
Computation 2015, 3, 528-540; doi:10.3390/computation3040528 
 

computation 
ISSN 2079-3197 

www.mdpi.com/journal/computation 

Article 

A Scale Invariant Distribution of the Prime Numbers 

Wayne S. Kendal 1,*,† and Bent Jørgensen 2,† 

1 Division of Radiation Oncology, University of Ottawa, 501 Smyth Road, Ottawa,  

ON K1H 8L6, Canada 
2 Department of Mathematics and Computer Science, University of Southern Denmark,  

Campusvej 55, Odense M DK-5230, Denmark; E-Mail: bentj@stat.sdu.dk 

† These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: wkendal@ottawahospital.on.ca;  

Tel.: +1-613-737-7700; Fax: +1-613-247-3511. 

Academic Editor: Demos T. Tsahalis 

Received: 15 September 2015 / Accepted: 21 October 2015 / Published: 28 October 2015 

 

Abstract: The irregular distribution of prime numbers amongst the integers has found 

multiple uses, from engineering applications of cryptography to quantum theory. The 

degree to which this distribution can be predicted thus has become a subject of current 

interest. Here, we present a computational analysis of the deviations between the actual 

positions of the prime numbers and their predicted positions from Riemann’s counting 

formula, focused on the variance function of these deviations from sequential enumerative 

bins. We show empirically that these deviations can be described by a class of probabilistic 

models known as the Tweedie exponential dispersion models that are characterized by a 

power law relationship between the variance and the mean, known by biologists as 

Taylor’s power law and by engineers as fluctuation scaling. This power law behavior of the 

prime number deviations is remarkable in that the same behavior has been found within the 

distribution of genes and single nucleotide polymorphisms (SNPs) within the human 

genome, the distribution of animals and plants within their habitats, as well as within many 

other biological and physical processes. We explain the common features of this behavior 

through a statistical convergence effect related to the central limit theorem that also 

generates 1/f noise. 
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1. Introduction 

Prediction of the positions of the prime numbers within the sequence of integers has been a goal that 

has long interested mathematicians, engineers, and physicists [1]. The prime counting function π(x) 

gives the actual number of prime numbers up to the positive real value x and takes the form of a step 

function that increases by the value of 1 with each new prime number. In 1808, Legendre empirically 

showed that π(x) could be approximated by the formula x/[log(x) − B]; B being a numerical  

constant [2]. A further improvement in the estimation of π(x) was provided by Gauss, who used the 

logarithmic integral, defined on the positive real numbers x ≠ 1 for this purpose [3]: 
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These approximations lead to the prime number theorem: 

( ) ~ / ln( )x x xπ  (2)

with initial proofs delivered by Hadamard [4] and de la Vallée Poussin [5] in 1896. A more  

detailed formula for the general trend in the position of prime numbers has been attributed to  

Bernhard Riemann [6]: 
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expressed in terms of the Möbius function on the integer values n: 
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The present report focuses on the local behavior of the deviations between π(x) and R(x) that have 

been conjectured to obey the equation [7]: 

( ) ( ) ( )  ~ ( )D x R x x R xρ

ρ

= − π   
(5)

The summation here is specified over the nontrivial (complex) zeros ρ of the Riemann zeta 

function, providing a link to Riemann’s hypothesis that the nontrivial zeros of the Riemann zeta 

function should have as their real component the value of ½ [6]. An equivalent form of this (yet 

unproven) hypothesis can be stated using the summatory Mertens function [8]: 

1
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M n i
=

= μ  (6)

namely that: 
1/2( ) ( )M n O n +ε=  (7)

for every positive ε [9]. 
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The deviations D(x) empirically reveal chaotic features, as well as long range correlations [10], that 

would seem to indicate an underlying structure. Indeed, the positional irregularities of prime numbers 

have the characteristics of 1/f noise [11], and can be related to the eigenvalues of random matrices 

from the Gaussian unitary ensemble that are employed in quantum chaos [12]. It remains unclear, 

though, why the distribution of prime numbers should exhibit such features. Here these deviations are 

empirically shown to correspond to a probabilistic model characterized by a power law relationship 

between the variance and the mean. This model belongs to the class of scale invariant, or Tweedie, 

exponential dispersion models [13] which appear as weak limits for other models under a certain 

central limit-like effect [14]. This convergence effect, we will argue, leads to a wide manifestation of 

these models within complex natural and physical systems, analogous to what is seen with the 

Gaussian distribution within more restricted systems governed by the central limit theorem itself. 

