
Computation 2015, 3, 670-686; doi:10.3390/computation3040670
OPEN ACCESS

computation
ISSN 2079-3197

www.mdpi.com/journal/computation

Article

Multiscale Simulations for Coupled Flow and Transport Using
the Generalized Multiscale Finite Element Method
Eric T. Chung 1, Yalchin Efendiev 2,3,*, Wing Tat Leung 3 and Jun Ren 3

1 Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong, China;
E-Mail: eric.t.chung@gmail.com

2 Center for Numerical Porous Media (NumPor), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia

3 Department of Mathematics, Texas A&M University, College Station, TX 77843, USA;
E-Mails: sidnet123@gmail.com (W.T.L.); ustcrenjun@gmail.com (J.R.)

* Author to whom correspondence should be addressed; E-Mail: efendiev@math.tamu.edu;
Tel.: +1-979-485-0098.

Academic Editors: Qinjun Kang and Li Chen

Received: 9 October 2015 / Accepted: 1 December 2015 / Published: 11 December 2015

Abstract: In this paper, we develop a mass conservative multiscale method for coupled
flow and transport in heterogeneous porous media. We consider a coupled system consisting
of a convection-dominated transport equation and a flow equation. We construct a coarse
grid solver based on the Generalized Multiscale Finite Element Method (GMsFEM) for a
coupled system. In particular, multiscale basis functions are constructed based on some
snapshot spaces for the pressure and the concentration equations and some local spectral
decompositions in the snapshot spaces. The resulting approach uses a few multiscale basis
functions in each coarse block (for both the pressure and the concentration) to solve the
coupled system. We use the mixed framework, which allows mass conservation. Our main
contributions are: (1) the development of a mass conservative GMsFEM for the coupled flow
and transport; (2) the development of a robust multiscale method for convection-dominated
transport problems by choosing appropriate test and trial spaces within Petrov-Galerkin
mixed formulation. We present numerical results and consider several heterogeneous
permeability fields. Our numerical results show that with only a few basis functions per
coarse block, we can achieve a good approximation.
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1. Introduction

Many porous media problems occur over multiple scales. Because of scale disparity, some type
of model reduction or averaging are often employed. Typical flow-based upscaling approaches ([1–3])
compute the permeabilities on a coarse (computational) grid and solve the flow and transport equations
together on a coarse grid. These approaches are easy to implement with a minimal code modification;
however, these approaches can result in large errors for complex heterogeneities because limited
information is used in upscaling. In this paper, we consider a multiscale method for a coupled flow
and transport system, where the flow equation for the pressure field is described by a steady state elliptic
equation (derived by Darcy law) and the transport equation for the concentration field is described by a
convection-dominated parabolic equation.

Our approach derives its foundation from rigorous multiscale techniques developed
recently [4–25]. In our approach, multiscale basis functions are computed and used to solve flow
equations. The main contributions of this paper are (1) to use multiscale basis functions for both flow
and transport equations and (2) design of a novel mixed multiscale methods for convection-dominated
transport equations within the context of Generalized Multiscale Finite Element Method (GMsFEM).
The GMsFEM is introduced in [16], where the objective is to construct multiscale basis functions in
each coarse domain. The main distinction of this approach from some of existing multiscale methods
is that the GMsFEM systematically constructs multiscale basis functions using local spectral problems
and the local snapshot spaces. Both of these concepts (local spectral problem and local snapshot spaces)
are important in a design of the method.

In our proposed approach, we use a mixed formulation for both the flow and the transport equations.
The use of a mixed formulation for the flow equation guarantees the mass conservation [7,26–30]. The
use of a mixed formulation is important for the transport equation, guarantees the mass conservation
and helps with the stabilization of it. In particular, by adding more flux basis functions, we can achieve
a better stability based on our numerical studies [31]. In the mixed formulation for a coupled system,
we first define snapshot spaces for the appropriately defined fluxes in the flow and the concentration
equations. For the pressure and the concentration fields, we use piecewise constant basis functions. The
snapshot space represents the solution space in each coarse region and provides a mass conservative
approach. In the snapshot space, we perform a local spectral decomposition to identify multiscale basis
functions. The functions corresponding to dominant modes are used to construct coarse spaces for the
fluxes. In particular, we use only a few degrees of freedom (maximum two) in each coarse region. For
the test functions for the convection-dominated transport, we use the solutions of adjoint problem. As a
result, we have a full coarse-grid approximation for the coupled flow and transport system.

