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Abstract: This study investigates techniques for medical image classification, specifically focusing on
COVID-19 scans obtained through computer tomography (CT). Firstly, handcrafted methods based
on feature engineering are explored due to their suitability for training traditional machine learning
(TML) classifiers (e.g., Support Vector Machine (SVM)) when faced with limited medical image
datasets. In this context, I comprehensively evaluate and compare 27 descriptor sets. More recently,
deep learning (DL) models have successfully analyzed and classified natural and medical images.
However, the scarcity of well-annotated medical images, particularly those related to COVID-19,
presents challenges for training DL models from scratch. Consequently, I leverage deep features
extracted from 12 pre-trained DL models for classification tasks. This work presents a comprehensive
comparative analysis between TML and DL approaches in COVID-19 image classification.

Keywords: machine learning; deep learning; convolutional neural networks; deep features; COVID-19;
classification; CT scan

1. Introduction

Coronavirus disease 2019 (COVID-19) poses a significant global health threat due to
its highly contagious nature, primarily transmitted through respiratory droplets expelled
during coughing, sneezing, or speaking [1,2]. This respiratory illness represents one of
the most lethal infectious diseases of our time [3], often leading to a substantial decline in
the quality of life for afflicted individuals [4]. While the standard diagnostic tool, reverse
transcriptase-polymerase chain reaction (RT-PCR), is widely employed, its limitations
include a non-negligible rate of false negative results [5]. Therefore, developing and
exploring alternative methodologies for accurate COVID-19 diagnosis is crucial.

Chest computed tomography (CT) [6] has emerged as a valuable adjunct to RT-PCR
testing in the context of COVID-19 screening and diagnosis. Studies such as those by
Fang et al. [7] and Ai et al. [8] have demonstrated the efficacy of CT scans in identifying
COVID-19 patients with high sensitivity, even in cases where initial RT-PCR results were
negative. This suggests the potential benefit of utilizing CT scans, particularly for patients
exhibiting suggestive clinical symptoms despite negative RT-PCR findings [7].

Manual analysis of COVID-19 chest CT scans by radiologists presents a time-consuming
burden, especially in emergency settings with high patient volumes. This necessitates the
development of robust computer-aided diagnosis (CAD) systems capable of leveraging the
rich information embedded within digital CT scans. Machine learning (ML) frameworks,
in conjunction with image processing techniques, offer promising avenues for the construc-
tion of such CAD systems [9]. Given their potential to expedite and improve COVID-19
identification, ultimately facilitating timely and appropriate treatment interventions, CAD
systems hold significant clinical value. Existing approaches for COVID-19 classification
from CT scans can be broadly classified based on the type of feature descriptors extracted:
traditional ML and deep learning (DL) techniques [10,11].

Conventional ML approaches for COVID-19 identification rely on meticulously crafted
feature descriptors [12,13]. Conversely, DL models, specifically convolutional neural
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networks (CNNs), offer the unique capability of end-to-end training [14,15]. However,
their data-intensive nature necessitates substantial labeled data samples for training from
scratch [16]. To circumvent this limitation, pre-trained CNN models can be fine-tuned and
deployed as feature extractors, effectively capturing the salient information within medical
images like CT scans [17].

Accurate and timely COVID-19 diagnosis presents a significant challenge in clinical
settings. Robust automated detection methods can significantly aid medical professionals
in making treatment decisions upon confirmation of the disease. This study, therefore,
investigates a comprehensive range of feature descriptors for the classification of COVID-19
chest CT images. The primary objective is to identify a robust and efficient set of descriptors
that accurately classify COVID-19 versus non-COVID-19 cases.

In the following, I provide a literature review of classification techniques for chest
CT scans of patients afflicted with COVID-19 and outline this work’s contributions.

2. Related Work

The automatic classification of COVID-19 CT images has garnered significant attention
in recent research, as evidenced by a plethora of contributions documented in the litera-
ture [18–20]. In this section, I provide a review of these computer-aided system techniques,
categorizing them into two distinct paradigms: traditional machine learning (TML) and
deep learning (DL)-based approaches.

2.1. Traditional ML-Based Techniques

TML approaches for COVID-19 image classification typically adopt a pipelined struc-
ture. This workflow encompasses three key stages: (1) feature extraction, where relevant
image characteristics (e.g., shape, color, texture) are isolated; (2) feature selection, which
involves choosing a subset of informative features; and (3) classification model construction,
where a model is trained to distinguish between COVID-19 and non-COVID-19 images.
The ultimate goal is to achieve a robust classifier with minimal classification error. For in-
stance, Hussain et al. [21] employed texture and morphological features to train various
supervised classifiers for COVID-19 classification. Similarly, Chen et al. [22] utilized texture
features derived from the Gray-Level Co-Occurrence Matrix (GLCM) to train a support
vector machine (SVM) classifier within a 10-fold cross-validation (CV) framework.

Other studies have explored the utility of statistical moments for differentiating
COVID-19 from non-COVID-19 images. Elaziz et al. [12] proposed the extraction of Frac-
tional Multichannel Exponent Moments (FEMs) as features for classifier training. Their
approach was evaluated on two independent datasets, achieving accuracies of 96.09%
and 98.09%, respectively.

Ismael and Şengür [13] explored the efficacy of various multiresolution analysis
techniques, namely wavelet, shearlet, and contourlet transforms, for COVID-19 detection
in X-ray images. Following image decomposition, they extracted entropy and normalized
entropy as features from the resulting subbands. These feature vectors were subsequently
employed to train extreme learning machines (ELMs) for classification. The study utilized
an imbalanced dataset comprising 200 healthy control samples and 361 COVID-19 X-ray
images. The authors compared their proposed traditional method with the performance of
DL-derived features. Interestingly, they concluded that traditional methods retain relevance
and do not necessarily yield inferior results compared to DL approaches. This observation is
supported by their finding that shearlet-based descriptors achieved an accuracy of 99.28%.

In a similar tendency to previous TML works, this research proposes to delve into a
comprehensive exploration of hand-engineered descriptors. To mitigate the introduction of
extraneous biases, the training and testing protocols will be held constant, while leveraging
the identical COVID-19 dataset employed throughout the study.
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2.2. DL-Based Techniques

In contrast to TML approaches, DL models offer the capability of end-to-end training
directly on raw COVID-19 image data. The efficacy of DL architectures stems from their
inherent capacity to autonomously acquire and unveil multi-tiered representations from
data. Initial strata within the network typically concentrate on the extraction of fundamen-
tal characteristics, such as chromatic properties and boundaries [23]. Subsequently, higher
strata progressively abstract these features, culminating in the formation of semantically sig-
nificant representations of the input data. As an example, Ismael and Şengür [24] explored
both fine-tuning pre-trained CNNs and training a CNN from scratch for COVID-19 detec-
tion in chest X-ray images. The utilized dataset comprised 180 COVID-19 and 200 healthy
control X-ray images. The study evaluated various pre-trained models, including ResNet50,
ResNet101, VGG16, and VGG19. Extracted deep features from these models were subse-
quently fed to an SVM for classification. The authors reported accuracies of 94.7%, 92.6%,
and 91.6% for utilizing unsupervised deep features extraction, fine-tuning pre-trained
models, and training from scratch, respectively.

Mirroring the approach of Ismael and Şengür [24], Haque et al. [25] investigated
the utility of DL for COVID-19 detection in chest X-ray images. They explored both a
custom-designed CNN model and fine-tuned pre-trained models (ResNet50, VGG-16, and
VGG-19). Their proposed CNN architecture achieved an accuracy of 98.3% and a precision
of 96.72%.

Furthermore, Jain et al. [26] investigated the use of X-ray images for COVID-19 detec-
tion through a DL model trained with data augmentation techniques. While their model
was validated using a 5-fold CV scheme, it achieved an accuracy of 98.93%.

Saiz and Barandiaran [27] proposed an object detection DL architecture, which was
trained and tested using publicly available datasets of 1500 images of normal and abnormal
COVID-19 patients. The authors’ primary goal was to classify the patients as infected or
non-infected with COVID-19. The reported sensitivity and specificity were 94.92% and
92%, respectively.

Sahin et al. [28] investigated the application of DL methodologies for COVID-19
diagnosis utilizing CT imagery. Their approach leveraged Faster R-CNN and Mask R-CNN
architectures for the classification of patients with COVID-19 and pneumonia. The study
conducted a comparative analysis employing VGG-16 as the backbone for the Faster R-CNN
model, while ResNet-50 and ResNet-101 backbones were utilized for the Mask R-CNN
model. The implemented Faster R-CNN model achieved an accuracy of 93.86%. The Mask
R-CNN model, employing ResNet-50 and ResNet-101 backbones, yielded mean average
precision (mAP) values of 97.72% and 95.65%, respectively.

Avola et al. [29] investigated the effectiveness of twelve pre-trained DL models to
differentiate between chest X-ray images from healthy individuals, those exhibiting signs
of viral pneumonia (encompassing both generic and SARS-CoV-2 strains), and those with
bacterial pneumonia. The experiment employed a dataset consisting of 6330 images,
subdivided into training, validation, and testing sets. Standard classification metrics, such
as precision and F1 scores, were computed for all models. The findings revealed that
many of the implemented architectures achieved an average F1 score of up to 84.46% when
distinguishing between the four designated classes.