Moreover, this Tweedie convergence effect can explain the genesis of 1/f noise in such sequences that 

has implications regarding self-organized criticality [15]. 

2. Experimental Section 

The Riemann prime counting function Equation (3) was estimated here using the Gram series [16]. 

The absolute values of the prime number deviations |D(x)| were estimated for sequential equal-sized 

enumerative bins that span the integers. The values of |D(x)| from within each bin were summed and  

the means and variances of these sums estimated over the region of interest. This process was repeated 

for successively larger bin sizes so that a log-log plot could be constructed of the sampled variances 

versus the sampled means with different sized bins. A straight line relationship in such a plot would 

imply a power law relationship between the variance and the mean, variously referred to in the 

literature as Taylor’s ecological power law as well as fluctuation scaling. 

Empirical cumulative distribution functions (CDFs) were also constructed from the primary 

sequences of |D(x)| and then compared to the theoretical CDF from the Tweedie compound  

Poisson-gamma distribution [13], a distribution which inherently expresses a variance to mean power 

law with its power law exponent constrained to range between 1 and 2. 

3. Results and Discussion 

3.1. The Variance Function of the Prime Number Deviations 

We empirically reviewed the absolute values of the deviations |D(x)| for the first 50,000 integers 

(Figure 1), focusing on their variance function [13]: The mean and variance of the sequence |D(x)| 

were estimated and, to extend the range of values for the mean, the sequence |D(x)| was divided into  

non-overlapping and adjacent counting bins, 10 integers long. The values within each bin were 

summed and the mean and variance of these sums were estimated over all the bins. This process was 

repeated for successively larger and larger bin sizes. Figure 2a demonstrates the log-log plot of the 

empirical variances versus their respective means. A linear relationship was evident on the log-log 

plot, indicative of a power law relationship 2 pa mσ = ⋅  between the variance σ2 and the mean m  with 

exponent p = 1.83. 
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Figure 1. The absolute value |D(x)| of the discrepancy between the prime counting 

function π(x) and Riemann’s formula R(x) for the first 50,000 integers. 

 

Figure 2. (a) The variance function for the deviations of the prime numbers.  

A power law relationship was obtained with exponent p = 1.83 and constant a = 1.37;  

(b) Probability-probability plot. A frequency histogram was constructed for the values  

|D(x)|. The empirical CDF obeyed a Tweedie compound Poisson-gamma distribution with  

θ = −0.837, λ = 0.934, α = −0.586 and p = 1.63. 

We sought to determine the behavior of the power law for the deviations |D(x)| beyond the first 

50,000 integers in order to make sure that this behavior was not simply a loco-regional artifact.  

Figure 3a provides this function determined from the integers x = 106…107, in steps of 103. The 

variance to mean power law fitted this sequence well with p = 1.66. In Figure 3c,e this process was 

repeated for the integer sequences x = 108…109 in steps of 105 and x = 1011…1012 in steps of 108, to 

reveal that variance to mean power law was evident for over 12 orders of magnitude. 
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Figure 3. (a) Variance function of |D(x)| for x = 106…107 in steps of 103. Linear regression 

gave p = 1.66 and a = 3.53; (b) CDF with x = 106…107 in steps of 103. Here θ = −0.096,  

λ = 0.62, α = −0.38 and p = 1.73; (c) Variance function of |D(x)| for x = 108…109 in steps  

of 105. Here p = 1.67 and a = 9.28; (d) CDF with x = 108…109 in steps of 105. Here  

θ = −9.94 × 10−3, λ = 0.34, α = −0.30 and p = 1.77; (e) Variance function of |D(x)| for  

x = 1011…1012 in steps of 108. Here p = 1.74 and a = 8.57; (f) CDF with x = 1011…1012  

in steps of 108. Here θ = −5.37 × 10−4, λ = 0.067, α = −0.41 and p = 1.71. 

