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Abstract: We present an Anderson acceleration-based approach to spatially couple three-dimensional
Lattice Boltzmann and Navier–Stokes (LBNS) flow simulations. This allows to locally exploit the
computational features of both fluid flow solver approaches to the fullest extent and yields enhanced
control to match the LB and NS degrees of freedom within the LBNS overlap layer. Designed for
parallel Schwarz coupling, the Anderson acceleration allows for the simultaneous execution of both
Lattice Boltzmann and Navier–Stokes solver. We detail our coupling methodology, validate it,
and study convergence and accuracy of the Anderson accelerated coupling, considering three
steady-state scenarios: plane channel flow, flow around a sphere and channel flow across a porous
structure. We find that the Anderson accelerated coupling yields a speed-up (in terms of iteration
steps) of up to 40% in the considered scenarios, compared to strictly sequential Schwarz coupling.

Keywords: Anderson acceleration; Lattice Boltzmann; Navier–Stokes; parallel coupling

1. Introduction

The choice of an optimal numerical solver for a given fluid dynamics problem is often problematic.
Memory and runtime requirements, numerical accuracy and stability, treatment of boundaries, parallel
scalability and flow physics are only some of the criteria that need to be taken into consideration.
In particular, many flow problems cannot be grouped into a particular solver’s “favorite problems”.
One approach to locally exploit the features of different solvers consists in splitting the computational
domain and apply different flow solvers on the respective subdomains.

Navier–Stokes (NS) solvers [1,2] and Lattice Boltzmann (LB) methods [3,4] are well established
techniques for simulating in- or weakly compressible fluid flow. One or the other method may be
advantageous in particular flow scenarios, and both approaches have been compared [5,6] and studied
in detail over the last decades. Moreover, it is well-known that Lattice Boltzmann methods yield the
Navier–Stokes equations in the asymptotics of a vanishing Mach number (convective scaling), and even
result in the incompressibleNavier–Stokes system using diffusive scaling [7]. They can be considered
equivalent in that sense. When using the term “Navier–Stokes solver” in the following, we refer
to a direct discretization of the (incompressible) Navier–Stokes system and a respective numerical
method solving the arising non-linear system. Despite their particular features—high locality (LB),
local/simple treatment of complex geometries (LB), low memory requirements (NS), to only name
a few—only little effort has been undertaken so far to spatially couple the two approaches [8–12] or,
more generally speaking, to couple LB and direct PDE solvers [13,14].

In [10,11], we developed a coupling methodology and applied it to steady-state and recently to
transient problems [15]. In the transient case, we considered explicit coupling of a Lattice Boltzmann
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and an incompressible Navier–Stokes solver. Although good agreement of the velocity profiles could
be obtained in various scenarios, we also demonstrated that minor density/pressure perturbations may
have an essential impact on the solution. In order to improve the matching of degrees of freedom at the
coupling interface between LB and NS subdomains, more enhanced or pressure correction schemes may
represent promising approaches. In this contribution, we take a step towards sophisticated coupling
of LB and NS based on overlapping Schwarz-based domain decomposition. We restrict considerations to
three-dimensional, steady-state scenarios. We discuss three coupling methodologies—referred to as
sequential coupling, parallel coupling and Anderson accelerated coupling, cf. Section 2.3—and study their
convergence behavior for channel flow scenarios. A particular focus is put on the Anderson acceleration
method. This method has been used to accelerate and stabilize fixed-point iterations in, for example,
fluid-structure interaction [16], groundwater flow [17] or electronic structure computations [18]. It dates
back to 1965 [19], and recently re-attracted interest as it shows great potential for applications in which a
Newton matrix is inaccessible or too expensive to store [20,21]. Though the method requires additional
computations for processing the coupled variables at the interface, it has become attractive for HPC
simulations as it allows for fully parallel execution of two coupled solvers. Schwarz methods for
steady-state coupled problems may require many iterations to converge; the Anderson acceleration
technique reduces the number of iterations steps. We demonstrate that these features of the Anderson
acceleration also hold for LBNS coupling. We further show that our hybrid LBNS method can be
used to efficiently solve flow problems with complex geometries, such as the flow through and
around porous media. In particular, both LB and NS can be combined to optimally exploit LB and NS
features, that is to reduce memory footprint (NS) while applying the local LB algorithm only in selected
regions of interest on a potentially refined grid. This is similar to the idea of LB grid refinement; yet,
this approach does not only refine the resolution, but also the model for the fluid flow by combining
mesoscopic (LB) and continuum (NS) approaches. Besides, capturing different flow physics by using
an efficient LBNS coupling may be enabled. For example, the mesoscopic nature of LB allows to access
finite Knudsen flows for regimes up to Kn ∼ O(1) [22,23], potentially using higher-order LB velocity
space discretizations. Flows in micro-devices such as microfluidic networks may thus be simulated
using a NS solver in wider bulk regions and a LB solver in narrow regions. Another mesoscopic feature
of LB consists in the strictly local treatment of Brownian fluctuations [24] which is basically impossible in
the (incompressible) NS context.