Kathamuthu et al. [30] explored the efficacy of various deep transfer learning-based
CNN architectures for the detection of COVID-19 in chest CT imagery. The investigation
leverages pre-trained models including VGG16, VGG19, Densenet121, InceptionV3, Xcep-
tion, and Resnet50 as foundational elements. The results demonstrate that the VGG16
model achieves superior performance within this study, attaining an accuracy of 98.00%.

Analogous to prior investigations documented within the literature, this study lever-
ages established DL models; however, these models are employed solely for unsupervised
feature extraction, eschewing fine-tuning. My approach focuses on utilizing the terminal
layer within the network hierarchy, situated immediately before the classification layer. This
selection is predicated on the assumption that these deep features encapsulate a semantic
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representation of the input data. Notably, Nanni et al. [31] proposed a system that exploits
features learned by CNNs across multiple levels. Their system advocates for the fusion of
these learned features, subsequently leveraging them for various image classification tasks.

2.3. Contribution

Many computational techniques have been developed for the identification of COVID-19
using traditional and DL approaches. Many of these techniques lack standardized train-
ing and testing approaches. The importance of this research can be comprehended by
answering the following questions:

• Why COVID-19 Detection is Still Important?

– Long-Term Effects: COVID-19 can cause lingering health problems even after
recovery. Thus, early detection potentially helps in managing these effectively.

– Variants and Future Outbreaks: New variants can emerge, and having robust
detection systems is indispensable for future outbreaks.

– Improved Healthcare Systems: Coherent detection tools can minimize unneces-
sary hospitalizations and allocate resources better.

• Why a Comparative Study for COVID-19 is important?

– Benchmarking Progress: Contrasting different techniques allows us to identify
the well-performing models and track advancements in the field.

– Understanding Best-Performing Methods: Knowing best-performing methods
guides future development to generalize and adapt for other classification tasks
in biomedicine.

– Focus on Improving Techniques: Even if the overall trend of COVID-19 is de-
creasing, a comparative analysis of various techniques could potentially identify
and improve robust techniques for COVID-19 detection.

Thus, I compute the performances while utilizing 27 descriptors on one popular
COVID-19 dataset with the same experimental setting. Moreover, I compare the results
achieved by handcrafted features with the results obtained by the state-of-the-art deep
features. As such, a comparative experimental study was conducted on how well-advanced
deep CNNs trained on ImageNet. To this end, I experimented with 12 deep networks
that have different architectural designs and varying depths. These models are utilized as
unsupervised feature extractors. As an advantage of using CNNs as unsupervised feature
extractors, I avoid training and fine-tuning the models, and thus, fewer computational
resources are needed. I also evaluate the robustness of both hand-crafted and deep features
with an SVM, which is trained in the context of a 5-fold nested CV.

3. Methods

First and foremost, the progress and improvement in developing techniques related
to the classification of COVID-19 chest CT scans are due to the public availability of such
datasets. For instance, Angelov and Soares [32] is a highly cited paper that collected
2482 images of COVID-19 samples that I use in my investigation to evaluate and compare
traditional and deep features techniques.

Machine learning [33] refers to the field of computer science where algorithms are
trained to learn and solve problems from examples rather than being explicitly programmed.
In the context of medical image analysis, particularly COVID-19, this involves building
mathematical models based on datasets to achieve the task of differentiating between
healthy vs diseased patients. These data-driven algorithms are constantly optimized
through various optimization algorithms [34] to achieve high accuracy and efficiency in
their performance. Ultimately, the goal is to develop a generalizable ML model that can
accurately predict outcomes even for unseen data, meaning new medical images that are
not included in the training dataset.

The construction of robust classifiers within a TML paradigm for COVID-19 image
analysis hinges on the extraction of informative features from the data. Commonly utilized
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features, as documented in the literature, include morphological descriptors, textural
descriptors, and those derived from spectral methods. These extracted feature vectors
subsequently serve as input to the classification model. As an alternative, DL approaches
offer the distinct advantage of directly learning features from the raw medical images in an
end-to-end manner, avoiding the feature extraction step. However, a notable limitation of
DL techniques lies in their data-intensive nature, often requiring substantial labeled data
samples for effective training from scratch.

A review of both traditional and DL-based techniques applied to COVID-19 patient
datasets, as presented in the prior section, highlights their capability to achieve impressive
classification performance. This suggests the potential of ML as a pre-screening tool
to support radiologists in clinical settings. Notably, the literature indicates the efficacy
of spectral methods, such as shearlet [35] and contourlet [36], coupled with statistical
analysis for image analysis. The multiresolution and multi-scale nature of sub-bands
obtained through image decomposition facilitates in-depth exploration. Notably, Ismael
and Şengür [13] extracted shearlet coefficients and utilized entropy and normalized entropy
as features, demonstrating the continued relevance of traditional methods.

My study addresses the challenge of limited medical data samples by evaluating and
comparing various methods capable of mitigating this issue. I explore the performance of
twenty-seven traditionally hand-crafted features. While DL methods have demonstrated
promising classification results on diverse datasets, including those pertaining to COVID-19,
they generally require substantial training data. To circumvent this limitation, a common
practice in DL, particularly with scarce image samples, is to fine-tune a pre-trained model
alongside data augmentation techniques to achieve optimal classification performance
and avoid overfitting. In contrast, my approach investigates the use of DL models trained
on non-medical image datasets (i.e., ImageNet [37]) as unsupervised feature extractors.
My technique is implemented using MATLAB® 2021b. The experimental platform consisted
of a computer system equipped with an Intel Core i7-9700 central processing unit (CPU)
operating at a clock speed of 3.00 GHz. Additionally, the system was outfitted with an
NVIDIA GeForce RTX 2080 graphics processing unit (GPU) possessing 8 GB of dedicated
video memory.

3.1. Handcrafted Descriptors for COVID-19 Image Classification

Many conventional feature extraction methods aspire to detect a region of interest in
images by computing geometric and appearance features [38], subsequently, these features
are utilized to train traditional ML algorithms. Geometric features are computed based on
the shape, locality of features, and salient points [39]. On the other hand, appearance-based
attributes are based on texture information. In this study, I examine a set of 27 descriptors
(MATLAB ToolboxDESC contains the implementation of 27 sets of descriptors that can be
accessed via https://github.com/cigdemturan/ToolboxDESC, accessed on 1 January 2024)
(as shown in Table 1). The same descriptors are utilized by Turan and Lam [38] to study
facial expression recognition, but I examine these features to classify COVID-19 images.

Table 1. Details about the feature vector length of utilized hand-crafted features.

ID Method Abbreviation Dimension

1 Binary Pattern of Phase Congruency [40] BPPC 1062
2 Gradient Directional Pattern [41] GDP 256
3 Gradient Direction Pattern [42] GDP2 8
4 Gradient Local Ternary Pattern [43] GLTeP 512
5 Improved Weber Binary Coding [44] IWBC 2048
6 Local Arc Pattern [45] LAP 272
7 Local Binary Pattern [46] LBP 59
8 Local Directional Pattern [47] LDiP 56
9 Local Directional Pattern Variance [48] LDiPv 56
10 Local Directional Number Pattern [49] LDN 56

https://github.com/cigdemturan/ToolboxDESC
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Table 1. Cont.

ID Method Abbreviation Dimension

11 Local Directional Texture Pattern [50] LDTP 72
12 Local Frequency Descriptor [51] LFD 512
13 Local Gabor Binary Pattern Histogram Sequence [52] LGBPHS 256
14 Local Gabor Directional Pattern [53] LGDiP 280
15 Local Gradient Increasing Pattern [54] LGIP 37
16 Local Gradient Pattern [55] LGP 7
17 Local Gabor Transitional Pattern [56] LGTrP 256
18 Local Monotonic Pattern [57] LMP 256
19 Local Phase Quantization [58] LPQ 256
20 Local Ternary Pattern [59] LTeP 512
21 Local Transitional Pattern [60] LTrP 256
22 Monogenic Binary Coding [61] MBC 3072
23 Median Binary Pattern [59] MBP 256
24 Median Robust Extended Local Binary Pattern [62] MRELBP 800
25 Median Ternary Pattern [59] MTP 512
26 Pyramid of Histogram of Oriented Gradients [63] PHOG 168
27 Weber Local Descriptor [64] WLD 32

3.2. Deep Models for COVID-19 Images

Rather than training from scratch, I leverage pre-trained models capable of extracting
meaningful features, i.e., these models are trained on vast datasets of non-medical images
like ImageNet. These pre-trained models act as powerful but unsupervised feature extrac-
tors, generating deep features for COVID-19 image classification. Subsequently, I compare
the performance of an SVM model trained and tested solely on these extracted features
under a 5-fold nested CV scheme.

This study evaluates the capability of different CNN architectures to capture valu-
able information from COVID-19 images. I investigate both lightweight models like
SqueezeNet 1.1 [65] and MobileNet v2 [66] for their efficiency, and larger models like
ResNet-18 [67] and DenseNet-201 [68] for their potential in capturing richer details. Partic-
ularly, SqueezeNet utilizes diverse filter sizes to potentially extract both fine-grained and
broader features from the images. MobileNet v2 boasts superior speed compared to other
efficient models like ShuffleNet [69] and NASNet [70]. Notably, DenseNet-201 leverages
feature reuse, where previously learned features are incorporated into subsequent layers,
potentially enriching the information available for processing. In contrast, ResNet-18 em-
ploys element-wise addition to combine feature maps, offering a different approach to
information flow.