3.2. Prime Number Deviations as a Self-Similar Process 

In our analysis we examined the sequence of prime number deviations Y = (Yi = |D(i)|: i = 1, 2,…, 

N) using expanding enumerative bins. Let the mean and variance of this initial sequence be represented 
by the constants ˆ [ ]E Yμ =  and 2ˆ var[ ]Yσ = , respectively. One can construct a sequence of equal-sized 
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and non-overlapping enumerative bins of integer size m to yield a new set of sequences Y(m) with the 

reproductive property: 

)...(
1

 1 immim
(m)

i YY
m

Y ++= +− , >i 1 (8)

The values of m were chosen here so that N/m was an integer. We then have ( ) ˆ[ ] [ ]mE Y E Y= = μ , 

which is a constant provided that the initial sequence remains unaltered.  

Alternatively, the enumerative bins can be used to construct a set of additive sequences Z(m) so that: 

)...( 1
)(

immim
m

i YYZ ++= +−  (9)

as was done with the prime number deviations |D(x)|. These additive and reproductive sequences are 
related to each other by the equation )()( m

i
m

i mYZ = . We have for their means and variances,

][][ )()( mm YmEZE =  and ]var[]var[ )(2)( mm YmZ = . 

The variance to mean power law, demonstrated with the prime number deviations, implies  

the existence of long range correlations within the initial sequence of deviations. Long range 

correlations have been studied by Leland [17] in the context of self-similar processes, where the 

general form for the correlation function r(k) takes the form, 

 ( ),     r(k) k L k k−β= → ∞  (10)

Here, k is the autocorrelation shift, β is a real valued constant such that 0 < β < 1, and L(k) is a 

slowly varying function for large values of k. For large values of k, this correlation approximates a 

power law with r(k) ~ k−β. 

Consider the case where the reproductive sequences Y(m) obey the property: 
( ) 2ˆvar[ ]mY m−β= σ  (11)

Tsybakov and Georganis [18] have shown that Equation (11) holds if and only if the autocorrelation 

for the sequence Y is: 

2 2 21
( ) [( 1) 2 ( 1) ]

2
r k k k k−β −β −β= + − + −  (12)

In the limit this formula takes the form [18]: 

lim ( ) 1
(2 )(1 ))

2k

r k

k −β
→∞

= −β −β  (13)

where the constant β is related to the Hurst exponent H, β = 2 (1− H) For additive sequences the 

variance takes the form: 
( ) 2 ( ) 2 2 ( ) 2ˆ ˆvar[ ] var[ ] ( / ) [ ]m m m
i iZ m Y E Z−β −β= = σ μ  (14)

Since μ̂  and 2σ̂  are constant, this represents a variance to mean power law with exponent  

p = 2 – β = 2H. The power law found from the prime number deviations revealed that p = 1.83, and  

so the Hurst exponent was H = 0.92. 
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3.3. 1/f Noise from the Prime Number Deviations 

Autocorrelations of the form r(k) ~ k−β imply, by virtue of the Wiener-Khintchine theorem [19],  

that the corresponding power spectral density will approximate S(f) ~ fβ−1, where f is the frequency.  

In the case of the prime number deviations |D(x)|, this would imply S(f) ~ f−0.83, where the frequency is 

determined from the spacing of the consecutive values of the data sequence. Power spectra like this,  
with ( ) 1/S f f γ∝  and 0 < γ < 2, are the hallmark of 1/f noise. 

