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Abstract: Peristaltic flow in a straight rectangular duct is examined imposed by contraction pulses
implemented by pairs of horizontal cylindrical segments with their axes perpendicular to the flow
direction. The wave propagation speed is considered in such a range that triggers a laminar fluid
motion. The setting is analyzed over a set of variables which includes the propagation speed, the
relative occlusion, the modality of the squeezing pulse profile and the Carreau power index. The
numerical solution of the equations of motion on Cartesian meshes is grounded in the immersed
boundary method. An increase in the peristaltic pulse modality leads to the reduction in the shear
rate levels on the central tube axis and to the movement of the peristaltic characteristics to higher
pressure values. The effect of the no slip side walls (NSSWs) is elucidated by the collation with
relevant results for the flow field produced under the same assumptions though with slip side walls
(SSWs). Shear thinning behavior exhibits a significantly larger effect on transport efficiency for the
NSSWs duct than on the SSWs duct.

Keywords: rectilinear duct peristalsis; shear-dependent fluids; pumping characteristic; multimodal
peristaltic pulse; curvilinear immersed boundary method

1. Introduction

Recent research on prediction of peristaltic flow comprises both theoretical and com-
putational approaches. Kalayeh et al. [1] extend the model of Shapiro et al. [2] with a
nonuniform boundary condition for the streamwise velocity component on the squeezing
wave. Thus, they achieve improved prediction of ureteral peristalsis in comparison with ex-
isting models and verify the reduced reflux under the moving wall model. Retrograde flow
in urine transportation from the kidneys to the bladder is addressed computationally by
Hosseini et al. [3]. For an effective model of the distension contraction waves, a piecewise
linear force function is introduced. Takaddus and Chandy [4] use the Eulerian–Lagrangian
method for the fluid–structure interaction (FSI) of the urine with the tube wall for the
estimation of the effect of the size of obstructions.

Polynomial chaos expansion is applied for uncertainty quantification of the sensitivity
of peristalsis performance with respect to the Womersley number, the compression ratio
and the compression frequency in a racetrack circulatory system [5]. Sharp [6] attempts
to explain brain glymphatic circulation as a superposition of peristaltic motion driven by
middle cerebral artery pulses and a longitudinal pressure gradient.

Peristalsis in the presence of a magnetic field has been studied for various types of fluids
including such as Casson fluids [7], micropolar nanofluids [8], Prandtl fluids [9,10] Williamson
nanofluids [11] and Jeffrey fluids [12]. The recently introduced Cattaneo-Christov model
for heat flux, remeding the instantaneous propagation paradox in the theory of heat
conduction [13], is studied in peristalsis context by Tanveer et al [14].

Deformation-controlled flow of shear thinning fluids has been considered using an
apparatus comprising a straight elastic tube of circular cross-section squeezed by cylin-
drical rollers [15] in an attempt to mimic the flow in the small intestine [16] and to shed
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light on biofluid mechanics in the human body [17]. Computational approaches of these
experiments has been perfomed for two dimensions [18] and for three dimensions, ax-
isymmetrically, considering toroid peristaltic pulses [19]. The wavelike motion of a model
stomach is studied by Alokaily et al. [20], focusing on the mixing flow at the beginning of
the digestion. The dispersing characteristics of antral contraction are in vitro investigated
using an antrum prototype by Dufour et al. [21], and the drop behavior and breakup under
peristalsis are simulated computationally by Feigl and Tanner [22].

Contractive wave flows have been studied for three dimensional rectilinear settings
considering slip side walls moving with the velocity of the peristaltic wave for non-
Newtonian fluids [23–25]. The case of shear-dependent fluid peristalsis in a straight
rectangular duct with steady side walls has drawn little attention. Al-Habahbeh computa-
tionally simulated such a flow induced by cylindrical rollers moving in the flow direction
for a Newtonian fluid [18]. Theoretical models for the analysis of peristaltic flows in curved
ducts have been presented considering shear thinning fluids [26] or a radial magnetic field
originating from the center of the apparatus [27].