My investigation encompassed the exploration of alternative DL models with compa-
rable structures. Notably, Inception [71] exhibits similarities to DenseNet in its utilization
of skip connections for depth-wise feature map concatenation. However, Inception’s wider
building block, constructed using diverse kernel sizes, resulted in subpar performance for
COVID-19 image classification compared to DenseNet. Conversely, older models devoid of
skip connections, such as VGG architectures [72], are susceptible to vanishing gradients and
potentially slower training times. Nonetheless, My experimentation revealed promising
results when applying these models to COVID-19 image classification.

A brief description of the CNN models that are used in this study is as follows.

• GoogLeNet (Inception) [73]: architecture relies on LeNet and AlexNet CNN models,
but with the modification of depth and width of the layers. This model consists
of 22 layers. It employs a parallel structure to significantly lessen the training time.
As such, the model is designed to avoid patch-alignment problems by applying filter
sizes of 1 × 1, 3 × 3, and 5 × 5.

• Inception-ResNet-v2 [74]: model consists of 164 layers. This model relies on the family
of Inception, but instead comprises residual connections. As such, this model replaces
the filter concatenation step of the Inception CNN model.
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• Inception-v3 [71]: comprising 48 layers, tackles the challenge of positional variance
in salient image features by employing a multi-branch architecture. This architecture
allows the network to incorporate diverse kernel types at the same level (sizes of 1 × 1,
3 × 3, and pooling layers), effectively expanding the network’s receptive field. These
Inception modules enable the concurrent execution of numerous kernels, fostering
greater feature extraction diversity. This core concept was introduced in the initial
Inception-v1 model. Building upon its predecessor, Inception-v3 addresses the rep-
resentational bottleneck issue through enhanced strategies. Notably, it incorporates
kernel factorization and batch normalization within its auxiliary classifiers, leading to
improved performance.

• VGG-16 and VGG-19 [72]: developed by the Visual Geometry Group (VGG) at the Uni-
versity of Oxford, VGG models represent a family of CNNs known for their simplicity
and performance. Notably, VGG-16 and VGG-19, with 16 and 19 convolutional layers
respectively, gained recognition at the ILSVRC 2014 competition as runners-up. These
architectures feature relatively large numbers of parameters, with VGG-16 reaching
approximately 138 million parameters. Additionally, both models incorporate fully
connected layers containing 4096 hidden units each.

• SqueezeNet v1.1 [65]: network commences with a convolutional layer (conv1), fol-
lowed by a sequence of eight blocks, each containing 2–9 fire modules. Each fire
module employs a squeeze convolution layer with a filter size of 1 × 1, followed by
two expand layers. One of these expand layers utilizes a filter size of 1 × 1, while the
other utilizes a filter size of 3 × 3. The resulting feature maps from both expand layers
are subsequently concatenated to form the input for the subsequent squeeze layer,
which then feeds into the next fire module within the block.

• DenseNet-201 [68]: architecture leverages the concept of residual learning, introduced
in ResNet, for network optimization. While ResNet employs element-wise addition
of previous feature maps to the output, DenseNet utilizes depth concatenation of
both the current and preceding outputs. This architecture comprises 32 dense blocks,
each containing two distinct convolutional layers with kernel sizes of 1 × 1 and 3 × 3,
respectively. Notably, these convolutional layers are preceded by batch normalization
for improved convergence and training stability.

• ResNet-18 [67]: architecture leverages a series of eight basic building blocks, each
containing a sequence of two convolutional layers. These convolutional layers utilize
a fixed filter size of 3× 3, ensuring consistent spatial feature extraction. Critically, each
convolutional layer is followed by batch normalization, a technique that facilitates
faster convergence and improved training stability. Notably, a key mechanism of
ResNet-18 lies in the residual connection. This involves the element-wise addition
of the current block’s output to the output of the preceding block, allowing the
information flow to propagate efficiently through the network.

• ResNet-50 and ResNet-101 [67]: architectures comprise variations of the ResNet-18
model, differentiating themselves through their respective depths of 50 and 101 layers.
Both architectures leverage the bottleneck residual module, which processes the in-
put signal through two distinct branches: (1) Convolutional Processing Branch: This
branch applies a series of convolutions with varying kernel sizes (1 × 1 and 3 × 3)
interspersed with batch normalization and ReLU activation functions; (2) Skip Con-
nection Branch: This branch directly transmits the input signal unaltered, preserving
crucial low-level feature information.

• Xception [75]: model stands out for its exclusive reliance on depthwise separable
convolution layers. This architectural decision fosters computational efficiency while
maintaining representational power. The network encompasses 36 convolutional
layers, organized into 14 individual blocks. Only the first and final blocks deviate
from the standard structure by lacking residual connections. In contrast, all remaining
blocks incorporate linear residual connections. This strategic use of residual con-
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nections facilitates gradient flow throughout the network, enhancing training and
promoting optimal performance.

• MobileNet-v2 [66]: architecture incorporates two primary types of building blocks:
(1) Linear Bottleneck Operations: These modules aim to achieve feature compression
while maintaining representational power. (2) Skip Connections: These direct connec-
tions facilitate the flow of gradients and information across the network, mitigating
the vanishing gradient problem that can occur in deep architectures. Both block types
share fundamental operations, including convolution, batch normalization, and mod-
ified rectified linear unit (i.e., min (max (x, 0), 6)). The network comprises a total of
16 of these blocks, strategically arranged to achieve efficient feature extraction and
classification performance.

CNN as Feature Extractor

The pre-trained CNN architectures, as detailed in Section 3.2, are utilized as unsu-
pervised feature extractors. In this context, the deepest layer’s output (directly preceding
the classification layer) of each pre-trained model is flattened, generating a feature vector
for each image. Fine-tuning of the pre-trained models is not conducted. Subsequently, a
standard SVM classifier is trained and evaluated to assess the efficacy of these extracted
deep features in classifying COVID-19 images. Table 2 presents a comprehensive overview
of the feature vector lengths derived from each CNN model, thereby summarizing the
salient features captured for each COVID-19 image.

Table 2. Details about the feature vector length of utilized CNN models as feature extractors.

Model’s Name Layer Length

GoogLeNet pool5-7x7_s1 1024
Inception-ResNet-v2 avg_pool 1536

Inception-v3 avg_pool 2048
VGG-16 fc6 4096
VGG-19 fc6 4096

ResNet-50 avg_pool 2048
ResNet-101 pool5 2048

SqueezeNet v1.1 pool10 1000
DenseNet-201 avg_pool 1920

ResNet-18 pool5 512
Xception avg_pool 2048

MobileNet-v2 global_average_pooling2d_1 1280

4. Experiments and Results

This section provides a summary of the experiments conducted to evaluate and
compare a wide range of hand-crafted and deep features for detecting COVID-19 infection
from CT scan images. First, a description of the dataset utilized for the experimental studies
is given at the beginning of this section. Then, a description of the nested cross-validation
used to test my classification models and a list of utilized evaluation measures to assess the
efficiency of the studied techniques. Followed by a brief highlight of the well-performing
methods for the classification of COVID-19 CT images. Finally, I present a comprehensive
review of the state-of-the-art methods with their corresponding performance utilizing the
same benchmark dataset.

4.1. Dataset

For the purposes of this research investigation, I leverage the pre-processed COVID-19
dataset, SARS-CoV-2, as originally proposed by Angelov and Soares [32] and made publicly
available on Kaggle (www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset, accessed
on 1 January 204). This dataset contains a total of 2482 chest CT-scans images that belong
either to COVID-19 (i.e., 1252 images) or non-COVID-19 (i.e., 1230 images). The CT scans

www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
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exhibit heterogeneity in their spatial dimensions, ranging from 104 × 119 to 416 × 512
pixels. Notably, all scans are grayscale and stored in the Portable Network Graphics (PNG)
format. Angelov and Soares have classified the images based on the outcome of the RT-PCR
tests. As such, patients with confirmed positive or negative RT-PCR tests for COVID-19
infection are included in the datasets.

4.2. Nested Cross-Validation (CV)

This work employs a five-fold nested CV strategy for hyperparameter optimization.
The dataset is partitioned into five equally sized subsets. Within each outer fold, an
inner loop utilizes four subsets for training and hyperparameter tuning via a classifier.
The remaining subset in the inner loop serves as the validation set for hyperparameter
selection. The geometric mean of the classifier performance serves as the objective function
for hyperparameter optimization within the inner loop. Upon convergence, the optimized
classifier is evaluated on the test set of the outer fold, utilizing a range of performance
metrics including accuracy, sensitivity, specificity, F-measure, area under the receiver
operating characteristic curve, positive predictive value, negative predictive value, and the
geometric mean. This process is repeated for each of the five outer folds, ensuring a robust
estimation of the classifier’s generalizability.

Following the five-fold nested CV protocol outlined previously, I reiterate the entire
procedure five times. Subsequently, across these five iterations, the average of the following
classification metrics [16] is reported:

• Accuracy ACC = (TP + TN)/(TP + TN + FP + FN), where TP, TN, FP, and FN
indicate the number of true positives, true negatives, false positives, and false nega-
tives, respectively.