3.4. Prime Number Deviations Described by a Tweedie Exponential Dispersion Model 

In addition to 1/f noise, the variance-to-mean power law is associated with a class of probability 

distributions, known as the Tweedie exponential dispersion models, named after the man who first 

described them [20]. There are several types of Tweedie models, each distinguished by the values of 

their power law exponent p, including the Gaussian (p = 0), Poisson (p = 1), compound Poisson-gamma 

(PG) (1 < p < 2), gamma (p = 2) and inverse Gaussian (p = 3) distributions [13]. We employ here the 

class of PG distributions, characterized by gamma distributed jumps over the domain of the positive 

real numbers plus zero, to model the deviations |D(x)|. The additive form for the cumulant generating 

function for this PG distribution can be written as: 

*( ) ( ) 1 1
s

K s
α  = λκ θ + −  θ   

 (15)

Here, s is the variable of the generating function, θ is the canonical parameter, λ is the index 

statistic, and the constant α and the cumulant function k(θ) are given by: 

( 2) / ( 1)p pα = − −  and (16)

1
( )

1

αα − θ κ θ =  α α − 
 (17)

The PG distribution is thus specified by 3 independent adjustable parameters α, λ and θ.  

The parameter α relates to Taylor’s power law exponent p, whereas λ and θ relate to the notions of 

shape and scale parameter employed in the conventional description of distributions.  

The probability density function on the variable z, p*(z, θ, λ, α), that corresponds to this distribution 

does not exist in closed form. However, it can be expressed as an infinite series [13]: 
* *( ; , , ) ( ; ) exp[ ( )]p z c z zθ λ α = λ θ⋅ − λκ θ , with (18)

*
1
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∞
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0for 
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=
>

z
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Figure 2b provides a probability-probability plot of the respective CDF fitted to data derived from  

the sequence of |D(x)| from the first 50,000 integers. The empirical and theoretical CDFs agreed well. 

Similarly Figure 3b provides the probability-probability plot corresponding to |D(x)| derived from the 

integers x = 106…107, in steps of 103. The Tweedie PG CDF agreed closely with the empirical CDF. 



Computation 2015, 3 535 

 

 

Figure 3d,f provides the probability-probability plots corresponding to the Tweedie PG distribution 

fitted from the prime number deviations corresponding to the integer sequences x = 108…109 in steps 

of 105 and x = 1011…1012 in steps of 108. The Tweedie PG distribution thus appeared to remain valid 

for over 12 orders of magnitude of data. 

3.5. The Tweedie Convergence Theorem 

For exponential dispersion models ED(μ, σ2) with unit variance functions of the form ( ) pV μ ∝ μ  

Jørgensen et al. have shown that as 0μ →  or μ →∞  then, within the constant factor c, c − 1 ED(cμ, σ2 c2−p) 

will converge to the form of a Tweedie model as either c → 0 or ∞→c  [14]. Since the variance 
functions for many probability distributions approximate the form ( ) pV μ ∝ μ , for small or large values 

of μ, the Tweedie distributions will act as the foci of convergence for a wide variety of data [14].  

This convergence property appears related to stable generalizations of the CLT [13], suggesting that 

the Tweedie models have a role analogous to that of the Gaussian distribution in statistical theory. As 

will be shown below, this theorem has implications with respect to the distribution of prime numbers. 

Parenthetically, it should also be mentioned that the mean and variance of an additive random variable 

Z are given by the equations E(Z) = λμ and var(Z) = λV(μ). 

3.6. The Theoretical Behavior of the Prime Number Deviations 

We have described the empirical behavior of the statistic |D(x)| = |R(x) – π(x). The Tweedie 

convergence theorem requires for complex statistical systems with variance functions, which 
approximate ( ) pV μ ∝ μ , that these systems be mathematically required to converge towards a Tweedie 

exponential dispersion model. The empirical demonstrations from the prime number deviations 

established that their variance function had this approximate behavior and the convergence 

requirements appeared justified. 

3.7. Other Examples of Variance to Mean Power Laws and 1/f Noise 

Similar variance to mean power laws have been extensively reported with nonlinear phenomena  

in connection with the clustering of species within their habitats (where it is known as Taylor’s power 

law) [21], human sexual contacts in AIDS [22], pediatric leukemia cases [23] and murine experimental 

metastases [24]. As well, this relationship is evident with spatial and temporal data associated with 

long range correlations, such as temporal changes in measles incidence [25], regional blood flow 

heterogeneity (Bassingthwaighte’s fractal scaling relation) [26], the genomic distributions of SNPs [27] 

and genes [28], auditory nerve spike trains [29], fluctuations in foreign exchange quotations [30], and 

with internet traffic [18] (where it has been called fluctuation scaling). With such diverse 

manifestations of this power law, the question would arise as to whether a more fundamental process 

could be implicated. We explain the wide manifestation of this power law by an asymptotic 

convergence of systems towards the Tweedie distributions [14]. 