The curvilinear immersed boundary method is being implemented for the simulation
of incompressible internal and external flows of Newtonian and non-Newtonian fluids
in a variety of laminar and turbulent flow applications with either steady or moving
boundaries [28–32]. Asgharzedeh and Borazjani, by introducing an analytical Jacobian for
Newton–Krylov methods, simulate the Taylor–Green vortex, the horizontal oscillations
of a cylinder initially at rest and flow in a 90◦ bend [33]. They validated their method by
comparing with analytical solutions and experimental data, respectively, with satisfying
outcomes in contrast with those of body fitted methods. Near-wall turbulence in corre-
sponding channel flows is investigated by Liao et al. [34], and good agreement is found for
velocity and pressure fluctuations with results of classical methods, where the boundary of
the computational grid coincides with that of the flow domain.

In this paper, we delve into the peristaltic motion of Carreau fluids in a rectangular
duct, driven by contraction pulses generated by multiple consecutive identical pairs of cylin-
drical segments. The results of the endeavor contribute to our knowledge on peristalsis in a
rectilinear duct of fixed width with steady walls for this category of generalized Newtonian
fluids and the respective medical and industrial applications. Continuing a line of research
on the setting [16,18–20,35], a monothetic analysis of the peristaltic characteristic quantities
is presented. The need for this approach is evident from the significant amount of resources
demanded for dealing with a singular instance of the problem in combination with the
multiple factors examined, leading to the adverse effects of the curse of dimensionality.
Starting from a benchmark baseline case of a single-segment convex pulse squeezing wave
with fixed wave velocity and relative occlusion (RO), for Newtonian fluids, a sensitivity
analysis considering these parameters is performed. Moreover, the effect of the presence of
the side walls is examined based on existing results for the analogous case in the absence
of side walls. For the integration of the flow dynamics equations, the curvilinear immersed
boundary method is applied [36].

2. Materials and Methods
2.1. Problem Formulation

The number of cylindrical segments of each peristaltic pulse, namely, of the peristaltic
waveshape, is symbolized by m (modality). A sketch of the rectangular cross-section linear
duct under the squeeze of the peristaltic wave consisting of two cylindrical segment pulses
(bimodal pulse, m = 2) is shown in Figure 1. The upper half setting is presented as defined
by the horizontal plane of symmetry, namely, the x–z plane y = 0.



Computation 2024, 12, 62 3 of 17

r
L

R
d

h

H
W

xy

z

Figure 1. Rectangular duct and the contraction wave in a trimetric view. The upper symmetric half
with reference to the y = 0 plane is depicted. The squeezing pulse profile is a bimodal function of
x with respect to the y direction. Yellow: inlet, green: wall, orange: excitation area of peristaltic wave.

With reference to relevant experiments, computational simulations are performed for
carboxymethyl–cellulose aqueous solution at 1.5% w/w with 0.1 M NaCl and
Mw = 2.5 · 105 g/mol (CMC 1.5%) [37]. The shape and size of the pulses and the dimen-
sions of the straight duct are also chosen in accordance with the existing literature [18,35].
Consequently, the values of the fluid properties and of the geometric dimensions of the
setting are opted for as in Table 1. Similarly, the parameters of the analysis such as the wave
speed and the relative occlusion are instantiated with values for which previous research
has been conducted [18,35,38].

Table 1. Geometric, kinematic and fluidic parameters of peristalsis.

Quantity Symbol Value Unit

Half height H 10 mm

Width W 20 mm

Length L 90 or 180 mm

Radius of cylindrical segment r 15 mm

Inter cylindrical segment distance d 1 mm

Fluid density ρ 1000 kg
m3

Dynamic viscosity µ 0.1452 kg
m·s

The single cylindrical segment contraction wave in Figure 1 is described in the compu-
tational domain by the equation

(x − xc)
2 + (y − h − r)2 = r2, y < H, −W

2
< z <

W
2

, (1)

where x is the streamwise direction, y is the penetration direction, z is the spanwise
direction, H is the half height of the undeformed duct, W is the width of the duct and

xc is the x coordinate of the axis of the cylindrical segment, xc =
L
2

. Consequently, the
maximum chord of the cylindrical segment, R, takes the values 14.96 mm, 24 mm and
26.54 mm for respective values of the relative occlusion 0.2, 0.6 and 0.8.

