ec

on
ds

Sequential BIC
Parallel BIC
Sequential SAC
Parallel SAC

5,000 10,000 15,000

50
0

1,
00

0
1,

50
0

2,
00

0

Figure 1. Comparison in time of parallel and sequential execution of SAC and BIC algorithms, for
n = 256, m = 32, in RC4 with L in {1000, 4096, 5000, 8192, 10,000, 15,000, 16,384}.

In the results achieved for RC4, it can be seen in Table 2, for the specified parameters,
that the execution time of Algorithm 4 is close to L/1000 min; meanwhile, Algorithm 3
remains below this value. As reported in [37–39], the RC4 cipher does not satisfy either of
the two statistical tests.

5.2. Experiments in HC256 Stream Cipher

The HC256 [48] stream cipher generates a stream of bits from a 256-bit secret key
and a 256-bit initialization vector. For the experiments, 256-bit keys were used, and as
the initialization vector iv, the null vector, so that iv[i] = 0. The parameters used in this
case were n = 256, m = 32. For the size of the set of pseudorandom vectors input D, the
following values were used: |D| = L in {1000, 4096, 5000, 8192, 10,000, 15,000, 16,384}. As
seen in Table 3, for these parameters, the execution time of the parallel algorithm was, on
average, 3 and 3.3 times faster than those in the sequential for BIC and SAC, respectively.

It is highlighted that the HC256 stream cipher satisfies both tests based on the strict
avalanche criterion and the bit independence criterion. This cipher reported very few
failures, including zero rejections of the null hypothesis in complementing some input bits.

Figure 2 shows another example of the execution time graphs of the SAC and BIC
algorithms in parallel and sequential, using the HC256 cipher.

Table 3. Runtime results in HC256 for n = 2048, m = 32. Time in seconds.

L
BIC SAC

Parallel Sequential Increase in
Speed Parallel Sequential Increase in

Speed

1000 4 12 3.000000 3 11 3.666667

4096 16 55 3.437500 12 46 3.833333

5000 20 68 3.400000 15 56 3.733333

8192 34 103 3.029412 26 87 3.346154

10,000 44 133 3.022727 33 105 3.181818

15,000 71 198 2.788732 54 163 3.018519

16,384 78 227 2.910256 59 172 2.915254

Computation 2024, 12, 60 10 of 13

L

T
im

e
in

 s
ec

on
ds

Sequential BIC
Parallel BIC
Sequential SAC
Parallel SAC

5,000 10,000 15,000

50
10

0
15

0
20

0

Figure 2. Comparison in time of parallel and sequential execution of SAC and BIC algorithms, for
n = 256, m = 32, in HC256 with L in {1000, 4096, 5000, 8192, 10,000, 15,000, 16,384}.

The application of both tests on the HC256 cipher showed greater increases in speed
than for the RC4 cipher. This could be attributed to the value of parameter n in the HC256
key initialization scheme.

5.3. Comparison between Both Tests

Another interesting comparison is that between the increase in speed measurements
for both tests. We know from [37,38] that the BIC test has greater computational complexity
than the SAC test. However, this comparison allows us to see the behavior of both tests
separately. Figures 3 and 4 show the performance of each test on each cipher and each
implementation.

L

T
im

e
in

 s
ec

on
ds

Sequential in RC4
Parallel in RC4
Sequential in HC256
Parallel in HC256

5,000 10,000 15,000

50
0

1,
00

0
1,

50
0

2,
00

0

Figure 3. Comparison in time of parallel and sequential execution of BIC algorithm, for the same
parameters described above in HC256 and RC4.

As can be seen in Figures 3 and 4, the parallel approach is more efficient and saves a
considerable amount of time during execution for both tests. The difference in the execution
of both tests is dominated by the value of parameter n. It should be noted that, for the RC4,
the value of n = 2048 is 8 times greater than the value of n = 256 for the HC256. For this
reason, it is clear that even the parallel time of the RC4 is greater than that obtained in the
sequential application of the test for the HC256 cipher.