• Sensitivity SN = TP/(TP + FN).
• Specificity SP = TN/(TN + FP).
• F-Measure FM = (2 × TP)/(2 × TP + FP + FN)
• The area under the curve (AUC) encapsulates the relationship between the true

positive rate (sensitivity) and the false positive rate (1 − specificity)
• Positive Predictive Value (PPV) = TP/(TP + FP).
• Negative Predictive Value (NPV) = TN/(TN + FN).
• Geometric mean (GM) is the square root of the product of sensitivity and specificity,

or GM =
√

SN × SP.

4.3. Results and Analysis

This section explores the classification results for COVID-19 detection. Initially,
I present the performance of the SVM classifier utilizing hand-crafted descriptors. Sub-
sequently, I report the SVM’s performance when trained on diverse unsupervised deep
features extracted from various CNN architectures. All built classification models in this
study undergo training and validation within a nested CV framework.

4.3.1. Classification Results Using Handcrafted Descriptors

This section investigates the classification performance of hand-crafted features ex-
tracted from the SARS-CoV-2 dataset for COVID-19 detection. Each sample undergoes
summarization via 27 distinct techniques, with their corresponding feature vector lengths
outlined in Table 1. Subsequently, the resulting feature matrix, where each row represents
an image’s feature vector and its associated label, is fed into an SVM classifier. As detailed
in the nested CV section, a 5-fold nested CV scheme is employed to evaluate the classifier’s
performance, with the optimal model selected based on the geometric mean score (See
Figure 1). Table 3 presents the classification results achieved by the SVM models utilizing
various hand-engineered descriptors. Notably, the Pyramid of Histogram of Oriented
Gradients (PHOG) exhibits the highest performance. Both Gradient Local Ternary Pattern
(GLTeP) and Local Ternary Pattern (LTeP) achieve comparable results; however, PHOG
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presents a distinct advantage due to its significantly lower feature vector dimensionality
(168 compared to 512 for GLTeP and LTeP).

Figure 1. Achieved geometric mean by each hand-crafted method when used for training an SVM
model in a 5-fold nested cross-validation fashion. Sorted from left to right.

Table 3. Average SVM performance trained using hand-engineered features for COVID-19 image
classification. This table presents the mean values ± standard deviation.

ID Method ACC SN SP FM AUC PPV NPV GM

1 BPPC 0.9175 ± 0.0104 0.9180 ± 0.0130 0.9171 ± 0.0202 0.9169 ± 0.0101 0.9175 ± 0.0103 0.9160 ± 0.0185 0.9194 ± 0.0113 0.9174 ± 0.0103
2 GDP 0.9045 ± 0.0245 0.8975 ± 0.0264 0.9114 ± 0.0251 0.9030 ± 0.0250 0.9045 ± 0.0245 0.9087 ± 0.0257 0.9007 ± 0.0251 0.9044 ± 0.0245
3 GDP2 0.8033 ± 0.0137 0.7990 ± 0.0173 0.8076 ± 0.0176 0.8010 ± 0.0137 0.8033 ± 0.0137 0.8031 ± 0.0152 0.8038 ± 0.0153 0.8032 ± 0.0137
4 GLTeP 0.9549 ± 0.0174 0.9508 ± 0.0123 0.9589 ± 0.0271 0.9544 ± 0.0171 0.9549 ± 0.0174 0.9583 ± 0.0263 0.9520 ± 0.0120 0.9548 ± 0.0174
5 IWBC 0.9301 ± 0.0235 0.9319 ± 0.0240 0.9284 ± 0.0231 0.9296 ± 0.0237 0.9301 ± 0.0235 0.9274 ± 0.0235 0.9329 ± 0.0236 0.9301 ± 0.0235
6 LAP 0.9456 ± 0.0192 0.9311 ± 0.0247 0.9598 ± 0.0180 0.9442 ± 0.0199 0.9454 ± 0.0192 0.9578 ± 0.0190 0.9344 ± 0.0228 0.9453 ± 0.0193
7 LBP 0.9155 ± 0.0228 0.9114 ± 0.0275 0.9195 ± 0.0188 0.9143 ± 0.0236 0.9155 ± 0.0229 0.9173 ± 0.0201 0.9138 ± 0.0258 0.9154 ± 0.0229
8 LDiP 0.8968 ± 0.0274 0.8868 ± 0.0229 0.9066 ± 0.0355 0.8950 ± 0.0270 0.8967 ± 0.0274 0.9036 ± 0.0344 0.8907 ± 0.0230 0.8966 ± 0.0273
9 LDiPv 0.9122 ± 0.0216 0.9212 ± 0.0202 0.9034 ± 0.0279 0.9123 ± 0.0211 0.9123 ± 0.0215 0.9038 ± 0.0259 0.9212 ± 0.0201 0.9122 ± 0.0216

10 LDN 0.9195 ± 0.0101 0.9033 ± 0.0181 0.9355 ± 0.0137 0.9175 ± 0.0096 0.9194 ± 0.0095 0.9323 ± 0.0136 0.9077 ± 0.0202 0.9192 ± 0.0095
11 LDTP 0.9439 ± 0.0143 0.9280 ± 0.0112 0.9594 ± 0.0192 0.9427 ± 0.0129 0.9437 ± 0.0141 0.9579 ± 0.0174 0.9308 ± 0.0157 0.9436 ± 0.0140
12 LFD 0.8826 ± 0.0180 0.8782 ± 0.0188 0.8872 ± 0.0247 0.8805 ± 0.0226 0.8827 ± 0.0181 0.8831 ± 0.0331 0.8816 ± 0.0145 0.8827 ± 0.0180
13 LGBPHS 0.8639 ± 0.0320 0.8496 ± 0.0395 0.8780 ± 0.0285 0.8602 ± 0.0359 0.8638 ± 0.0322 0.8713 ± 0.0367 0.8565 ± 0.0359 0.8636 ± 0.0322
14 LGDiP 0.8281 ± 0.0136 0.8323 ± 0.0123 0.8232 ± 0.0288 0.8273 ± 0.0148 0.8277 ± 0.0143 0.8225 ± 0.0229 0.8332 ± 0.0138 0.8276 ± 0.0145
15 LGIP 0.9313 ± 0.0136 0.9243 ± 0.0228 0.9389 ± 0.0115 0.9303 ± 0.0130 0.9316 ± 0.0135 0.9366 ± 0.0137 0.9258 ± 0.0259 0.9315 ± 0.0136
16 LGP 0.8639 ± 0.0151 0.8587 ± 0.0152 0.8690 ± 0.0181 0.8623 ± 0.0091 0.8638 ± 0.0150 0.8660 ± 0.0098 0.8611 ± 0.0270 0.8638 ± 0.0150
17 LGTrP 0.6477 ± 0.0303 0.5957 ± 0.0422 0.6987 ± 0.0205 0.6256 ± 0.0372 0.6472 ± 0.0302 0.6592 ± 0.0363 0.6379 ± 0.0408 0.6450 ± 0.0311
18 LMP 0.9455 ± 0.0151 0.9397 ± 0.0166 0.9515 ± 0.0162 0.9442 ± 0.0180 0.9456 ± 0.0154 0.9488 ± 0.0217 0.9420 ± 0.0123 0.9455 ± 0.0154
19 LPQ 0.9378 ± 0.0121 0.9249 ± 0.0173 0.9504 ± 0.0122 0.9359 ± 0.0154 0.9377 ± 0.0127 0.9474 ± 0.0172 0.9286 ± 0.0117 0.9376 ± 0.0128
20 LTeP 0.9529 ± 0.0160 0.9450 ± 0.0155 0.9606 ± 0.0176 0.9521 ± 0.0162 0.9528 ± 0.0160 0.9593 ± 0.0181 0.9468 ± 0.0150 0.9528 ± 0.0160
21 LTrP 0.8984 ± 0.0101 0.9026 ± 0.0154 0.8951 ± 0.0147 0.8976 ± 0.0131 0.8988 ± 0.0098 0.8931 ± 0.0227 0.9032 ± 0.0187 0.8988 ± 0.0098
22 MBC 0.9260 ± 0.0087 0.9102 ± 0.0151 0.9416 ± 0.0127 0.9237 ± 0.0129 0.9259 ± 0.0096 0.9378 ± 0.0179 0.9148 ± 0.0097 0.9257 ± 0.0096
23 MBP 0.9403 ± 0.0062 0.9374 ± 0.0142 0.9428 ± 0.0106 0.9394 ± 0.0077 0.9401 ± 0.0062 0.9415 ± 0.0111 0.9391 ± 0.0124 0.9400 ± 0.0063
24 MRELBP 0.9496 ± 0.0092 0.9124 ± 0.0229 0.9854 ± 0.0081 0.9468 ± 0.0121 0.9489 ± 0.0104 0.9842 ± 0.0084 0.9207 ± 0.0153 0.9481 ± 0.0108
25 MTP 0.9252 ± 0.0049 0.9077 ± 0.0115 0.9418 ± 0.0113 0.9230 ± 0.0075 0.9247 ± 0.0053 0.9389 ± 0.0097 0.9126 ± 0.0049 0.9245 ± 0.0053
26 PHOG 0.9581 ± 0.0049 0.9490 ± 0.0129 0.9670 ± 0.0098 0.9572 ± 0.0063 0.9580 ± 0.0053 0.9658 ± 0.0094 0.9510 ± 0.0111 0.9579 ± 0.0054
27 WLD 0.9228 ± 0.0106 0.9139 ± 0.0064 0.9317 ± 0.0160 0.9213 ± 0.0116 0.9228 ± 0.0105 0.9289 ± 0.0193 0.9165 ± 0.0115 0.9228 ± 0.0104

Top-3 best-performing hand-crafted methods are highlighted.