In the following, two cylindrical segments are represented each by Equation (1) with
respective centers xc1 = L/2 − d/2 − R/2 and xc2 = L/2 + d/2 + R/2, for L = 180 mm.
Similarly, for three cylindrical segments, the centers for Equation (1) are xc1 = L/2 − d − R,
xc2 = L/2 and xc3 = L/2 + d + R for L = 180 mm.

Considering the base case for the wave propagation speed of the analysis, c = 5 mm/s,
the Reynolds number is

Re =
ρc Dh

µ
≈ 0.69, (2)
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where Dh is the hydraulic diameter of the duct

Dh =
8WH

4H + 2W
= 20 mm. (3)

Hence, no demand for taking into account turbulence arises.

2.2. Governing Equations and Boundary Conditions

The flow is governed by the equations of mass conservation

(
∂

∂x
∂

∂y
∂

∂z

)u
v
w

 = 0 (4)

and momentum conservation for shear-dependent dynamic viscosity

∂

∂t

u
v
w

+

u
v
w

⊺

·



∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 = −1
ρ



∂p
∂x
∂p
∂y
∂p
∂z

+



∂

∂x

(
2µ(γ̇)

∂u
∂x

)
+

∂

∂y

(
µ(γ̇)

(
∂u
∂y

+
∂v
∂x

))
+

∂

∂z

(
µ(γ̇)

(
∂u
∂z

+
∂w
∂x

))
∂

∂x

(
µ(γ̇)

(
∂v
∂x

+
∂u
∂y

))
+

∂

∂y

(
2µ(γ̇)

(
∂v
∂y

))
+

∂

∂z

(
µ(γ̇)

(
∂v
∂z

+
∂w
∂y

))
∂

∂x

(
µ(γ̇)

(
∂w
∂x

+
∂u
∂z

))
+

∂

∂y

(
µ(γ̇)

(
∂w
∂y

+
∂v
∂z

))
+

∂

∂z

(
2µ(γ̇)

(
∂w
∂z

))


.

(5)

In the above expressions, u = (u, v, w) is the fluid velocity vector, x = (x, y, z) is the
position vector, t is time, ρ is the constant density, p is pressure, µ is the dynamic viscosity
of the fluid and γ̇ is the shear rate given as

γ̇ =
√

2(D : D) =
√

2tr(D2) (6)

where

D =
1
2
[(∇uuu)⊺ +∇uuu] (7)

is the strain rate tensor.
Due to the steady speed of the contraction waveshape propagation, the simulation can

be simplified significantly considering the frame of reference of the squeezing curve [39]. At
this frame of reference, the velocity of the rigid walls except for the region of the squeezing
pulses are equal to minus the wave speed

u(x,−H, z) = u(x, H, z) = −c, x /∈ {x|yw(x, z) < H} (8)

u
(
−W

2
, y, z

)
= u

(
W
2

, y, z
)
= −c, (9)

where yw : [0, L]× [−W
2 , W

2 ] → (0, H] is the function describing the peristaltic waveshape,
which is taken as steady with respect to z, and c is the speed of the traveling peristaltic
wave. On the region of the peristaltic pulse of the upper and lower wall, the velocity is set
to be zero, coinciding with the velocity of the cylindrical segments in the moving frame
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u(xpp, ypp, zpp) = 0

v(xpp, ypp, zpp) = 0

w(xpp, ypp, zpp) = 0

∀(xpp, ypp, zpp) ∈ S, (10)

where S is the surface of the cylindrical segments that materialize the peristaltic wave. In the
following, cases where on the side walls a no slip boundary condition holds are described
with the abbreviation NSSWs, and cases where the side walls are slippery with SSWs.