Computation 2024, 12, 60 11 of 13

L

T
im

e
in

 s
ec

on
ds

Sequential in RC4
Parallel in RC4
Sequential in HC256
Parallel in HC256

5,000 10,000 15,000

50
0

1,
00

0
1,

50
0

Figure 4. Comparison in time of parallel and sequential execution of the SAC algorithm, for the same
parameters described above in HC256 and RC4.

As can be seen in Table 4, the implementation allows a slightly greater reduction in
the execution time of the SAC algorithm for both ciphers. This may be because the SAC
algorithm performs fewer operations than the BIC algorithm. However, the acceleration
obtained for the BIC test is very close to that obtained in the SAC test.

Table 4. The average increase in speed of each test in seconds.

Test RC4 HC256

SAC 2.441906 3.385011

BIC 2.329354 3.084090

In this sense, when the parallelized algorithms of both tests are run on a four-core
processor, an acceleration that is around two–three times faster is obtained for the SAC and
BIC, respectively. Using a computer with a higher number of cores or GPUs, for example
employing CUDA [46], both algorithms could derive a significantly improved performance.

6. Conclusions

The experiments were conducted on portable computing devices with features that are
currently available to everyone and easy to acquire, demonstrating the tests’ applicability.
In addition, libraries that can run on these devices, such as the C++11 threads library, were
used. The parallel implementation of the SAC and BIC algorithms reduces the execution
time compared to the sequential implementation. This allows for the practical evaluation of
stream ciphers for higher values of the parameters n, m, and l in less execution time. On the
other hand, it is essential to specify that the execution time is influenced by the encryption
algorithm’s execution time. The experiments revealed that the RC4 stream cipher does not
pass either of the two tests, while the HC256 cipher passes both tests. In addition, a greater
increase in speed was achieved in the SAC test for both ciphers. Meanwhile, on the other
hand, both tests showed a faster execution in parallel when using the HC256 cipher.

Author Contributions: Conceptualization, E.J.M.-C.; Formal analysis, E.J.M.-C., E.C.R.P. and G.S.-G.;
Investigation, E.J.M.-C., E.C.R.P., G.S.-G. and O.R.; Methodology, E.J.M.-C., E.C.R.P. and G.S.-G.;
Project administration, O.R.; Supervision, G.S.-G. and O.R.; Validation, E.J.M.-C. and G.S.-G.; Writing—
original draft preparation, E.J.M.-C. and E.C.R.P.; Writing—review and editing, O.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Computation 2024, 12, 60 12 of 13

Acknowledgments: This work was (partially) supported by the Ibero-American Program of Science
and Technology for Development (CYTED) through red522RT0131.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Venčkauskas, A.; Morkevicius, N.; Bagdonas, K.; Damaševičius, R.; Maskeliūnas, R. A lightweight protocol for secure video

streaming. Sensors 2018, 18, 1554. [CrossRef]
2. Yerukala, N.; Prasad, V.K.; Apparao, A. Performance and Statistical Analysis of Stream ciphers in GSM Communications. J.

Commun. Softw. Syst. 2020, 16, 11–18. [CrossRef]
3. Kaushik, N.; Bagga, T.; Aggarwal, R. Comparative study on IoT technologies-short & long range. Int. J. Eng. Trends Technol. 2020,

68, 37–42.
4. Mohammed, E.A.; Areed, N.F.; Takieldeen, A.; El-Awady, R.M. Hybrid Cryptographic Algorithm for LTE DataConfidentiality.

Int. J. Eng. Res. Technol. (IJERT) 2016, 5, 12.
5. Fatma, N. Comparative Study of Vulnerabilities in Lte Cryptographic Algorithm. Univ. Res. Symp. 2018, 50, 19–25.
6. Kuznetsov, A.A.; Potii, O.V.; Poluyanenko, N.A.; Gorbenko, Y.I.; Kryvinska, N. Stream Ciphers in Modern Real-Time IT Systems:

Analysis, Design and Comparative Studies; Studies in Systems, Decision and Control; Springer International Publishing: Cham,
Switzerland, 2022; Volume 375. [CrossRef]

7. Jassim, S.A.; Farhan, A.K. A Survey on Stream Ciphers for Constrained Environments. In Proceedings of the 2021 1st Babylon
International Conference on Information Technology and Science (BICITS), Babil, Iraq, 28–29 April 2021; pp. 228–233. [CrossRef]