The Gaussian and other stable distributions have their elementary role in probability theory 

consequent to the (generalized) central limit theorem, where they appear as the limiting forms for 

standardized sums of independent random variables with the Gaussian distribution appearing when the 
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components have finite variances. The Tweedie convergence theorem [13] implies that a wide range of 

exponential dispersion models can be approximated by the Tweedie models according to a central  

limit-like effect. For this reason many types of non-Gaussian data will exhibit a power law relationship 

between the variance and the mean. 

Recently, Taylor’s power law and its implicit fluctuation scaling have been explained in terms of 

physical processes. Eisler et al. have provided a mean field framework that employs the summation of 

random variables to show that Taylor’s law can be considered a consequence of a limiting theorem 

they relate to impact inhomogeneity [31]. Fronczak and Fronczak provided an alternative explanation 

that employed fluctuation dissipation in equilibrium and non-equilibrium systems to argue that 

Taylor’s law is a consequence of the second law of thermodynamics and the action of a putative 

external field [32]. In the case of the prime number deviations, an explanation based on 

thermodynamic principles would not seem applicable. 

The Tweedie convergence theorem has a more general scope than the limit theorem offered by  

Eisler et al. Indeed, the Tweedie models act as limiting distributions for a wide range of statistical 

models through a convergence effect that generalizes upon the central limit theorem [13,14,33,34]. 

Distributions within the domain of attraction of positive or extreme stable distributions can thus 

converge to manifest the variance to mean power law. One can hypothesize physical principles, or specific 

biological mechanisms, to explain the manifestation of Taylor’s law, but it would seem that this 

mathematically demonstrable convergence property would provide a more robust and general explanation. 

Sequences like the Riemann deviations D(x), that express a variance to mean power law and that 

also obey the Tweedie PG distribution have similarly been generated from random matrices of the 

Gaussian unitary and orthogonal ensembles [35], the Mertens function (Equation (6)) [36], Chebyshev’s 

function [37], as well as within the genomic distribution of SNPs along chromosome 1 of the  

horse [36]. Fronczak and Fronczak’s derivation of the variance to mean power law, mentioned above, [32] 

can be shown to exactly yield the Tweedie distributions (Equations (15)–(17)) [36], and Eisler et al. 

have shown their model for impact inhomogeneity to yield equations similar to Tweedie’s [31]. The 

Tweedie convergence effect, which has as its focus these equations, can be further extended by 

theorem to multiplicative statistical models which, in turn, allow for a mechanistic explanation for the 

genesis of multifractality [38]. 

1/f noise is another empirical phenomenon that has been widely observed in physical and biological 

systems [39,40]. There is no generally accepted explanation for the appearance of 1/f noise, though it 

notably has been explained in terms of the self-organized criticality of evolutionary behavior in 

extended dissipative systems [41]. As noted above, 1/f noise is directly related to long-range 

correlations and, in turn, to a variance to mean power law [18]. In this latter context, certain types of 

1/f noise can thus be viewed as consequences of the statistical convergence behavior associated with 

the Tweedie PG model. In fact, Taylor’s law and 1/f noise have been demonstrated to occur together 

within the genomic distribution of genes and SNPs along human chromosome 1 [42]. 

4. Conclusions 

The variance to mean power law implies a statistical self-similarity that can underlie certain  

fractal patterns. Related fractal patterns have been demonstrated within the distributions of the prime 
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numbers [43] and the Riemann zeta zeros [44]. Holdom showed that the deviations b(i) of the offset 
logarithmic integral of the ith prime number pi, ( ) ( )ib i Li p i≡ − , exhibited scale invariant correlations 

that were related to the Riemann hypothesis [45]. Indeed, it is possible to express the Riemann 

hypothesis in terms of the behavior of a random walk on a fractal lattice [46]. In this context it should 

not seem surprising that Taylor’s scale invariant law would manifest with the deviations |D(x)|. 