An unpaired t-test was conducted to investigate the statistical distinction between
PHOG and GLTeP in their performance on the SARS-CoV-2 classification task. The test
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revealed that there is no statistically significant difference (p < 0.05), with a two-tailed
p-value of 0.7135 and a t-value of 0.3805.

4.3.2. Classification Results Using Deep Features

This section leverages the SARS-CoV-2 dataset for my investigation. Each image within
the dataset is processed through various pre-trained CNN models. Table 2 summarizes
the feature vector lengths extracted from each of these CNN architectures. Subsequently,
the resulting feature matrix, where each row represents an image’s feature vector and its
corresponding label, is fed into an SVM classifier. The performance of my classifier is
evaluated using a 5-fold nested CV scheme, following the hyperparameter optimization
strategy outlined in the nested CV section. The optimal model is chosen based on the
geometric mean score (See Figure 2). As presented in Table 4, the deep features extracted
from DenseNet-201 yield the highest classification performance. Notably, VGG-16 achieves
comparable results to DenseNet-201.

Figure 2. Achieved geometric mean by each CNN model’s deep features when used for training an
SVM model in a 5-fold nested cross-validation fashion.

Table 4. Average SVM performance trained using deep features for COVID-19 image classification.
This table presents the mean values ± standard deviation.

Model’s Name ACC SN SP FM AUC PPV NPV GM

GoogLeNet 0.9533 ± 0.0069 0.9475 ± 0.0090 0.9589 ± 0.0128 0.9526 ± 0.0069 0.9532 ± 0.0069 0.9579 ± 0.0126 0.9491 ± 0.0080 0.9491 ± 0.0080
Inception-ResNet-v2 0.9679 ± 0.0062 0.9672 ± 0.0127 0.9686 ± 0.0105 0.9676 ± 0.0063 0.9679 ± 0.0062 0.9681 ± 0.0100 0.9680 ± 0.0118 0.9680 ± 0.0118

Inception-v3 0.9614 ± 0.0092 0.9622 ± 0.0163 0.9606 ± 0.0164 0.9611 ± 0.0094 0.9614 ± 0.0092 0.9602 ± 0.0157 0.9632 ± 0.0152 0.9613 ± 0.0092
VGG-16 0.9833 ± 0.0048 0.9787 ± 0.0089 0.9879 ± 0.0090 0.9831 ± 0.0050 0.9833 ± 0.0049 0.9877 ± 0.0090 0.9793 ± 0.0084 0.9833 ± 0.0049
VGG-19 0.9821 ± 0.0049 0.9787 ± 0.0111 0.9855 ± 0.0105 0.9819 ± 0.0050 0.9821 ± 0.0049 0.9853 ± 0.0105 0.9793 ± 0.0103 0.9793 ± 0.0103

ResNet-50 0.9809 ± 0.0045 0.9770 ± 0.0074 0.9847 ± 0.0112 0.9807 ± 0.0044 0.9809 ± 0.0044 0.9844 ± 0.0111 0.9777 ± 0.0069 0.9777 ± 0.0069
ResNet-101 0.9768 ± 0.0018 0.9729 ± 0.0147 0.9807 ± 0.0138 0.9765 ± 0.0020 0.9768 ± 0.0018 0.9805 ± 0.0134 0.9739 ± 0.0137 0.9739 ± 0.0137

SqueezeNet v1.1 0.9712 ± 0.0098 0.9655 ± 0.0085 0.9767 ± 0.0149 0.9707 ± 0.0099 0.9711 ± 0.0097 0.9761 ± 0.0151 0.9666 ± 0.0081 0.9711 ± 0.0097
DenseNet-201 0.9858 ± 0.0029 0.9819 ± 0.0085 0.9895 ± 0.0073 0.9856 ± 0.0029 0.9857 ± 0.0029 0.9893 ± 0.0073 0.9825 ± 0.0080 0.9857 ± 0.0029

ResNet-18 0.9703 ± 0.0118 0.9655 ± 0.0160 0.9750 ± 0.0164 0.9699 ± 0.0119 0.9703 ± 0.0118 0.9745 ± 0.0164 0.9667 ± 0.0151 0.9702 ± 0.0118
Xception 0.9638 ± 0.0062 0.9664 ± 0.0034 0.9614 ± 0.0147 0.9636 ± 0.0059 0.9639 ± 0.0061 0.9611 ± 0.0143 0.9668 ± 0.0029 0.9638 ± 0.0061

MobileNet-v2 0.9630 ± 0.0075 0.9590 ± 0.0157 0.9670 ± 0.0112 0.9625 ± 0.0077 0.9630 ± 0.0075 0.9663 ± 0.0108 0.9603 ± 0.0144 0.9629 ± 0.0076

Top-2 best-performing set of deep features are highlighted.

To assess the statistical difference between DenseNet-201 and VGG-16 on the SARS-
CoV-2 classification task, I performed an unpaired t-test. The results yielded no statistically
significant difference (p < 0.05), with a two-tailed p-value equal to 0.3735 and a t-statistic
of 0.9425.

4.4. Discussion

The landscape of COVID-19 classification using publicly available datasets, such as
the SARS-CoV-2 dataset [32], is rapidly evolving. Researchers have proposed diverse
conventional and DL techniques for classifying COVID-19 from CT-scan images. How-
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ever, objective comparison across studies remains challenging due to several key factors
impacting framework performance. These factors include: (1) Heterogeneity in CT-scan
selection: Variations in acquisition protocols, scanners, and patient populations across
datasets can significantly impact feature extraction and model generalization. (2) Varied
image pre-processing techniques: Different pre-processing approaches, such as noise reduc-
tion, normalization, and segmentation, can significantly influence the extracted features
and subsequent classification performance. (3) Divergence in training/testing protocols:
Variations in data splitting (e.g., k-fold cross-validation, train/test ratio), evaluation met-
rics, and hyperparameter tuning strategies can hinder direct performance comparisons.
Acknowledging these influencing factors is crucial for interpreting and comparing the
results of COVID-19 classification studies.

A case study conducted by Maguolo and Nanni [76] examined various testing proto-
cols while using COVID-19 X-ray 2D images. The authors showed that similar classification
performance can be achieved while training a neural network using X-ray images that do
not contain most of the lungs. Maguolo and Nanni removed the lungs from the images by
inserting a black box into the center of the X-ray image. Then, these new images were used
for training their classifiers only on the outer part of the images. The authors concluded
that many of the testing protocols of published studies in the literature are not fair and
the classifiers of neural networks were not learning patterns related to COVID-19. Hence,
rigorous testing protocols should be established while training a DL model. As a result,
one can conclude that assessing and comparing the performance of a method objectively is
difficult because it is not clear which part of the technique (e.g., feature extraction/selection,
pre-processing, or classification models) led to a tangible enhancement. Thus, my aim
in my study is to learn from available published studies and to avoid potential mistakes
(e.g., learning from the recommendation of Maguolo and Nanni to test with unbiased
testing protocols).

Subsequently, I objectively planned to minimize the bias of the dataset by selecting
SARS-CoV-2 dataset and this dataset is divided in the context of 5-fold nested cross-
validation to rigorously evaluate wide range of hand-crafted descriptors and deep features
from different number of CNN architectures, as shown in Tables 3 and 4. There are a
large number of studies that utilized the SARS-CoV-2 dataset from which ten studies are
summarized indicating their methodology essence, their training/testing protocol, and
reported classification performance. Noteworthy, there is a vast number of studies that
used the same dataset [30,77–98], but of similar nature, and thus, these studies are not
summarized. Here is the summary of the ten studies:

• Halder and Datta [99] investigated the efficacy of transfer learning employing pre-
trained CNN models, namely DenseNet201, VGG16, ResNet50V2, and MobileNet.
Each model was independently trained and tested with a ratio of 8:2 on both un-
modified and augmented datasets. Notably, DenseNet201 exhibited exceptional per-
formance, achieving an AUC of 1.00 and 0.99 for the unaugmented and augmented
datasets, respectively. Moreover, training DenseNet201 with the augmented data
yielded a test set accuracy of 97%, surpassing ResNet50V2 (96%), MobileNet (95%),
and VGG16 (94%).

• Alshazly et al. [100] investigated the application of transfer learning to various pre-
trained CNN architectures, including SqueezeNet, Inception, ResNet, ResNeXt, Xcep-
tion, ShuffleNet, and DenseNet. Five-fold cross-validation was utilized to evaluate
the efficacy of their approach. Their ResNet101 model demonstrated remarkable per-
formance, achieving average accuracy, precision, sensitivity, specificity, and F1-score
values of 99.4%, 99.6%, 99.1%, 99.6%, and 99.4%, respectively.