We would like to discuss a relation between our proposed approaches and the flow-based
upscaling [2,3]. In the latter, the upscaled permeabilities are computed and, then, the coupled flow
and transport equation is solved on a coarse grid. The computations of upscaled permeabilities can
be compared to the computations of multiscale basis functions, which are performed locally in each
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coarse region by solving local problems. The resulting coarse-grid problem in the upscaled model
is similar to our resulting coarse-grid system. There are several main advantages of the proposed
method: (1) it can use more multiscale basis functions in each region and achieve a desired accuracy;
(2) the number of multiscale basis functions can be adaptively selected in space and time; (3) our
approach can easily reconstruct the fine-scale distributions of the solution; (4) our approaches can handle
any coarse-grid geometries.

We consider several numerical examples by considering two different hydraulic conductivity fields.
In our numerical examples, we use a relatively coarse grid with the coarsening factor of 20. We study
the numerical errors in the concentration field and depict concentration profiles at different time instants.
Our numerical results show that the use of only one basis function per coarse edge (which is similar
to numerical upscaling of hydraulic conductivity) does not produce an accurate solution, while if we
use two basis functions, we can obtain a much more accurate approximation of the solution. These
preliminary numerical results show that our fully coarse-grid model for the coupled flow and transport
equations can accurately predict the solution using only a few degrees of freedom in each coarse region.

Novelty. The novelty of our work can be summarized as follows:

• The development of Generalized Multiscale Finite Element Method for a mixed formulation of the
convection-diffusion equation using different test and trial spaces.

• The development and implementation of a mass conservative mixed GMsFEM for the coupled
flow and transport equations.

The paper is organized as follows. In the next section, we present preliminaries and describe coarse
and fine grids as well as a mixed formulation. Section 3 is devoted to the construction of multiscale basis
functions. Numerical results are presented in Section 4. Finally, we present conclusions.

2. Preliminaries and Notations

We consider a coupled flow and transport system that arises in many hydrological applications

∂c

∂t
+ v · ∇c−D∆c = fc in Ω× (0, T ),

v + κ∇p = 0 in Ω,

∇ · v = fq in Ω.

(1)

Here Ω is the computational domain, T > 0 is a fixed time, κ is a hydraulic conductivity, c is the
concentration, p is the pressure, D is a diffusivity of the medium, and fc, fq are source terms. The
equations are subject to the boundary conditions c(x, t) = 0 on ∂Ω × [0, T ], p(x) = g on ∂Ω and the
initial condition c(x, 0) = 0 in Ω. In order to have a mass conservation, we re-write the system in a
mixed formulation.

∂c

∂t
+∇ · q = fc + cfq in Ω× (0, T ),

q +D∇c− vc = 0 in Ω× (0, T ),

v + κ∇p = 0 in Ω,

∇ · v = fq in Ω.

(2)
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Here q is an auxiliary variable, we call it flux or flux-concentration. It is well known that the
Galerkin method inherits the stability of the continuous problem, and it yields to spurious oscillation
when the convection coefficient is larger than the diffusive one (v � D). The mixed finite element
methods can be used to achieve a mass conservation. In this paper, we aim to construct multiscale basis
functions for the flux q and the velocity v. As for the concentration c and the pressure p, we choose
piecewise constant functions on a coarse grid.