It is the long range correlations in the distribution of the prime numbers that have been interpreted 

to indicate a fractal pattern [43]. The variance to mean power law is a manifestation of a fractal pattern 

where the power law exponent directly relates to the fractal dimension 2H= −  through the equation, 
4 2p = − . The assessments from Figures 2a and 3, though, yielded values for p that ranged between  

1 and 2. Some of this variation might reflect numerical artifact, but a component might also be 

attributable to the distribution of the prime numbers, itself. Indeed p can be shown to vary between 1 to 

2 over different regions of the natural numbers and with different sample sizes (data not provided). 

When regions of a data sequence are found to have different fractal properties, as implied by the 

regional differences in p within the sequence of prime number deviations, that sequence would be said 

to be multifractal [47]. Multifractality of this nature has been described from the sequential deviations 

of ordered eigenvalues from the Gaussian unitary and orthogonal ensembles [38]. A current area of 

investigation deals with the apparent multifractality of the Riemann deviations |D(x)|. 

The Riemann deviations D(x) are intimately related to the positions of the prime numbers.  

Our examinations have revealed their absolute values to behave asymptotically as Tweedie probability 

distributions, perhaps due to a central limit-like effect, much like Erdös and Kac’s demonstration of the 

asymptotic Gaussianity of the number of prime divisors of the integers [48]. Thus far, our evidence for  

a power variance to mean relationship with each of these functions is empirical, but it extends over 

many orders of magnitude and it adds to the growing evidence of a unifying description for disparate 

mathematical, physical and biological phenomena obtainable through the Tweedie exponential 

dispersion models. Additionally, any statistical model for sequential data designed to produce Taylor’s 

law is mathematically required to converge towards a Tweedie model, and to yield 1/f noise [35]. 

Self-organized criticality was mentioned earlier in the introduction. This is a widely-held hypothesis 

used to explain the genesis of 1/f noise and other power law scaling behaviors [41]. Sandpile model 

simulations have generally been used to demonstrate 1/f noise and, thus, to support this hypothesis [41], 

yet the fluctuations evident to sandpile simulations also manifest a variance to mean power law and 

conform to the Tweedie compound Poisson-gamma distribution, raising the possibility that phenomena 

attributed to self-organized criticality can alternatively be attributed to the convergence behavior 

associated with the Tweedie models [15]. The irregular distribution of prime numbers thus appears to 

be one of many examples of Taylor’s law and fluctuation scaling that are similarly implicated with this 

mathematical convergence behavior. 

Self-organized criticality is postulated to occur within dynamical systems that naturally progress to 

borderline unstable and organized states, without any outside manipulation of the dynamical 

parameters. However, with the Riemann deviations examined here the manifestation of 1/f noise (the 

hallmark of self-organized criticality) would appear here to be possibly attributable to a mathematical 

convergence effect related to the central limit theorem of statistics. Further investigation into this 

matter could lead to a paradigm change in our understanding of processes that have conventionally 

been attributed to self-organized criticality. 



Computation 2015, 3 538 

 

 

Acknowledgments 

The authors gratefully acknowledge financial support from Patricia Rinaldo. 

Author Contributions 

The authors were responsible for all aspects of this study. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Kotnik, T. The prime-counting function and its analytic approximations π(x) and its 

approximations. Adv. Comput. Math. 2008, 29, 55–70. 