The examination of the phenomenon of interest is focused on a period of the peristaltic
wave, thus reducing the computational domain and consequently the corresponding work
(see also [40], Section 2.3).To this end, periodic boundary conditions are applied at the
streamwise extreme cross-sections

u(0, y, z) = u(L, y, z)

v(0, y, z) = v(L, y, z)

w(0, y, z) = w(L, y, z).

(11)

The viscosity and the deformation rate are related through the Carreau–Yasuda model

µ(γ̇)− µ∞

µ0 − µ∞
= (1 + (λγ̇)α)

n−1
α , (12)

where µ∞ stands for the infinite shear rate dynamic viscosity, µ0 stands for the zero shear
rate dynamic viscosity and λ stands for the consistency parameter which signifies the shear
rate level at which shear dependence emerges. The value α = 2 is chosen as in the initial
form of the Carreau equation, as this constant α is only of limited relevance for low shear
rates [41]. By this model, the nature of many fluids of interest, such as that of the shear
thinning behavior of blood [42] and blood expanders [43] and the shear dilating response
of several cryobiologically relevant agents, is captured [44].

The ability of the various peristaltic pulses to create discharge fluid volume rate is
estimated by means of the transport efficiency (TE) metric. This ratio compares the outflow
end velocity profile to the wave speed uniform velocity profile

TE =

W/2∫
−W/2

H∫
−H

u(L, y, z)dy dz

2 c H W
. (13)

In order for the pumping potential to be examined, the relevant characteristic curves
are computed. To achieve this goal, developed velocity profiles are applied at the upstream
end of the duct, and the respective pressure elevations across the vessel are predicted. The
Poiseuille flow through the geometry under study, derived by solving the Navier–Stokes
equations, has the form [45]

u(0, y, z) =
24Q

π3WH

1 − 96W
π5H ∑

i∈{2n+1|
n∈N}

tanh
(

iπH
W

)
i5


−1

∑
i∈{2n+1|

n∈N}

(−1)
i−1

2

1 −
cosh

(
iπy
W

)
cosh

(
iπH
W

)
cos

(
iπz
W

)
i3

v(0, y, z) = 0

w(0, y, z) = 0,

(14)

where the symbol Q stands for the flow rate through the inlet of the duct. A depiction of
the profile is given in Figure 2. At the moving frame of reference, the applied inlet velocity
is the profile of Equation (14) minus the relative velocity, that is u(0, y, z)− c.
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(a) u(y, z) (b) u(y = 0, z)
Figure 2. Shape of the developed velocity profile, u(y, z) in the rectangular duct under consideration,
with H = 10 mm and W = 20 mm and for Q = 800 mm3

s .

By applying Equation (14) for varying values of Q along with the zero-velocity deriva-
tive at the flow direction at its outlet, we derived the respective characteristic peristaltic
curves for the considered configuration.

2.3. Computational Method

The governing equations are handled by use of the immersed boundary method
applied with the Virtual Flow Simulator software [46] with the additional feature of
Carreau–Yasuda shear dependence for viscosity. Spatial discretization is accomplished via
Cartesian meshes with uniform inflation in the region of the contracting pulse excitation
area, e.g., for unimodal wave, the region 31 mm ≤ x ≤ 59 mm. For the cases where the
duct length is L = 90 mm, 297 points are placed at the stream direction, and for those with
L = 180 mm, 647 points discretize the length of the setting. In the finer part of the grid,
its longitudinal density is two times that of the far of the cylindrical segment’s region. A
subset of the computational predictions are performed in the half geometry and the rest in
the quarter geometry. Proper conditions are chosen at the respective bounding planes

u(x, y, z) = u(x,−y, z)

−v(x, y, z) = v(x,−y, z)

w(x, y, z) = w(x,−y, z)

(15)

u(x, y, z) = u(x, y,−z)

v(x, y, z) = v(x, y,−z)