Next, we introduce the discretized form of the Problem (2). We first comment on some notations of
the coarse and the fine mesh. We assume that Ω is partitioned in a usual way into a union of rectangles
(in 2-D) or hexadedrals (in 3-D) denoted by T H , where H is the coarse mesh size. The fine mesh is
obtained by splitting each coarse block in T H into a connected union of fine-grid blocks, and we denote
it by T h with mesh size h, h < H . In addition, we denote by EH the set of all edges/faces of elements
in T H , i.e., EH = {Ei : 1 ≤ i ≤ Ne}, where Ne is the number of coarse edges/faces. Note that each
Ei ∈ EH is the union of some fine-grid edges/faces. That is, Ei = {ej : ej is on Ei}, where ej are the
fine-grid edges/faces lying on Ei. We also define the coarse neighborhood of the edge/face Ei by

ωi = {K ∈ T H : ∂K ∩ Ei 6= φ}. (3)

See Figure 1 for an illustration of a coarse neighborhood associated with one coarse edge, where the
coarse mesh and the fine mesh are represented by black lines and gray lines, respectively.

A fine cell

in T h

Ei

Kr

Ks

A coarse cell
in T H

Figure 1. An illustration of a coarse neighborhood ωi (in green) corresponding to the coarse
edge Ei.

Next, we define the coarse trial spaces for q, v, c, and p. The concentration c and the pressure p are
approximated in the space of piecewise constant functions with respect to the coarse grid T H . We denote
this space by QH , and

QH = {ψ : ψ|Ki
∈ P0(Ki) for all Ki ∈ T H}. (4)

As for the flux-concentration q and the velocity v, the basis functions are associated with coarse edges
and are supported in the corresponding coarse neighborhoods. In particular, to obtain the basis functions
for a coarse edge Ei, we will solve a local problem in the coarse neighborhood ωi. Let Φq

i and Φv
i be
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the set of multiscale basis functions for q and v with respect to Ei, respectively. Then, we define the
multiscale solution space for q and v as

V q
H =

⋃
Ei

Φq
i and V v

H =
⋃
Ei

Φv
i . (5)

Furthermore, we discretize the time interval [0, T ] uniformly by the points

tn = nτ, n = 0, 1, · · · , N

where τ is the time step and N = T/τ . Using the above spaces, the GMsFEM approximation of (2) can
be given as follows. For all n ≥ 1, find (cnH , q

n
H , pH , vH) ∈ QH × V q

H ×QH × V v
H , such that∫

Ω

cnH − cn−1
H

τ
c̃+

∫
Ω

(∇ · qn−θH )c̃ =

∫
Ω

(fn−θc + cn−θH fq)c̃ for ∀c̃ ∈ QH ,∫
Ω

1

D
qn−θH · q̃ =

∫
Ω

(∇ · q̃ +
vH
D
· q̃)cn−θH for ∀q̃ ∈ W q

H ,∫
Ω

1

κ
vH · ṽ =

∫
Ω

(∇ · ṽ)pH for ∀ṽ ∈ V v
H ,∫

Ω

(∇ · vH)p̃ =

∫
Ω

fqp̃ for ∀p̃ ∈ QH ,

(6)

subject to the boundary condition pH = g. Here, we let zn−θ = θzn−1 + (1 − θ)zn, where z = cH

or qH . For θ = 0, 1/2 and 1, we get the Backward Euler, Crank-Nicolson and Forward Euler Methods
respectively. Note that W q

H is the testing space for qnH . We emphasize that in general, W q
H 6= V q

H , which
allows a better stability. The construction of V q

H , V
v
H , and W q

H will be discussed in the next section.
In addition, to get the fine-scale solution, we use the standard lowest-order Raviart-Thomas space

Qh × V q
h × Qh × V v

h for the approximation of (2) on the fine grid T h. The fine-scale solution (ch, qh)

will be considered as a reference solution for the comparison with the multiscale solution (cH , qH).