• Ragab et al. [101] proposed a multi-modal fusion architecture for COVID-19 image clas-
sification. Their system leverages the pre-trained CNNs, namely AlexNet, GoogleNet,
ShuffleNet, and ResNet-18, alongside hand-crafted features derived from statisti-
cal analysis, discrete wavelet transform, and grey-level co-occurrence matrix. They
employed five-fold cross-validation to evaluate the efficacy of their approach. This
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hybrid methodology achieved performance, attaining an average accuracy, sensitivity,
specificity, and precision of approximately 99% across all evaluation metrics.

• Shaik and Cherukuri [102] presented an ensemble learning approach for COVID-19
image classification that leverages the combined prediction of diverse pre-trained
CNN architectures. They employ a collection of eight models, including VGG16,
VGG19, InceptionV3, ResNet50, ResNet50V2, InceptionResNetV2, Xception, and
MobileNet. Each model is fine-tuned using an 80/20 data split for training and
validation, respectively. This ensemble approach achieved an accuracy of 98.99%,
precision of 98.98%, recall of 99.00%, and F-measure of 98.99%.

• Gaur et al. [103] presented a method that leverages the spectral information within
each image channel (red, green, and blue) by applying a 2D-empirical wavelet trans-
form. This decomposition generates five frequency sub-bands, which are subsequently
augmented to enhance data variability. These augmented sub-bands then serve as the
input for training a DenseNet121 classification model. To ensure a statistically robust
evaluation, the dataset was randomly split into 1000 training, 100 validation, and
152 testing images prior to data augmentation. This strategy yielded a performance of
accuracy of 85.50%, F-measure of 85.28%, and AUC of 96.6%.

• Canayaz et al. [104] explores the efficacy of Bayesian optimization in enhancing the
performance of various machine learning algorithms for COVID-19 image classifica-
tion. The authors propose and evaluate the application of this optimization technique
to MobilNetv2, ResNet-50, SVM, and k-nearest neighbor (kNN) models. The proposed
method consists of three steps: (1) train and optimize the deep learning models, (2) uti-
lize trained models as feature extractors, and (3) train a machine learning algorithm.
Notably, the ResNet-50 architecture, when optimized via Bayesian optimization and
employed as a feature extractor for kNN (trained on 1968 COVID-19 images and
tested on 492), yielded an accuracy of 99.37%, accompanied by a precision of 99.38%,
recall of 99.36%, and F-score of 99.37%.

• Attallah and Samir [105] presented a two-stage framework for COVID-19 image clas-
sification that leverages spectral-temporal and spatial information. In the first stage,
their method employs discrete wavelet decomposition (DWT) to extract frequency-
domain features from the images, represented as heatmaps. These features are subse-
quently used to train a ResNet CNN model. Simultaneously, the original images are
utilized to train a separate ResNet CNN model, capturing spatial information. Subse-
quently, both pipelines converge in a feature fusion stage, where spectral-temporal
features are integrated with spatial features extracted from the second ResNet. To ad-
dress dimensionality, the combined feature set is subjected to dimensionality reduction
before being fed into support vector machine (SVM) classifiers. This strategy achieved
a classification accuracy of 99.7% under a 5-fold cross-validation scheme.

• Kundu et al. [106] explored an ensemble learning approach by leveraging transfer
learning. Their method, employing bootstrap aggregating (bagging) of three pre-
trained architectures Inception v3, ResNet34, and DenseNet201 were examined under
a 5-fold cross-validation scheme. The ensemble model achieved an accuracy of 97.81%,
precision of 97.77%, sensitivity (recall) of 97.81%, and specificity of 97.77%.

• Islam and Nahiduzzaman [107] proposed employing a custom CNN architecture for
extracting deep features. These features are subsequently fed into traditional machine
learning algorithms, encompassing Gaussian Naive Bayes, Support Vector Machine,
Decision Tree, Logistic Regression, and Random Forest. The output of these five
learning algorithms is ensembled to find the final prediction. The proposed model
undergoes training on 2109 COVID-19 images and evaluation on a separate set of
373 images. The model achieved an accuracy of 99.73%, an F1-score of 99.73%, a recall
of 100%, and a precision of 99.46%.

• Choudhary et al. [108] introduced an approach for COVID-19 detection on resource-
constrained devices, focusing on “important weights-only” transfer learning. This
method optimizes pre-trained deep learning models for deployment on point-of-care
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devices by selectively pruning less essential weight parameters. Their experiments
were conducted on VGG16 and ResNet34 architectures. The proposed method was
evaluated while using 1,687 samples for training, 420 samples for validation, and
375 samples for testing. The pruned ResNet34 model achieved an accuracy of 95.47%,
a sensitivity of 0.9216, an F1-score of 0.9567, and a specificity of 0.9942 while exhibiting
reductions in computational requirements: 41.96% fewer floating-point operations
and 20.64% fewer weight parameters compared to the unpruned model.

It is noteworthy that the application of DL techniques has become predominant in
SARS-CoV-2 research. Researchers often leverage various CNN architectures, opting for
fine-tuning with or without data augmentation to address the inherent scarcity of medical
datasets. While impressive results have been reported, inconsistencies in training and
validation strategies across studies pose challenges for objective comparison. In contrast,
my approach utilizes unsupervised deep features, minimizing computational demands.
Furthermore, I employ a rigorous 5-fold nested CV scheme to evaluate the performance of
my SVM classification models.

5. Conclusions and Future Studies

The main goal of this work is to compare and evaluate a wide range of conventional
and DL-based techniques to identify effective and efficient approaches for classifying
COVID-19 disease from CT scans. To achieve this goal, twenty-seven conventional tech-
niques and 12 CNN architectures are examined. Thereafter each set of descriptors is fed as
input to an SVM model, which is tested in the context of a 5-fold cross-validation scheme.
The performance of the proposed methodologies is evaluated on the SARS-CoV-2 dataset.
The empirical findings gleaned from this investigation posit that the proposed method
holds promise for adoption as a pre-screening tool for COVID-19 cases, exhibiting competi-
tive performance in comparison to established state-of-the-art methodologies. Additionally,
the establishment of my framework requires minimal computational resources for con-
ventional techniques, and particularly, for DL-based techniques as I avoid fine-tuning and
data augmentation.

In the future, I plan to test my approach using other datasets with a similar nature of
complexity, for example, the COVID-CT (COVID-CT benchmark can be accessed via https:
//www.kaggle.com/datasets/hgunraj/covidxct, accessed on 1 January 2024) dataset [109]
and COVID multiclass dataset (The COVID-19 multicalss dataset can be accessed via https:
//www.kaggle.com/datasets/plameneduardo/a-covid-multiclass-dataset-of-ct-scans, ac-
cessed on 1 January 2024). Furthermore, I plan to combine both hand-crafted and deep
features [110] in an attempt to deliver more robust classification models.
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24. Ismael, A.M.; Şengür, A. Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Syst. Appl. 2021,
164, 114054. [CrossRef]

25. Haque, K.F.; Abdelgawad, A. A deep learning approach to detect COVID-19 patients from chest X-ray images. AI 2020, 1, 27.
[CrossRef]

26. Jain, G.; Mittal, D.; Thakur, D.; Mittal, M.K. A deep learning approach to detect COVID-19 coronavirus with X-Ray images.
Biocybern. Biomed. Eng. 2020, 40, 1391–1405. [CrossRef] [PubMed]

27. Saiz, F.; Barandiaran, I. COVID-19 detection in chest X-ray images using a deep learning approach. Int. J. Interact. Multimed. Artif.
Intell. 2020. . [CrossRef]

28. Sahin, M.E.; Ulutas, H.; Yuce, E.; Erkoc, M.F. Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN
on CT images. Neural Comput. Appl. 2023, 35, 13597–13611. [CrossRef] [PubMed]

29. Avola, D.; Bacciu, A.; Cinque, L.; Fagioli, A.; Marini, M.R.; Taiello, R. Study on transfer learning capabilities for pneumonia
classification in chest-x-rays images. Comput. Methods Programs Biomed. 2022, 221, 106833. [CrossRef] [PubMed]