−w(x, y, z) = w(x, y,−z),

(16)

which, under the assumption of continuity of the first partial derivatives with respect to
space coordinates of the velocity component functions, lead to

∂u
∂y

(x, 0, z) =
∂w
∂y

(x, 0, z) = v(x, 0, z) = 0 (17)

∂u
∂z

(x, y, 0) =
∂v
∂z

(x, y, 0) = w(x, y, 0) = 0. (18)

At transverse planes, 104 or 53 points partition the width for half or quarter geometry
computation, respectively, and 53 points discretize the half height H of the duct cross-
section. Near-wall local inflation is applied for better precision at regions with large flow
variable gradients. The time domain is marched with a step size of ∆t = 0.00005 s. The
solutions achieved with the implemented space and time discretization are found to be
independent of the increase in its resolution.
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Simulations were performed via parallel computation using the message passing
interface protocol (MPI) on a high-performance computing (HPC) cluster node with 2 phys-
ical processors consisting of 8 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40 GHz cores each,
hyperthreaded (32 logical processors in total) with a cache size of 20,480 kB. Eight to
twenty-four logical processors were used for each case. A simulation of Newtonian fluid
peristalsis for a single cylindrical segment pulse and L = 90 mm for half geometry de-
manded a processing time of approximately 240 h.

The convergence rate of the momentum equations for the base case (relative occlusion
RO = 0.6, peristaltic wave speed c = 5 mm

s , power index n = 1, modality m = 1 and length
L = 90 mm) is shown in Figure 3.
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RO=0.6, c=5mm/s, n=1, m=1, L=90mm, NSSWs

Figure 3. The convergence rate with respect to the number (#) of iterations. The relative occlusion is
RO = 0.6, the peristaltic wave speed is c = 5 mm

s , the power index is n = 1, the modality is m = 1
and the length is L = 90 mm.

3. Results and Discussion
3.1. Transport Efficiency

The transport efficiency is estimated as a function of variable wave speed, relative
occlusion (RO)

RO =

W/2∫
−W/2

H∫
−H

dy dz −
W/2∫

−W/2

h∫
−h

dy dz

W/2∫
−W/2

H∫
−H

dy dz

=
H − h

H
, (19)

Carreau power index, and number of cylindrical segments in the squeezing pulse, namely,
its modality. The respective results are reported in Tables 2–5.

Transport efficiency is found to not depend on the wave speed. However, it depends
crucially on the relative occlusion.

As the results suggest, a significant role is played by the power-law index, a 25%
reduction in which leads to a 10% reduction in TE. Transport efficiency increases with a
diminishing rate for every additional cylindrical segment of the squeezing pulse.

Table 2. Transport efficiency for peristaltic pump with infinite [35] and with finite width for variable
wave speed. The relative occlusion is RO = 0.6, the power index is n = 1, the modality is m = 1 and
the length is L = 90 mm.

c (mm/s) TE IW (%) TE FW (%)

2.5 78.8 61.3

5 78.4 61.3

10 78.8 61.3
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Table 3. Transport efficiency for peristaltic pump with infinite [35] and with finite width for variable
relative occlusion. The peristaltic wave speed is c = 5 mm

s , the power index is n = 1, the modality is
m = 1 and the length is L = 90 mm.

RO TE IW (%) TE FW (%)

0.2 28.4 16.5

0.4 - 34.9

0.6 78.4 61.3

0.8 95.6 89.4

Table 4. Transport efficiency for peristaltic pump with infinite [35] and with finite width for variable
power-law index. The relative occlusion is RO = 0.6, the peristaltic wave speed is c = 5 mm

s , the
modality is m = 1 and the length is L = 90 mm.

Power-Law Index TE IW (%) TE FW (%)

1 78.4 61.3

0.75 77.5 50.3

Table 5. Transport efficiency for peristaltic pump with infinite [35] and with finite width for variable
number of cylindrical segments consisting the peristaltic pulse. The relative occlusion is RO = 0.6,
the peristaltic wave speed is c = 5 mm

s , the power index is n = 1 and the length is L = 180 mm.