2. Legendre, A.M. Essai sur la Théorie des Nombres, 2nd ed.; Courcier: Paris, France, 1808; p. 394. 

(In French) 

3. Gauss, C.F. Werke Band 2, 1st ed.; Königliche Gesellschaft der Wissenschaften zu Göttingen: 

Göttingen, Germany, 1863; Volume 2, pp. 444–447. (In German) 

4. Hadamard, J. Sur la distribution des zéros de la fonction et ses conséquences arithmétiques.  

Bull. Soc. Math. Fr. 1896, 24, 199–220. (In German) 

5. De la Vallée Poussin, C.J. Recherches analytiques la théorie des nombres premiers. Ann. Soc. Sci. 

Brux. 1896, 20, 183–256. (In German) 

6. Riemann, G.F.B. Über die anzahl der primzahlen unter einer gegebenen grösse. Mon. Berl. Akad. 

1859, 2, 671–680. (In German) 

7. Borwein, J.M.; Bradley, D.M.; Crandall, R.E. Computational strategies for the Riemann zeta 

function. J. Comp. Appl. Math. 2000, 121, 247–296. 

8. Mertens, F. Über eine zahlentheoretische funktion. Akad. Wiss. Math. Nat. Kleine Sitz. 1897, 106, 

761–830. (In German) 

9. Titchmarsh, E.C. The Theory of the Riemann Zeta-Function, 2nd ed.; The Clarendon Oxford 

University Press: New York, NY, USA, 1986. 

10. Gamba, Z.; Hernando, A.; Romanelli, L. Are prime numbers regularly ordered? Phys. Lett. A 

1990, 145, 106–108. 

11. Wolf, M. 1/ƒ noise in the distribution of prime numbers. Phys. A 1997, 241, 493–499. 

12. Kriecherbauer, T.; Marklof, J.; Soshnikov, A. Random matrices and quantum chaos. Proc. Natl. 

Acad. Sci. USA 2001, 98, 10531–10532. 

13. Jørgensen, B. The Theory of Dispersion Models; Chapman & Hall: London, UK, 1997. 

14. Jørgensen, B.; Martínez, J.R.; Tsao, M. Asymptotic behaviour of the variance function.  

Scand. J. Stat. 1994, 213, 223–243. 

15. Kendal, W.S. Self-organized criticality attributed to a central limit-like convergence effect.  

Phys. A 2015, 412, 141–150. 

16. Riesel, H.; Göhl, G. Some calculations related to Riemann’s prime number formula. Math. 

Comput. 1970, 24, 969–983. 



Computation 2015, 3 539 

 

 

17. Leland, W.E.; Taqqu, M.S.; Willinger, W.; Wilson, D.V. On the self-similar nature of ethernet 

traffic. IEE/ACM Trans. Netw. 1994, 2, 1–15. 

18. Tsybakov, B.; Georganas, N.D. On self-similar traffic in atm queues: Definitions, overflow 

probability bound, and cell delay distribution. IEEE/ACM Trans. Netw. 1997, 5, 397–409. 

19. McQuarrie, D.A. Statistical Mechanics; Harper & Row: New York, NY, USA, 1976; pp. 553–561. 

20. Tweedie, M.C.K. An index which distinguishes between some important exponential families. In 

Statistics: Applications and New Directions, Proceedings of the Indian Statistical Institute Golden 

Jubilee International Conference, Calcutta, India, 27 September–1 October 1982; Ghosh, J.K., 

Roy, J., Eds.; Indian Statistical Institute: Calcutta, India, 1984; pp. 579–604. 

21. Taylor, L.R. Aggregation, variance and the mean. Nature 1961, 189, 732–735. 

22. Anderson, R.M.; May, R.M. Epidemiological parameters of HIV transmission. Nature 1988, 333, 

514–519. 

23. Philippe, P. The scale-invariant spatial clustering of leukemia in San Francisco. J. Theor. Biol. 

1999, 199, 371–381. 

24. Kendal, W.S.; Frost, P. Experimental metastasis: A novel application of the variance-to-mean 

power function. J. Natl. Cancer Inst. 1987, 79, 1113–1115. 

25. Rhodes, C.J.; Anderson, R.M. A scaling analysis of measles epidemics in a small population.  

Philos. Trans. R. Soc. Lond. B Biol. Sci. 1996, 351, 1679–1688. 

26. Kendal, W.S. A stochastic model for the self-similar heterogeneity of regional organ blood flow. 

Proc. Natl. Acad. Sci. USA 2001, 98, 837–841. 