3. Generalized Multiscale Finite Element Method

In this section, we will discuss the construction of the vector solution spaces V q
H , V

v
H , and the testing

space W q
H . Note that solving qH in (6) requires vH . Therefore, we will first compute vH using the last

two equations of (6).
We briefly introduce the basic idea of the GMsFEM. In the framework of GMsFEM, it follows an

offline-online procedure to generate the multiscale solution space. At the offline stage, we first construct
the snapshot space obtained by solutions of local problems with all possible boundary conditions, which
are resolvable by the fine-grid. Then, we choose a subspace of the snapshot space by selecting dominant
modes via some local spectral decompositions. The resulting reduced dimensional space, called the
offline space, will be used at the online stage to get a multiscale solution. Note that the snapshot space
can be taken as the solution space to obtain a solution with a good accuracy. However, it is expensive to
use the snapshot space due to its high dimensionality. Thus, there is a need to perform a space reduction
within the snapshot space, and choose only few dominant modes to form the offline space. We remark
that for parameter dependent problems (in which the coefficients depend on some extra parameters), one
needs to construct an online space using the offline space and an appropriate spectral problem.
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3.1. Multiscale Solution Space V v
H

We form the multiscale solution space V v
H for vH . In order to build V v

H , we first construct the snapshot
space, denoted by V v

snap. For each coarse-grid edge Ei ∈ EH , a local problem is defined on each of its
neighboring coarse cells. Because the snapshot space is supposed to capture the multiscale information
within this local domain, the corresponding boundary conditions of the local problem should cover
all possibilities. Formally, the local problem is defined as the following: For each Ei ∈ EH , on its
neighboring coarse cell K = Kr or Ks (see Figure 2), find (pij, ψ

i
v,j) ∈ Qh × V v

h , such that

ψiv,j + κ∇pij = 0 in K,

∇ · ψiv,j = αij in K,

ψiv,j · n = 0 on ∂K\Ei,
ψiv,j · n = δij on Ei.

(7)

Here, j varies over all fine-grid edges on Ei. For the convenience, we use the same notations
as the solution to denote local snapshot fields. Here αij is a constant defined on K, n is a fixed
unit-normal vector on ∂K, and δij(x) is defined on Ei with respect to the fine-grid edges. Note that
Ei = {eij : eij in Ei}. We require δij has value 1 on eij and 0 on the other fine-grid edges, 1 ≤ j ≤ Ji,
where Ji is the number of the fine-grid edges on Ei. That is,

δij =

{
1, on eij,
0, on the other fine-grid edges.

Ei Ei

eij
eij′

Kr Ks

Figure 2. Neighboring coarse cells Kr and Ks corresponding to the coarse-grid edge Ei.
The fine-grid edge eij and eij′ are in red.

Note that the constant αij in (7) is chosen so that the compatibility condition∫
K
αij = (±)

∫
Ei
δij is satisfied, for K = Kr or Ks. The above local Problem (7) can be solved

numerically on the underlying fine grid of K by the lowest-order Raviart-Thomas element method.
After solving the local problems (onKr andKs) with respect toEi, a local snapshot V v,i

snap is generated
by the solutions of (7). That is

V v,i
snap = span{ψiv,j : 1 ≤ j ≤ Ji}.

Then, the snapshot space V v
snap is formed as

V v
snap =

⋃
Ei

V v,i
snap = span{ψiv,j : 1 ≤ j ≤ Ji, 1 ≤ i ≤ Ne}. (8)
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We re-numerate the snapshot functions by a single index to create the snapshot matrix

Rv
snap =

[
ψv1 , ψ

v
2 , · · · , ψvLsnap

]
,

where Lsnap =
Ne∑
i=1

Ji is the dimension of the snapshot space V v
snap. Note that the matrix Rv

snap maps from

the coarse space V v
snap to the fine space. The next step is to construct the offline space V v

off for vH . For a

coarse-grid edge Ei, we define the following eigenvalue problem in V v,i
snap:

Aoff
v Ψv

k = λkM
off
v Ψv

k, (9)

where
Aoff
v = [ast] =

∫
Ei

(ψiv,s · n)(ψiv,t · n),

and
M off

v = [mst] =

∫
ωi

1

κ
ψiv,s · ψiv,t.