Pulse Modality TE IW (%) TE FW (%)

1 60 42.8

2 78 60.7

3 87 70.8

As shown in Figure 4, the velocity at the peristalsis direction on the spanwise middle
plane and y = 0.05 mm takes negative values of magnitude greater than the wave speed
for a single peak pulse. The presence of an extra cylindrical segment reduces this quantity
below the propagation velocity c and of a third one nearly keeps it on the positive region.
Towards both ends of the duct, a value close to c arises when the pulse consists of a single
segment. This value increases in a concave manner above c for more segments.
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6

8

0 20 40 60 80 100 120 140 160 180

u
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m s
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x (mm)
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m=3, NSSWs

m=1, SSWs
m=2, SSWs
m=3, SSWs

Figure 4. Streamwise velocity component magnitude for multiple squeezing cylindrical segments
pulse at the middle of the width and y = 0.05 mm for the case with no slip side walls (NSSWs) and
for the case with slip side walls (SSWs) [35]. The relative occlusion is RO = 0.6, the peristaltic wave
speed is c = 5 mm

s , the power index is n = 1 and the length is L = 180 mm.
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The velocity profiles at the width central plane in streamwise positions of interest are
presented in detail in Figures 5 and 6.
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Figure 5. The streamwise velocity profile at x direction for a set of streamwise positions in the middle
plane z = 0. The relative occlusion is RO = 0.6, the peristaltic wave speed is c = 5 mm

s , the power
index is n = 1 and the length is L = 180 mm. The unit for x is also mm.
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Figure 6. The vertical velocity profile at y direction for a set of streamwise positions in the middle
plane z = 0. The relative occlusion is RO = 0.6, the peristaltic wave speed is c = 5 mm

s , the power
index is n = 1 and the length is L = 180 mm. The unit for x is also mm.

The larger magnitude of the flow direction velocity component is noted on the surface
of the cylindrical segments as expected from the Dirichlet boundary condition imposed on
them. The flow field is found to be symmetric with respect to the transverse cross-section
passing through the middle of the duct length in terms of the streamwise component
and antisymmetric in terms of the other components. More intense vertical movement is
observed at the ends of the peristaltic pulse independently of its modality.

Along the same line (intersection of planes y = 0.05 mm and z = 0), the peak-to-peak
value of the pressure wave has 17% fluctuation with its minimum for a single segment
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and its maximum for bimodal pulses produced by twin horizontal cylindrical segments
(Figure 7).
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Figure 7. Pressure for multiple squeezing cylindrical segments pulse at the middle of the width
and y = 0.05 mm for the case with no slip side walls (NSSWs) and for the case with slip side walls
(SSWs) [35]. The relative occlusion is RO = 0.6, the peristaltic wave speed is c = 5 mm

s , the power
index is n = 1 and the length is L = 180 mm.

Velocity patterns depicted in Figures 4–6 incline towards the trends shown in
Figure 8. Notably higher values of shear rate are observed for a single cylindrical segment
in comparison with multi-segment pulses.
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Figure 8. Shear rate for multiple squeezing cylindrical segments pulse at the middle of the width
and y = 0.05 mm for the case with no slip side walls (NSSWs) and for the case with slip side walls
(SSWs) [35]. The relative occlusion is RO = 0.6, the peristaltic wave speed is c = 5 mm

s , the power
index is n = 1 and the length is L = 180 mm.

Figure 9 visualizes the shear rate profiles at the spanwise central plane (z = 0). The
maximum values are observed near the maximum penetration cross-section for a unimodal
pulse (x = 88 mm, x = 92 mm).
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(i) x = 88

Figure 9. Shear rate as a function of height for various x positions in the middle plane z = 0. The
relative occlusion is RO = 0.6, the peristaltic wave speed is c = 5 mm

s , the power index is n = 1 and
the length is L = 180 mm. The unit for x is also mm.