8. Jiao, L.; Hao, Y.; Feng, D. Stream cipher designs: A review. Sci. China Inf. Sci. 2020, 63, 131101. [CrossRef]
9. Klein, A. Stream Ciphers; Springer: London, UK, 2013. [CrossRef]
10. Robshaw, M.; Billet, O.; Hutchison, D.; Kanade, T.; Kittler, J.; Kleinberg, J.M.; Mattern, F.; Mitchell, J.C.; Naor, M.; Nierstrasz, O.; et

al. (Eds.) New Stream Cipher Designs: The eSTREAM Finalists; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2008; Volume 4986. [CrossRef]

11. Bellini, E.; Huang, Y.J.; Rachidi, M. Statistical Tests for Symmetric Primitives: An Application to NIST Lightweight Finalists. In
Innovative Security Solutions for Information Technology and Communications; Bella, G., Doinea, M., Janicke, H., Eds.; Lecture Notes
in Computer Science; Springer Nature: Cham, Switzerland, 2023; Volume 13809, pp. 133–152. [CrossRef]

12. Afzal, S.; Yousaf, M.; Afzal, H.; Alharbe, N.; Mufti, M.R. Cryptographic Strength Evaluation of Key Schedule Algorithms. Secur.
Commun. Netw. 2020, 2020, e3189601. [CrossRef]

13. Thabit, F.; Alhomdy, S.; Jagtap, S. Security analysis and performance evaluation of a new lightweight cryptographic algorithm for
cloud computing. Glob. Transit. Proc. 2021, 2, 100–110. [CrossRef]

14. Silva, C.; Cunha, V.A.; Barraca, J.P.; Aguiar, R.L. Analysis of the Cryptographic Algorithms in IoT Communications. Inf. Syst.
Front. 2023, 1–18. [CrossRef]

15. Demirhan, H.; Bitirim, N. Statistical testing of cryptographic randomness. İstatistikçiler Derg. İstatistik Ve Aktüerya 2016, 9, 1–11.
16. Gorbenko, I.; Kuznetsov, A.; Gorbenko, Y.; Vdovenko, S.; Tymchenko, V.; Lutsenko, M. Studies on statistical analysis and

performance evaluation for some stream ciphers. Int. J. Comput. 2019, 18, 82–88. [CrossRef]
17. Turan, M.S.; Doganaksoy, A.; Calik, C. Detailed statistical analysis of synchronous stream ciphers. In Proceedings of the ECRYPT

Workshop on the State of the Art of Stream Ciphers (SASC’06), Leuven, Belgium, 2–3 February 2006.
18. Englund, H.; Johansson, T.; Sönmez Turan, M. A framework for chosen IV statistical analysis of stream ciphers. In Proceedings of

the International Conference on Cryptology in India, Chennai, India, 9–13 December 2007; Springer: Berlin/Heidelberg, Germany,
2007; pp. 268–281.

19. Mishra, P.R.; Arvind Kumar, S.K.P.; Ojjela, O. Bit inclusion test: An enhanced avalanche test for stream ciphers. Cryptologia 2023,
48, 1–20. [CrossRef]

20. Shrivastava, S.; Lakshmy, K.V.; Srinivasan, C. On the Statistical Analysis of ZUC, Espresso and Grain v1. Int. J. Comput. 2021, 20,
384–390. [CrossRef]

21. Nandi, S.; Krishnaswamy, S.; Mitra, P.; Nandi, S.; Krishnaswamy, S.; Mitra, P. Recent Results on Some Word Oriented Stream
Ciphers: SNOW 1.0, SNOW 2.0 and SNOW 3G. In Information Security and Privacy in the Digital World—Some Selected Topics;
IntechOpen: London, UK, 2022. [CrossRef]

22. Moch, A. Provable security against generic attacks on stream ciphers. J. Math. Cryptol. 2023, 17, 20220033. [CrossRef]
23. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.; Heckert, N.; et al. A

Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; Technical Report NIST Special
Publication (SP) 800-22 Rev. 1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010. [CrossRef]

24. Dieharder: A Random Number Test Suite. Available online: http://webhome.phy.duke.edu/~rgb/General/dieharder.php
(accessed on 16 December 2023).