The eigenvalue Problem (9) will produce a set of eigenvectors for generating the local offline
space V v,i

off by first selecting Lioff eigenvectors corresponding to the smallest Lioff eigenvalues, and then

computing the element φiv,k =

Ji∑
j=1

Ψv
kjψ

i
v,j for k = 1, 2, · · · , Lioff, where Ψv

kj is the j-th component of

Ψv
k. Then, the local offline space with respect to Ei is formed as

V v,i
off = span{φiv,k : 1 ≤ k ≤ Lioff}

and the offline space V v
off is formed as

V v
off =

⋃
Ei

V v,i
off = span{φiv,k : 1 ≤ k ≤ Lioff, 1 ≤ i ≤ Ne}. (10)

We re-numerate the basis functions by a single index to create the offline matrix

Rv
off =

[
φv1, φ

v
2, · · · , φvLoff

]
,

where Loff =
Ne∑
i=1

Lioff is the dimension of the offline space V v
off.

We take the multiscale solution space as

V v
H = V v

off.

Then, vH is approximated by solving the problem: Find (pH , vH) ∈ QH × V v
H such that∫

Ω

1

κ
vH · ṽ =

∫
Ω

(∇ · ṽ)pH for ∀ṽ ∈ V v
H ,∫

Ω

(∇ · vH)q̃ =

∫
Ω

fq q̃ for ∀q̃ ∈ QH ,

(11)

subject to the boundary condition pH = g.
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Remark 1. The design of a ”good” eigenvalue problem is a key ingredient of the GMsFEM. It plays
a critical role in reducing the dimension of the coarse solution space. After applying such eigenvalue
problem, a few dominant modes are selected to capture the multiscale behavior of the multiscale solution
up to some certain extent.

Remark 2. Generally, the offline space should contain a constant basis function. Therefore, the local
snapshot space V v,i

snap, as a solution space of the eigenvalue Problem (9), can be decomposed into
V v,i

1

⊕
V v,i

2 , where V v,i
1 = {(1, 1, · · · , 1)} and V v,i

2 = {ψ :
∫
Ei
ψ · ni = 0, ψ ∈ V v,i

snap}. We note
that the element with {(1, 1, · · · , 1)} in the snapshot space corresponds to the local solution with the
unit normal flux on the edge and the elements of V v,i

2 have average zero normal flux traces. We eliminate
the constant boundary condition basis function in the snapshot space and put it, (1, 1, · · · , 1) ∈ V v,i

1 , as
the first basis function of the offline space, and identify the other dominant modes in the space V v,i

2 .

3.2. Multiscale Solution Space V q
H

We construct the solution space V q
H and the testing space W q

H for qH . They follow a similar procedure
to the one for vH . In order to build V q

H , the snapshot space V q
snap is to be constructed. We define a

local problem corresponding to each coarse-grid edge Ei ∈ EH as follows: Find (cij, ψ
i
q,j) ∈ Qh × V q

h ,
such that

ψiq,j +D∇cij − vHcij = 0 in K,

∇ · ψiq,j = αij in K,

ψiq,j · n = 0 on ∂K\Ei,
ψiq,j · n = δij on Ei,

(12)

where K = Kr or Ks depicted in Figure 2. The local snapshot space V q,i
snap, the snapshot space V q

snap, and
the snapshot matrix Rq

snap are formed as

V q,i
snap = span{ψiq,j : 1 ≤ j ≤ Ji},

V q
snap =

⋃
Ei

V q,i
snap = span{ψiq,j : 1 ≤ j ≤ Ji, 1 ≤ i ≤ Ne}. (13)

Rq
snap =

[
ψq1, ψ

q
2, · · · , ψ

q
Lsnap

]
,

respectively.
To construct the testing space W q

H , a snapshot space W q
snap is also needed. We solve the adjoint

problem of (12)
wiq,j −D∇pij = 0 in K,

∇ · wiq,j +
1

D
vH · wiq,j = αij in K,

wiq,j · n = 0 on K\Ei,
wiq,j · n = δij on Ei.