The function graph of longitudinal velocity on the line E = {y = 0.05 mm, z = 0} for
Newtonian fluids lies above the corresponding curve for shear thinning Carreau–Yasuda
fluids for n = 0.75 (Figure 10). In positions at sufficient distances from the peristaltic pulse,
the stream moves approximately with the velocity of peristalsis for the n = 0.75 case, and
for the Newtonian case, a value around 1.3 c is obtained.
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8
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n=1, NSSWs
n=0.75, NSSWs

n=1, SSWs
n=0.75, SSWs

Figure 10. Streamwise velocity component magnitude for Carreau–Yasuda fluids, at the middle of
the width and y = 0.05 mm for the case with no slip side walls (NSSWs) and for the case with slip
side walls (SSWs) [35]. The relative occlusion is RO = 0.6, the peristaltic wave speed is c = 5 mm

s , the
modality is m = 1 and the length is L = 90 mm.

On the sampling line of interest (y = 0.05 mm, z = 0), pressure is roughly dou-
ble for Newtonian fluids than for shear thinning fluids, pn=1(x, y = 0.05, z = 0) ≈
2 · pn=0.75(x, y = 0.05, z = 0) (Figure 11).
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Figure 11. Pressure for Carreau–Yasuda fluids, at the middle of the width and y = 0.05 mm for the
case with no slip side walls (NSSWs) and for the case with slip side walls (SSWs) [35]. The relative
occlusion is RO = 0.6, the peristaltic wave speed is c = 5 mm

s , the modality is m = 1 and the length is
L = 90 mm.

3.2. Peristaltic Characteristic Curves

The discharge pressure, namely, the pressure at the downstream end of the simulated
period of the duct, p(x = L), is acquired as described in Section 2.3 for given developed
velocity profile at the inlet. The graph of the pressure rise across the length of the peristaltic
wave as a function of the flow volume rate through the orthogonal duct, can be seen in
Figure 12.
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(a) Linear pressure scale.
Figure 12. Cont.
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Figure 12. Peristaltic characteristics for various combinations of the values of the parameters. Results
for duct of the same geometry with slip side walls are presented [35].

Independently of the modality of the penetrating pulse, the shape of the peristaltic
characteristic curve is linear and exhibits negative inclination. As the pulse elongates after
appending more cylindrical segments, the characteristic moves upwards with diminishing
marginal pressure augmentation and a slight inclination reduction for every supplementary
segment. For a smaller length and similar single-segment pulse, the discharge pressure
potential increases for given volume flow rate (RO = 0.6, n = 1, L = 180 mm and
RO = 0.6, n = 1, L = 90 mm cases). For fluids with less ability to resist the shear stresses
as the shear rate increases, the flow volume rate reduces as shown for n = 0.75. On the
contrary, for shear thickening fluids, significant augmentation of pumping potential is
noted (n = 1.25 case).

3.3. Effect of Finite Width

The flow field of the baseline case of the one-at-a-time analysis is depicted in Figure 13.
Away from the peristaltic pulse, the steady wall imposes a low-velocity near-wall boundary
layer, while at the vicinity of the pulse the low-velocity boundary layer becomes gradually
thinner (Figure 13d) until it transitions to a high-velocity layer under the influence of the
peristaltic wave.

As a consequence of the shrinking of the cross-section area due to the segments’
presence, the high-velocity boundary layer has diminishing height towards the maximum
penetration cross-section. In terms of transport efficiency, the presence of no slip side
walls incurs a 21.8% reduction and does not change the independence from the wave
propagation speed. The TE domain stretches for the no slip side wall case roughly 6%.
A higher influence grade of the frictional side walls is observed for the shear thinning
behavior case (n = 0.75). The slight reduction of 0.9% for the infinite width case inflates
to 11% for that of the finite width. Quite similar tendencies of the reduction magnitude in
absolute numbers for the SSWs and NSSWs cases is observed for the effect of the number
of cylindrical segments.