30. Kathamuthu, N.D.; Subramaniam, S.; Le, Q.H.; Muthusamy, S.; Panchal, H.; Sundararajan, S.C.M.; Alrubaie, A.J.; Zahra, M.M.A.
A deep transfer learning-based convolution neural network model for COVID-19 detection using computed tomography scan
images for medical applications. Adv. Eng. Softw. 2023, 175, 103317. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0242958
http://www.ncbi.nlm.nih.gov/pubmed/33301459
http://dx.doi.org/10.1097/MCP.0000000000000765
http://www.ncbi.nlm.nih.gov/pubmed/33560673
http://dx.doi.org/10.1148/radiol.2020200432
http://www.ncbi.nlm.nih.gov/pubmed/32073353
http://dx.doi.org/10.1148/radiol.2020200642
http://www.ncbi.nlm.nih.gov/pubmed/32101510
http://dx.doi.org/10.1016/j.compbiomed.2021.105123
http://dx.doi.org/10.1016/j.asoc.2021.107323
http://www.ncbi.nlm.nih.gov/pubmed/33746657
http://dx.doi.org/10.1109/RBME.2020.2987975
http://www.ncbi.nlm.nih.gov/pubmed/32305937
http://dx.doi.org/10.1371/journal.pone.0235187
http://www.ncbi.nlm.nih.gov/pubmed/32589673
http://dx.doi.org/10.1007/s13755-020-00116-6
http://dx.doi.org/10.1016/j.artmed.2022.102427
http://www.ncbi.nlm.nih.gov/pubmed/36462906
http://dx.doi.org/10.3390/computation12020021
http://dx.doi.org/10.1007/s11042-022-12952-7
http://www.ncbi.nlm.nih.gov/pubmed/35382107
http://dx.doi.org/10.1016/j.clinimag.2021.01.019
http://www.ncbi.nlm.nih.gov/pubmed/33545517
http://dx.doi.org/10.1155/2021/5528144
http://www.ncbi.nlm.nih.gov/pubmed/34194535
http://dx.doi.org/10.1186/s12938-020-00831-x
http://www.ncbi.nlm.nih.gov/pubmed/33239006
http://dx.doi.org/10.1016/j.eswa.2020.114054
http://dx.doi.org/10.3390/ai1030027
http://dx.doi.org/10.1016/j.bbe.2020.08.008
http://www.ncbi.nlm.nih.gov/pubmed/32921862
.
http://dx.doi.org/10.9781/ijimai.2020.04.003
http://dx.doi.org/10.1007/s00521-023-08450-y
http://www.ncbi.nlm.nih.gov/pubmed/37213321
http://dx.doi.org/10.1016/j.cmpb.2022.106833
http://www.ncbi.nlm.nih.gov/pubmed/35537296
http://dx.doi.org/10.1016/j.advengsoft.2022.103317
http://www.ncbi.nlm.nih.gov/pubmed/36311489


Computation 2024, 1, 0 16 of 19

31. Nanni, L.; Ghidoni, S.; Brahnam, S. Deep features for training support vector machines. J. Imaging 2021, 7, 177. [CrossRef]
[PubMed]

32. Angelov, P.; Almeida Soares, E. SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for SARS-CoV-2
identification. MedRxiv 2020. . [CrossRef]

33. Britain, R.S.G. Machine Learning: The Power and Promise of Computers That Learn by Example: An Introduction; Royal Society:
London, UK, 2017.

34. Shawe-Taylor, J.; Sun, S. A review of optimization methodologies in support vector machines. Neurocomputing 2011, 74, 3609–3618.
[CrossRef]

35. Kutyniok, G.; Labate, D. Introduction to shearlets. In Shearlets: Multiscale Analysis for Multivariate Data; Springer: New York, NY,
USA, 2012; pp. 1–38.

36. Do, M.N.; Vetterli, M. The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image
Process. 2005, 14, 2091–2106. [CrossRef] [PubMed]

37. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

38. Turan, C.; Lam, K.M. Histogram-based local descriptors for facial expression recognition (FER): A comprehensive study. J. Vis.
Commun. Image Represent. 2018, 55, 331–341. [CrossRef]

39. Sebe, N.; Tian, Q.; Loupias, E.; Lew, M.S.; Huang, T.S. Evaluation of salient point techniques. Image Vis. Comput. 2003,
21, 1087–1095. [CrossRef]

40. Shojaeilangari, S.; Yau, W.Y.; Li, J.; Teoh, E.K. Feature extraction through binary pattern of phase congruency for facial expression
recognition. In Proceedings of the 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV),
Guangzhou, China, 5–7 December 2012; pp. 166–170.

41. Ahmed, F. Gradient directional pattern: A robust feature descriptor for facial expression recognition. Electron. Lett. 2012,
48, 1203–1204. [CrossRef]

42. Islam, M.S. Gender classification using gradient direction pattern. Sci. Int. 2013, 25, 797–799.
43. Valstar, M.; Pantic, M. Fully automatic facial action unit detection and temporal analysis. In Proceedings of the IEEE 2006

Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06), New York, NY, USA, 17–22 June 2006; p. 149.
44. Yang, B.Q.; Zhang, T.; Gu, C.C.; Wu, K.J.; Guan, X.P. A novel face recognition method based on IWLD and IWBC. Multimed. Tools

Appl. 2016, 75, 6979–7002. [CrossRef]
45. Islam, M.S.; Auwatanamo, S. Facial expression recognition using local arc pattern. Trends Appl. Sci. Res. 2014, 9, 113. [CrossRef]
46. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary

patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]
47. Jabid, T.; Kabir, M.H.; Chae, O. Local directional pattern (LDP)–A robust image descriptor for object recognition. In Proceedings

of the 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance, Boston, MA, USA, 29 August–1
September 2010; pp. 482–487.

48. Kabir, M.H.; Jabid, T.; Chae, O. A local directional pattern variance (LDPv) based face descriptor for human facial expression
recognition. In Proceedings of the 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance,
Boston, MA, USA, 29 August–1 September 2010; pp. 526–532.

49. Rivera, A.R.; Castillo, J.R.; Chae, O.O. Local directional number pattern for face analysis: Face and expression recognition. IEEE
Trans. Image Process. 2012, 22, 1740–1752. [CrossRef] [PubMed]

50. Rivera, A.R.; Castillo, J.R.; Chae, O. Local directional texture pattern image descriptor. Pattern Recognit. Lett. 2015, 51, 94–100.
[CrossRef]

51. Lei, Z.; Ahonen, T.; Pietikäinen, M.; Li, S.Z. Local frequency descriptor for low-resolution face recognition. In Proceedings of the
2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG), Santa Barbara, CA, USA, 21–23 March 2011;
pp. 161–166.

52. Zhang, W.; Shan, S.; Gao, W.; Chen, X.; Zhang, H. Local gabor binary pattern histogram sequence (lgbphs): A novel non-statistical
model for face representation and recognition. In Proceedings of the 10th IEEE International Conference on Computer Vision
(ICCV’05), Washington, DC, USA, 17–20 October 2005; Volume 1, pp. 786–791.

53. Ishraque, S.Z.; Banna, A.H.; Chae, O. Local Gabor directional pattern for facial expression recognition. In Proceedings of the 2012
IEEE 15th International Conference on Computer and Information Technology (ICCIT), Chittagong, Bangladesh, 22–24 December
2012; pp. 164–167.

54. Zhou, L.; Wang, H. Local gradient increasing pattern for facial expression recognition. In Proceedings of the 2012 19th IEEE
International Conference on Image Processing, Orlando, FL, USA, 30 September–3 October 2012; pp. 2601–2604.

55. Islam, M.S. Local gradient pattern—A novel feature representation for facial expression recognition. J. AI Data Min. 2014,
2, 33–38.

56. Ahsan, T.; Jabid, T.; Chong, U.P. Facial expression recognition using local transitional pattern on Gabor filtered facial images.
IETE Tech. Rev. 2013, 30, 47–52. [CrossRef]

57. Mohammad, T.; Ali, M.L. Robust facial expression recognition based on local monotonic pattern (LMP). In Proceedings of the
14th International Conference on Computer and Information Technology (ICCIT 2011), Dhaka, Bangladesh, 22–24 December 2011;
pp. 572–576.

http://dx.doi.org/10.3390/jimaging7090177
http://www.ncbi.nlm.nih.gov/pubmed/34564103
.
http://dx.doi.org/10.1101/2020.04.24.20078584
http://dx.doi.org/10.1016/j.neucom.2011.06.026
http://dx.doi.org/10.1109/TIP.2005.859376
http://www.ncbi.nlm.nih.gov/pubmed/16370462
http://dx.doi.org/10.1016/j.jvcir.2018.05.024
http://dx.doi.org/10.1016/j.imavis.2003.08.012
http://dx.doi.org/10.1049/el.2012.1841
http://dx.doi.org/10.1007/s11042-015-2623-4
http://dx.doi.org/10.3923/tasr.2014.113.120
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1109/TIP.2012.2235848
http://www.ncbi.nlm.nih.gov/pubmed/23269752
http://dx.doi.org/10.1016/j.patrec.2014.08.012
http://dx.doi.org/10.4103/0256-4602.107339


Computation 2024, 1, 0 17 of 19

58. Ojansivu, V.; Heikkilä, J. Blur insensitive texture classification using local phase quantization. In Proceedings of the Im-
age and Signal Processing: 3rd International Conference (ICISP 2008), Cherbourg-Octeville, France, 1–3 July 2008; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 236–243.

59. Bashar, F.; Khan, A.; Ahmed, F.; Kabir, M.H. Robust facial expression recognition based on median ternary pattern (MTP).
In Proceedings of the IEEE 2013 International Conference on Electrical Information and Communication Technology (EICT),
Khulna, Bangladesh, 13–15 February 2014; pp. 1–5.

60. Jabid, T.; Chae, O. Local transitional pattern: A robust facial image descriptor for automatic facial expression recognition.
In Proceedings of the International Conference on Computer Convergence Technology, Seoul, Republic of Korea, 28–30 September
2011; pp. 333–344.

61. Lu, J.; Liong, V.E.; Zhou, J. Cost-sensitive local binary feature learning for facial age estimation. IEEE Trans. Image Process. 2015,
24, 5356–5368. [CrossRef] [PubMed]

62. Liu, L.; Lao, S.; Fieguth, P.W.; Guo, Y.; Wang, X.; Pietikäinen, M. Median robust extended local binary pattern for texture
classification. IEEE Trans. Image Process. 2016, 25, 1368–1381. [CrossRef] [PubMed]

63. Bosch, A.; Zisserman, A.; Munoz, X. Representing shape with a spatial pyramid kernel. In Proceedings of the 6th ACM
International Conference on Image and Video Retrieval, Amsterdam, The Netherlands, 9–11 July 2007; pp. 401–408.