(14)

Then, the snapshot space W q
snap is formed by the snapshot functions ωiq,j for all Ei ∈ T H .
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The local offline space V q,i
off for uH is obtained by solving the following eigenvalue problem in V q,i

snap:

Aoff
q Ψq

k = λkM
off
q Ψq

k, (15)

where
Aoff
q = [ast] =

∫
Ei

(ψiq,s · n)(ψiq,t · n),

and
M off

q = [mst] =

∫
ωi

D̃ψiq,s · ψiq,t.

Here, we let D̃ = 1+|vH |
D

, where |vH | denotes the vector l2 norm of vH . Then, the local offline space
V q,i

off , the offline space V q
off, and the offline matrix Rq

off are formed as:

V q,i
off = span{φiq,k : 1 ≤ k ≤ Lioff},

V q
off =

⋃
Ei

V q,i
off = span{φiq,k : 1 ≤ k ≤ Lioff, 1 ≤ i ≤ Ne}, (16)

Rq
off =

[
φq1, φ

q
2, · · · , φ

q
Loff

]
,

respectively. Here φiq,k =

Ji∑
j=1

Ψq
kjψ

i
q,j , k = 1, 2, · · · , Lioff, is the dominant mode in the space V q,i

snap.

We let V q
H = V q

off and define the testing space as

W q
H = {w ∈ W q

snap : (w − q) · n|E = 0, for all E ∈ EH , for some q ∈ V q
H}, (17)

where n is the unit-normal vector of the coarse-grid edge E. Now, we have the multiscale solution space
V q
H and the testing space W q

H . The GMsFEM solution (cH , qH) can be computed through (6).

Remark 3. We remark that the fine-scale velocity field is constructed and used in computing multiscale
basis functions for the concentration. In future, we plan to study joint multiscale basis construction
procedures, which can compute multiscale basis functions for the concentration without solving the
velocity field. Because the concentration field is a nonlinear function of the velocity field, an online
procedure for computing multiscale basis functions for the concentration will be employed.

4. Numerical Results

We present a representative set of numerical experiments that demonstrate the performance of the
mixed GMsFEM for approximating the coupled flow and transport Equation (2). The computational
domain Ω = [0, 1] × [0, 1]. We consider two different permeability fields κ, as depicted in Figures 3a,b.
The source term fc to be used are plotted in Figures 3c,d, and fq is chosen to be 0. In all experiments
below, the fine grid T h is fixed to be 200× 200 uniform mesh, i.e., h = 1/200. The coarse grid consists
of 20× 20 uniform meshes, i.e., H = 1/20. As for the time discretization, the time step is chosen to be
τ = 1 × 10−4 and the Crank-Nicolson scheme is used. We denote ch as the average value of ch in each
coarse cell, i.e., ch = 1

|K|

∫
K
ch, for every K ∈ T H . The relative numerical errors are measured in L2

norm for the concentration.



Computation 2015, 3 679

 

 

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 0

1

2

3

4

5

6

7

8

9

10

(a) κ1 in log10 scale

 

 

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1.5

−1

−0.5

0

0.5

1

1.5

(b) κ2 in log10 scale

 

 

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 0

10

20

30

40

50

60

70

80

90

100

(c) f1

 

 

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 0

10

20

30

40

50

60

70

80

90

100

(d) f2

Figure 3. Two permeability fields (a,b) and two source terms (c,d).

In our numerical experiments, we approximate the velocity vH and the flux qH (at any time instant)
in the offline space V v

H and V q
H in which each coarse edge is equipped with Lioff basis functions. We

choose at most Lioff = 2 and compare concentration profiles with Lioff = 1. Note that there are H/h basis
functions associated with each coarse edge. We only select up to the two dominant modes per edge to
form the offline space.