A point of interest in the study of peristaltic pumping is the existence or not of backflow
under the squeezing pulse, for in many applications, upstream motion is undesirable [47].
Intenser reversed flow at the middleplane is noted for the unimodal pulse case. Though
for the SSWs case no retrograde flow is noted for multimodal pulses, for the NSSWs
case backflow hardly reaches zero for a trimodal squeezing pulse. Furthermore, for the
L = 90 mm duct, significant upstream velocity at the middle spanwise plane and y = 0.05 mm
at the peristaltic pulse longitudinal position emerges. This retrograde flow is strengthened
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for shear-thinning fluids (Figure 10). For the infinite width case, the velocity at the same
region is slightly greater for shear thinning fluids than for Newtonian fluids.

(a) x = 0 mm (b) x = 25 mm (c) x = 28 mm (d) x = 30 mm

(e) x = 32.5 mm (f) x = 35 mm (g) x = 40 mm (h) x = 45 mm

Figure 13. The streamwise velocity field at selected crosswise sections for Newtonian fluids.
One cylindrical segment centered at x = 45 mm is placed at an L = 90 mm duct. The wave
speed is c = 5 mm/s, and the relative occlusion is RO = 0.6. A quarter of the cross-section
is presented.

The pressure curves are of similar shape for the SSWs and the NSSWs cases; however,
the peak-to-peak value for the NSSWs is at least 1.5 times that of SSWs.

The spanwise bounded peristalsis characteristics are found to lie over the counterpart
for the spanwise unbounded duct up to some critical point where an inversion occurs
(Figure 12).

4. Conclusions

A simulation of the peristaltic motion in a rectilinear square tube is presented with
an analysis of a subset of the factors which affect the fluid dynamics. The squeezing wave
is assumed to consist of pulses of consecutive parallel horizontal cylindrical segments.
The inter-pulse distance defines the length L, and the computation takes place at such a
domain, using periodic boundary conditions. The set of examined parameters includes
the number of cylindrical segments in the pulse, the wave speed, the relative occlusion
and the rheological constitutive equation power index. Flow equations are manipulated
by immersing the solid boundaries in a Cartesian mesh and using finite differences for
the discretization of the spatial and temporal derivatives. For the incorporation of the
non-Newtonian behavior, the Carreau–Yasuda model is employed.

The ratio of the discharge volume to the product of the wave speed with the duct cross-
section area is found to be significantly lower than in the slip wall case. The correlation of
the parameters with TE is similar with the slip wall variant except for the Carreau–Yasuda
power index. A significantly higher plunge is observed for the NSSWs tube in comparison
with the SSWs duct in response to transition from Newtonian to shear thinning behavior.

Backflow is an undesirable factor in peristaltic implementation such as blood trans-
fusion. Negative streamwise velocity for the finite width case at the core of the duct
(y = 0.05 mm, z = 0) is of larger magnitude than that of the infinite width case. Fur-
thermore, the pressure rise across the squeezing pulse is notably higher for the laterally
frictionally confined setting compared with the infinite width one.

Maximum shear levels are higher for unimodal waves than for bi- and multimodal
waves. Therefore, large values of m are more adequate for blood propulsion using this
mechanism as they present less erythrocyte damage risk [48,49]. Uniformity of the stream-
wise velocity and retrograde flow elimination are also enhanced by the augmentation
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of modality m. For shear thinning fluid peristalsis in an NSSWs duct, the longitudinal
negative velocity magnitude is higher than for shear independent fluids. The downstream
the train of cylindrical segments, surplus of pressure over the upstream segment pressure
is more or less 100% larger for Newtonian fluids to that for n = 0.75 fluids. Hence, for
the increase in the pressure of pseudoplastic fluids, the half gap should be reduced in
comparison with its value for fluids with viscosity that is not a function of shear rate. In
agreement with the previous remark, each additional cylindrical segment in the squeezing
pulse raises the peristaltic characteristic. Fluids with shear dilating behavior are found to
be more prone to a rise in pressure by contraction waves.
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