64. Li, S.; Gong, D.; Yuan, Y. Face recognition using Weber local descriptors. Neurocomputing 2013, 122, 272–283. [CrossRef]
65. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and< 0.5 MB model size. arXiv 2016, arXiv:1602.07360.
66. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4510–4520.

67. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

68. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

69. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 6848–6856.

70. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8697–8710.

71. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

72. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
73. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

74. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.

75. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

76. Maguolo, G.; Nanni, L. A critic evaluation of methods for covid-19 automatic detection from x-ray images. Inf. Fusion 2021,
76, 1–7. [CrossRef] [PubMed]

77. Aswathy, A.; Hareendran, A.; SS, V.C. COVID-19 diagnosis and severity detection from CT-images using transfer learning and
back propagation neural network. J. Infect. Public Health 2021, 14, 1435–1445.

78. Li, C.; Yang, Y.; Liang, H.; Wu, B. Transfer learning for establishment of recognition of COVID-19 on CT imaging using small-sized
training datasets. Knowl.-Based Syst. 2021, 218, 106849. [CrossRef] [PubMed]

79. Lahsaini, I.; Daho, M.E.H.; Chikh, M.A. Deep transfer learning based classification model for COVID-19 using chest CT-scans.
Pattern Recognit. Lett. 2021, 152, 122–128. [CrossRef]

80. Pinki, F.T.; Masud, M.A.; Ferdousi, J.; Eva, F.Y.; Rana, M.M.R. SVM Based COVID-19 Detection from CT Scan Image using Local
Feature. In Proceedings of the IEEE 2021 International Conference on Electronics, Communications and Information Technology
(ICECIT), Online, 14–16 September 2021; pp. 1–4.

81. Kaur, T.; Gandhi, T.K. Classifier fusion for detection of COVID-19 from CT scans. Circuits Syst. Signal Process. 2022, 41, 3397–3414.
[CrossRef]

82. Islam, M.K.; Habiba, S.U.; Khan, T.A.; Tasnim, F. COV-RadNet: A Deep Convolutional Neural Network for Automatic Detection
of COVID-19 from Chest X-rays and CT Scans. Comput. Methods Programs Biomed. Update 2022, 2, 100064. [CrossRef] [PubMed]

83. Peng, L.; Wang, C.; Tian, G.; Liu, G.; Li, G.; Lu, Y.; Yang, J.; Chen, M.; Li, Z. Analysis of CT scan images for COVID-19 pneumonia
based on a deep ensemble framework with DenseNet, Swin transformer, and RegNet. Front. Microbiol. 2022, 13, 995323.
[CrossRef] [PubMed]

http://dx.doi.org/10.1109/TIP.2015.2481327
http://www.ncbi.nlm.nih.gov/pubmed/26415174
http://dx.doi.org/10.1109/TIP.2016.2522378
http://www.ncbi.nlm.nih.gov/pubmed/26829791
http://dx.doi.org/10.1016/j.neucom.2013.05.038
http://dx.doi.org/10.1016/j.inffus.2021.04.008
http://www.ncbi.nlm.nih.gov/pubmed/33967656
http://dx.doi.org/10.1016/j.knosys.2021.106849
http://www.ncbi.nlm.nih.gov/pubmed/33584016
http://dx.doi.org/10.1016/j.patrec.2021.08.035
http://dx.doi.org/10.1007/s00034-021-01939-8
http://dx.doi.org/10.1016/j.cmpbup.2022.100064
http://www.ncbi.nlm.nih.gov/pubmed/36039092
http://dx.doi.org/10.3389/fmicb.2022.995323
http://www.ncbi.nlm.nih.gov/pubmed/36212877


Computation 2024, 1, 0 18 of 19

84. Singh, V.K.; Kolekar, M.H. Deep learning empowered COVID-19 diagnosis using chest CT scan images for collaborative
edge-cloud computing platform. Multimed. Tools Appl. 2022, 81, 3–30. [CrossRef] [PubMed]

85. DOLMA, Ö. COVID-19 and Non-COVID-19 Classification from Lung CT-Scan Images Using Deep Convolutional Neural
Networks. Int. J. Multidiscip. Stud. Innov. Technol. 2023, 7, 53–60. [CrossRef]

86. Tiwari, S.; Jain, A.; Chawla, S.K. Diagnosing COVID-19 From Chest CT Scan Images Using Deep Learning Models. Int. J. Reliab.
Qual. e-Healthc. (IJRQEH) 2022, 11, 1–15. [CrossRef]

87. Premamayudu, B.; Bhuvaneswari, C. COVID-19 Automatic Detection from CT Images through Transfer Learning. Int. J. Image
Graph. Signal Process. 2022, 14, 48–95. [CrossRef]

88. Zahir, M.J.B.; Azim, M.A.; Chy, A.N.; Islam, M.K. A Fast and Reliable Approach for COVID-19 Detection from CT-Scan Images. J.
Inf. Syst. Eng. Bus. Intell. 2023, 9, 288–304. [CrossRef]

89. Ibrahim, W.R.; Mahmood, M.R. Classified COVID-19 by densenet121-based deep transfer learning from CT-scan images. Sci. J.
Univ. Zakho 2023, 11, 571–580. [CrossRef]

90. Ibrahim, M.R.; Youssef, S.M.; Fathalla, K.M. Abnormality detection and intelligent severity assessment of human chest computed
tomography scans using deep learning: A case study on SARS-COV-2 assessment. J. Ambient. Intell. Humaniz. Comput. 2023,
14, 5665–5688. [CrossRef] [PubMed]

91. Gupta, K.; Bajaj, V. Deep learning models-based CT-scan image classification for automated screening of COVID-19. Biomed.
Signal Process. Control 2023, 80, 104268. [CrossRef] [PubMed]

92. Duong, L.T.; Nguyen, P.T.; Iovino, L.; Flammini, M. Automatic detection of COVID-19 from chest X-ray and lung computed
tomography images using deep neural networks and transfer learning. Appl. Soft Comput. 2023, 132, 109851. [CrossRef] [PubMed]

93. Ali, N.G.; El Sheref, F.K. A Hybrid Model for COVID-19 Detection using CT-Scans. Int. J. Adv. Comput. Sci. Appl. 2023, 14,
627–633. [CrossRef]

94. Farjana, A.; Liza, F.T.; Al Mamun, M.; Das, M.C.; Hasan, M.M. SARS CovidAID: Automatic detection of SARS CoV-19 cases from
CT scan images with pretrained transfer learning model (VGG19, RESNet50 and DenseNet169) architecture. In Proceedings of
the IEEE 2023 International Conference on Smart Applications, Communications and Networking (SmartNets), Istanbul, Turkey,
25–27 July 2023; pp. 1–6.

95. Lim, Y.J.; Lim, K.M.; Lee, C.P.; Chang, R.K.Y.; Lim, J.Y. COVID-19 identification and analysis with CT scan images using densenet
and support vector machine. In Proceedings of the IEEE 2023 11th International Conference on Information and Communication
Technology (ICoICT), Melaka, Malaysia, 23–24 August 2023; pp. 254–259.

96. Motwani, A.; Shukla, P.K.; Pawar, M.; Kumar, M.; Ghosh, U.; Alnumay, W.; Nayak, S.R. Enhanced framework for COVID-19
prediction with computed tomography scan images using dense convolutional neural network and novel loss function. Comput.
Electr. Eng. 2023, 105, 108479. [CrossRef] [PubMed]

97. Perumal, M.; Srinivas, M. DenSplitnet: Classifier-invariant neural network method to detect COVID-19 in chest CT data. J. Vis.
Commun. Image Represent. 2023, 97, 103949. [CrossRef]

98. Krishnan, A.; Rajesh, S.; Gollapinni, K.; Mohan, M.; Srinivasa, G. A Comparative Analysis of Chest X-rays and CT Scans Towards
COVID-19 Detection. In Proceedings of the IEEE 2023 4th International Conference for Emerging Technology (INCET), Belgaum,
India, 26–28 May 2023; pp. 1–7.

99. Halder, A.; Datta, B. COVID-19 detection from lung CT-scan images using transfer learning approach. Mach. Learn. Sci. Technol.
2021, 2, 045013. [CrossRef]

100. Alshazly, H.; Linse, C.; Barth, E.; Martinetz, T. Explainable COVID-19 detection using chest CT scans and deep learning. Sensors
2021, 21, 455. [CrossRef]

101. Ragab, D.A.; Attallah, O. FUSI-CAD: Coronavirus (COVID-19) diagnosis based on the fusion of CNNs and handcrafted features.
PeerJ Comput. Sci. 2020, 6, e306. [CrossRef]

102. Shaik, N.S.; Cherukuri, T.K. Transfer learning based novel ensemble classifier for COVID-19 detection from chest CT-scans.
Comput. Biol. Med. 2022, 141, 105127. [CrossRef] [PubMed]

103. Gaur, P.; Malaviya, V.; Gupta, A.; Bhatia, G.; Pachori, R.B.; Sharma, D. COVID-19 disease identification from chest CT images
using empirical wavelet transformation and transfer learning. Biomed. Signal Process. Control 2022, 71, 103076. [CrossRef]
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