27. Kendal, W.S. An exponential dispersion model for the distribution of human single nucleotide 

polymorphisms. Mol. Biol. Evol. 2003, 20, 579–590. 

28. Kendal, W.S. A scale invariant clustering of genes on human chromosome 7. BMC Evol. Biol.  

2004, 4, 3. 

29. Lowen, S.B.; Teich, M.C. The periodogram and Allan variance reveal fractal exponents greater 

than unitiy in auditory-nerve spike trains. J. Acoust. Soc. Am. 1996, 99, 3585–3591. 

30. Sato, A.H.; Nishimura, M.; Holyst, J.A. Fluctuation scaling of quotation activities in the foreign 

exchange market. Phys. A 2010, 389, 2793–2804. 

31. Eisler, Z.; Bartos, I.; Kertesz, J. Fluctuation scaling in complex systems: Taylor’s law and beyond. 

Adv. Phys. 2008, 57, 89–142. 

32. Fronczak, A.; Fronczak, P. Origins of Taylor’s power law for fluctuation scaling in complex 

systems. Phys. Rev. E 2010, 81, 066112. 

33. Jørgensen, B.; Vinogradov, V. Convergence to tweedie models and related topics. In Advances on 

Theoretical and Methodological Aspects of Probability and Statistics; Balakrishnan, N., Ed.;  

Taylor & Francis: New York, NY, USA, 2002; pp. 473–489. 

34. Vinogradov, V.; Jørgensen, B.; Wentzell, B.D. From extreme stable laws to Tweedie exponential 

dispersion models. In Stochastic Models, Proceedings of the International Conference on Stochastic 

Models, Ottawa, ON, Canada, 10–13 June 1998; Dawson, D.A., Gorostiva, L., Ivanoff, G., Eds.; 

American Mathematical Society: Providence, RI, USA, 1999; pp. 435–443. 

35. Kendal, W.S.; Jørgensen, B. Tweedie convergence: A mathematical basis for Taylor’s power law, 

1/f noise and multifractality. Phys. Rev. E 2011, 84, 066120. 



Computation 2015, 3 540 

 

 

36. Kendal, W.S.; Jørgensen, B. Taylor’s power law and fluctuation scaling explained by a  

central-limit-like convergence. Phys. Rev. E 2011, 83, 066115. 

37. Kendal, W.S. Fluctuation scaling and 1/f noise: Shared origins from the Tweedie family of 

statistical distributions. J. Basic Appl. Phys. 2013, 2, 40–49. 

38. Kendal, W.S. Multifractality attributed to dual central limit-like convergence effects. Phys. A 

2014, 401, 22–33. 

39. Dutta, P.; Horn, P.M. Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys. 1981, 53, 

497–516. 

40. Musha, T. 1/f Fluctuations in Biological Systems. In Proceedings of the Sixth International 

Conference on Noise in Physical Systems, Washington, DC, USA, 6–10 April 1981; pp. 143–146. 

41. Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality: An explanation of the 1/f noise.  

Phys. Rev. Lett. 1987, 59, 381–384. 

42. Kendal, W.S. Scale invariant correlations between genes and SNPs on human chromosome 1 

reveal potential evolutionary mechanisms. J. Theor. Biol. 2007, 245, 329–340. 

43. Cattani, C. Fractal patterns in prime numbers distribution. Lect. Notes Comput. Sci. 2010, 6017, 

164–176. 

44. Van Zyl, B.P.; Hutchinson, D.A.W. Riemann zeros, prime numbers, and fractal potentials.  

Phys. Rev. E 2003, 67, 066211. 

45. Holdom, B. Scale-invariant correlations and the distribution of prime numbers. J. Phys. A Math. 

Theor. 2009, 42, 345102. 

46. Shlesinger, M.F. On the Riemann hypothesis: A fractal random walk approach. Phys. A 1986, 

138, 310–319. 

47. Stanley, H.E.; Meakin, P. Multifractal phenomena in physics and chemistry. Nature 1988, 335, 

405–409. 

48. Erdös, P.; Kac, M. The Gaussian law of errors in the theory of additive number theoretic 

functions. Am. J. Math. 1940, 62, 738–742. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