The first experiment is for the Problem (2), where the diffusivity D = 1, the source term fc = f1,
the permeability field κ = κ1, and the boundary condition g = 7xy. The boundary condition represents
the flow from lower left corner to upper right corner. The Peclet number in the entire domain is 180.18,
while the coarse-grid Peclet numbers vary with the maximum one being 11.01. In Figure 4, we depict
the averaged fine-scale solutions and the GMsFEM solutions at the time T = 0.015, 0.04, and 0.1.
We choose the averaged fine-scale solution since piecewise constant basis functions are used in the
approximation of the concentration on a coarse grid. The averaged fine-scale solution is depicted on the
top of Figure 4. In the middle row, we depict the GMsFEM solution, where only one basis function per
edge is used for the approximation of the velocity and one basis function is used for the approximation
of the flux-concentration field. The L2 errors in the concentration field are 21.22%, 30.16%, and 27.19%
at T = 0.015, 0.04, and 0.1. At the bottom row of Figure 4, we depict the concentrations computed
using two basis functions for the velocity and two basis functions for the flux-concentration field.
As we observe, the results look much better when two basis functions are used. For example, at T = 0.1,
we can observe that the concentration profile is similar to the averaged fine-scale concentration profile.
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The L2 errors in the concentration field are 8.1%, 11.1%, and 8.44% at T = 0.015, 0.04, and 0.1. Note
that since we use 20 × 20 coarse grid and piecewise constant basis functions for the concentration, one
expects a first order convergence with respect to the coarse mesh (i.e., about 5% error in our case).
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Figure 4. First row: Fine-scale solutions ch. Second row: GMsFEM solutions cH (one
multiscale basis function per edge for both velocity and flux-concentration). Third row:
GMsFEM solutions cH (two multiscale basis function per edge for both velocity and
flux-concentration). From left column to right column: T = 0.015, 0.04, 0.1. We use
κ = κ1, fc = f1, H = 1/20.

In our second set of numerical examples, we consider the permeability κ = κ2, a source term
fc = f2, and a boundary condition g = 8(x − y). We let the diffusivity to be D = 1. In this case,
the problem becomes convection-dominated, where the coarse-grid Peclet number has a maximum value
around 8.1. The numerical results are shown in Figure 5, where the top row shows the averaged fine-scale
concentration profiles, the middle row shows the GMsFEM solution with one velocity basis per edge and
one flux-concentration basis function, and the bottom row shows the GMsFEM solution, which uses two
velocity basis functions and two flux-concentration basis functions. In all numerical results, we use
piecewise constant pressure and piecewise constant concentration basis functions, as mentioned earlier.
Thus, for the concentration field, there is an irreducible error of orderH (5% in our case). First, we study
the numerical results using only one multiscale basis function (the middle row of Figure 5). TheL2 errors
in the concentration field are 77.6%, 82.53%, and 77.96% at T = 0.01, 0.02, and 0.1. We observe from
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the figure that the results with one basis function per edge do not capture the averaged fine-scale solution
behavior correctly. On the other hand, we observe a good agreement when two multiscale basis functions
are used (the bottom row of Figure 5). We observe that the main features of the concentration profile are
captured. The L2 errors in the concentration field are 14.9%, 18.24%, and 15.71% at T = 0.01, 0.02,
and 0.1.

In our numerical simulations, we limit ourselves to piecewise constant (lowest order) concentration
basis functions. This allows a low computational cost and avoids a design of more complex concentration
basis functions, which can satisfy inf-sup conditions (see e.g., [32]). Since we use lowest order basis
functions for the concentration, the accuracy is limited to O(H). This is reasonable as in large-scale
simulations (due to very detailed κ), the coarse grid sizes can be taken sufficiently small. In general, the
numerical results shown above can be improved using more basis functions for the flux-concentration
and designing multiscale basis functions for the concentration field. One of our main objectives is to
show that the results with one basis function per edge (which is similar to flow-based upscaling) can be
substantially improved if one uses more multiscale basis functions, and we also provide a procedure for
computing the multiscale basis functions and suitable global formulations.
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Figure 5. First row: Fine-scale solutions ch. Second row: GMsFEM solutions cH