25. Knuth, D.E. The Art of Computer Programming. In Seminumerical Algorithms; Addition-Wesley: Reading, MA, USA, 1981;
Volume 2.

26. Marsaglia, G.; Tsang, W.W. Some Difficult-to-pass Tests of Randomness. J. Stat. Softw. 2002, 7, 1–9. [CrossRef]

http://doi.org/10.3390/s18051554
http://dx.doi.org/10.24138/jcomss.v16i1.892
http://dx.doi.org/10.1007/978-3-030-79770-6
http://dx.doi.org/10.1109/BICITS51482.2021.9509883
http://dx.doi.org/10.1007/s11432-018-9929-x
http://dx.doi.org/10.1007/978-1-4471-5079-4
http://dx.doi.org/10.1007/978-3-540-68351-3
http://dx.doi.org/10.1007/978-3-031-32636-3_8
http://dx.doi.org/10.1155/2020/3189601
http://dx.doi.org/10.1016/j.gltp.2021.01.014
http://dx.doi.org/10.1007/s10796-023-10383-9
http://dx.doi.org/10.47839/ijc.18.1.1277
http://dx.doi.org/10.1080/01611194.2022.2155092
http://dx.doi.org/10.47839/ijc.20.3.2284
http://dx.doi.org/10.5772/intechopen.105848
http://dx.doi.org/10.1515/jmc-2022-0033
http://dx.doi.org/10.6028/NIST.SP.800-22r1a
http://webhome.phy.duke.edu/~rgb/General/dieharder.php
http://dx.doi.org/10.18637/jss.v007.i03

Computation 2024, 12, 60 13 of 13

27. L’Ecuyer, P.; Simard, R. TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw. 2007,
33, 1–40. [CrossRef]

28. Ent—A Pseudorandom Number Sequence Test Program. Available online: https://www.fourmilab.ch/random/ (accessed on 16
December 2023).

29. Alamer, A.; Soh, B. Design and Implementation of a Statistical Testing Framework for a Lightweight Stream Cipher. Eng. Technol.
Appl. Sci. Res. 2020, 10, 5132–5141. [CrossRef]

30. Penzhorn, W. Correlation attacks on stream ciphers. In Proceedings of the IEEE, AFRICON ’96, Stellenbosch, South Africa, 25–27
September 1996; Volume 2, pp. 1093–1098. [CrossRef]

31. Meier, W.; Staffelbach, O. Fast Correlation Attacks on Stream Ciphers: Extended Abstract. In Advances in Cryptology—EUROCRYPT
’88; Goos, G., Hartmanis, J., Barstow, D., Brauer, W., Brinch Hansen, P., Gries, D., Luckham, D., Moler, C., Pnueli, A., Seegmüller,
G., et al., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1988; Volume 330, pp. 301–314.
[CrossRef]

32. Biham, E.; Dunkelman, O. Differential Cryptanalysis in Stream Ciphers; DBLP Team: Trier, Germany, 2007.
33. Alekseychuk, A.N.; Konyushok, S.N. On the Efficiency of the Probabilistic Neutral Bits Method in Statistical Cryptanalysis of

Synchronous Stream Ciphers. Cybern. Syst. Anal. 2016, 52, 503–508. [CrossRef]
34. Palit, S.; Roy, B.K.; De, A. A Fast Correlation Attack for LFSR-Based Stream Ciphers. In Applied Cryptography and Network

Security; Goos, G., Hartmanis, J., Van Leeuwen, J., Zhou, J., Yung, M., Han, Y., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2003; Volume 2846, pp. 331–342. [CrossRef]

35. Knellwolf, S.; Meier, W. High order differential attacks on stream ciphers. Cryptogr. Commun. 2012, 4, 203–215. [CrossRef]
36. Webster, A.F.; Tavares, S.E. On the Design of S-Boxes. In Advances in Cryptology—CRYPTO ’85 Proceedings; Williams, H.C., Ed.;

Springer: Berlin/Heidelberg, Germany, 1986; pp. 523–534.
37. Capó, E.J.M.; Cuellar, O.J.; Pérez, C.M.L.; Gómez, G.S. Evaluation of input-output statistical dependence PRNGs by SAC. In