(one multiscale basis function per edge for both velocity and flux-concentration). Third
row: GMsFEM solutions cH (two multiscale basis function per edge for both velocity and
flux-concentration). From left column to right column: T = 0.01, 0.02, 0.1. We use κ = κ2,
fc = f2, H = 1/20.
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5. Discussions on Time Dependent Velocity

In our examples above, the velocity field was time-independent, and thus, the coupling between
the flow and transport is weak. In above examples, we derived a multiscale coupling framework and
demonstrated a robust framework for multiscale convection-diffusion equation. When the velocity
field becomes time-dependent, one needs to re-calculate multiscale basis functions as velocity varies.
There are several procedures, which we will mention, after a brief discussion on time varying
velocity field scenarios. First, we remark on several scenarios, when the velocity field can depend
on time (we call it “time-dependent” in our further discussions, even though the time may enter
implicitly). The velocity field can depend on time via time-varying concentration field as in miscible or
immiscible flows (e.g., [33] and the referenes therein) or the velocity field can, in addition, have a
time-dependent component due to compressibility. We plan to address these application problems in
our future works.

Computations of multiscale basis functions for the time-dependent velocity field can be performed
offline [16,34] or using the residuals in the online stage [12,13]. For the offline computations, one
needs a richer class of snapshot vectors, which can span possible velocity fields and perform the same
local spectral decompositions and global coupling framework, as we discussed above. “Rich” snapshot
spaces are discussed in [16] for parameter-dependent problem (the time can be treated as a parameter).
Another approach for identifying multiscale basis functions, when the snapshot space is very large, is the
use of l1-minimization techniques as proposed in [34]. All these approaches can be used adaptively in
space and time. Finally, one can use residual-based online basis functions [12,13], where one additional
multiscale basis function is computed adaptively using the residual information. The success of these
approaches depends on the offline space as it is shown, thus a good offline space is needed to achieve
a high accuracy.

In some time-dependent velocity cases, one can get a good accuracy without modifying multiscale
basis functions. For simplicity, we consider a “miscible” type flow and transport, which are described by

∂c

∂t
+ v · ∇c−D∆c = fc in Ω× (0, T ),

v + ζ(c)κ∇p = 0 in Ω,

∇ · v = fq in Ω.

(18)

We take ζ(c) = (c2 + 0.2(1− c)2). We use the same setup as in the first example. The source term is
the same, that is, fc = f1 and the boundary condition is g = 28xy. The numerical results are shown in
Figure 6. The first row shows the averaged fine-scale concentration profiles and the second row shows
the GMsFEM solution with two velocity basis and two flux-concentration basis functions. The L2 errors
in the concentration field are 5.81%, 8.63%, and 7.72% at T = 0.015, 0.04, and 0.1, respectively. These
errors are comparable to the case with time-independent velocity field. We note that the errors are close
to the irreducible error due to the coarse-mesh size.
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Figure 6. First row: Fine-scale solutions ch. Second row: GMsFEM solutions cH (two
multiscale basis function per edge for both velocity and flux-concentration). From left
column to right column: T = 0.015, 0.04, 0.1. We use κ = (c2 + 0.2(1 − c)2)κ1, fc = f1,
H = 1/20. Time-dependent velocity case.

6. Conclusions

In this paper, we develop a Generalized Multiscale Finite Element Method (GMsFEM) for coupled
flow and transport equations. The transport equation is convection dominated and we choose an
appropriate test space to achieve a stability and improve numerical results. We study a mixed formulation
for both flow and transport, which guarantees mass conservation. The multiscale spaces for the flux
and the velocity fields are constructed by appropriately choosing the snapshot spaces and performing
local spectral decompositions. The design of the local test and trial multiscale spaces is one of our
novel contributions. From the numerical experiments, we observe that one needs to have more than one
multiscale basis function to capture the concentration profile on the coarse grid. In particular, using
only two multiscale basis functions for the pressure equation and two multiscale basis functions for the
concentration equation, we can achieve good accuracy. Our future studies will include a systematic
design of multiscale basis functions for the concentration that can provide a stable discretization.
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