Proceedings of the 2016 International Conference on Software Process Improvement (CIMPS), Aguascalientes, Mexico, 12–14
October 2016; pp. 1–6. [CrossRef]

38. Madarro-Capó, E.J.; Legón-Pérez, C.M.; Rojas, O.; Sosa-Gómez, G.; Socorro-Llanes, R. Bit Independence Criterion Extended to
Stream Ciphers. Appl. Sci. 2020, 10, 7668. [CrossRef]

39. Madarro-Capó, E.J.; Legón-Pérez, C.M.; Rojas, O.; Sosa-Gómez, G. Measuring Avalanche Properties on RC4 Stream Cipher
Variants. Appl. Sci. 2021, 11, 9646. [CrossRef]

40. Suciu, A.; Nagy, I.; Marton, K.; Pinca, I. Parallel implementation of the NIST Statistical Test Suite. In Proceedings of the 2010 IEEE
6th International Conference on Intelligent Computer Communication and Processing, Cluj-Napoca, Romania, 26–28 August
2010; pp. 363–368. [CrossRef]

41. Mochurad, L.; Shchur, G. Parallelization of Cryptographic Algorithm Based on Different Parallel Computing Technologies. In
Proceedings of the IT&AS, Bratislava, Slovakia, 5 March 2021; pp. 20–29.

42. std::thread—cppreference.com. Available online: https://en.cppreference.com/w/cpp/thread/thread (accessed on 11 December
2023).

43. Williams, A. C++ Concurrency in Action; Simon and Schuster: New York, NY, USA, 2019.
44. C++ Tutorial: C++11/C++14 8. Race Conditions. 2017. Available online: https://www.bogotobogo.com/cplusplus/C11/8_C11_

Race_Conditions.php (accessed on 16 December 2023).
45. Aparicio, G.; Salmerón, J.M.G.; Casado, L.G.; Asenjo, R.; Hendrix, E.M.T. Parallel algorithms for computing the smallest binary

tree size in unit simplex refinement. J. Parallel Distrib. Comput. 2018, 112, 166–178. [CrossRef]
46. Bikov, D.; Bouyukliev, I.; Dzhumalieva-Stoeva, M. BooLSPLG: A Library with Parallel Algorithms for Boolean Functions and

S-Boxes for GPU. Mathematics 2023, 11, 1864. [CrossRef]
47. Paul, G.; Maitra, S. RC4 Stream Cipher and Its Variants; CRC Press: Boca Raton, FL, USA, 2011.
48. Wu, H. A New Stream Cipher HC-256. In Fast Software Encryption; Roy, B., Meier, W., Eds.; Springer: Berlin/Heidelberg, Germany,

2004; pp. 226–244.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/1268776.1268777
https://www.fourmilab.ch/random/
http://dx.doi.org/10.48084/etasr.3250
http://dx.doi.org/10.1109/AFRCON.1996.563052
http://dx.doi.org/10.1007/3-540-45961-8_28
http://dx.doi.org/10.1007/s10559-016-9852-z
http://dx.doi.org/10.1007/978-3-540-45203-4_26
http://dx.doi.org/10.1007/s12095-012-0071-9
http://dx.doi.org/10.1109/CIMPS.2016.7802810
http://dx.doi.org/10.3390/app10217668
http://dx.doi.org/10.3390/app11209646
http://dx.doi.org/10.1109/ICCP.2010.5606412
https://en.cppreference.com/w/cpp/thread/thread
https://www.bogotobogo.com/cplusplus/C11/8_C11_Race_Conditions.php
https://www.bogotobogo.com/cplusplus/C11/8_C11_Race_Conditions.php
http://dx.doi.org/10.1016/j.jpdc.2017.05.016
http://dx.doi.org/10.3390/math11081864

	Introduction
	Motivation of the Research
	Statistical Independence in Stream Ciphers
	Test of Independence Based on SAC
	Test of Independence Based on BIC

	Implementation in the Parallel Environment of the SAC and BIC Algorithms
	Experiments and Discussion
	Experiments in RC4 Stream Cipher
	Experiments in HC256 Stream Cipher
	Comparison between Both Tests

	Conclusions
	References