We start with a short introduction to LB and NS solvers and a description of the three coupling
methods in Section 2. Implementation of the coupling, validation results and a numerical convergence
study of the Anderson acceleration scheme are provided in Section 3. We close with a brief conclusion
and give an outlook to future work in Section 4.

2. Materials and Methods

2.1. Navier–Stokes

We solve the three-dimensional incompressible Navier–Stokes equations

∇ · u = 0 (1)

∂tu + (u · ∇)u = −∇p + ν∆u (2)

with fluid velocity u ∈ R3, pressure p ∈ R and kinematic viscosity ν ∈ R+. We apply the finite
difference methodology described in [25]. The computational domain is discretized using a Cartesian
grid. The unknowns for pressure and fluid velocity are stored according to a staggered scheme: the
pressure is evaluated in the cell centers whereas the velocity components u = (u0, u1, u2) are computed
in the midpoints of the cell faces. A mix of first- and second-order finite differences is employed to
discretize the differential expressions in Equations (1) and (2); the first-order expressions are used to
enhance stability due to the convection term. An explicit time stepping for the velocities and making
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use of the continuity Equation (1) results in a Poisson equation for the pressure to be solved in each
time step. The complete method is outlined in Algorithm 1.

Algorithm 1 Navier–Stokes time stepping scheme
while tn < tend do

set boundary conditions
assemble right hand side of Poisson equation
solve Poisson equation (→ pn+1)
do time step for velocities (→ un+1)
n← n + 1

end while

2.2. Lattice Boltzmann

We consider the Bhatnagar-Gross-Krook (BGK)-based [26] Lattice Boltzmann method which
computes the particle distributions fi(x, t) according to the well-known “collide-stream” scheme:

fi(x + cidt, t + dt) = fi(x, t)−
1
τ

(
fi(x, t)− f eq

i (ρ(x, t), u(x, t))
)

, i = 1, ..., Q. (3)

Fluid density ρ ∈ R, pressure p ∈ R, momentum ρu ∈ R3 and equilibrium distributions f eq
i are

given by

ρ(x, t) =
Q

∑
i=1

fi(x, t) (4)

p(x, t) = c2
s ρ(x, t) (5)

ρu(x, t) =
Q

∑
i=1

fici (6)

f eq
i (ρ, u) = wiρ

(
1 +

ciu
c2

s
+

(ciu)2

2c4
s
−

u2

2c2
s

)
(7)

where cs := 1/
√

3 and wi are lattice-specific weights. We consider the discretizations D3Q15, D3Q19
and D3Q27, i.e., Q ∈ {15, 19, 27}. The relaxation time τ is related to the kinematic viscosity of the
fluid via ν = c2

s (τ − 0.5) and is restricted to the interval (0.5, 2) due to stability. It can be shown that
the presented Lattice Boltzmann scheme is asymptotically equivalent to solving the Navier–Stokes
equations in the weakly compressible limit [27].

2.3. Coupling Strategies

2.3.1. Spatial Coupling: General Methodology

Domain Decomposition, Interpolation and Unit Conversion

We decompose the computational domain into a LB and NS domain. Both domains overlap,
see Figure 1; with LB and NS solver operating on Cartesian grids of mesh size dxLB, dxNS, the thickness
of the overlap region is chosen as dxovlp := k ·max{dxLB, dxNS}, k ∈ N, k ≥ 1.

We have found that the size of the overlap region is a rather insensitive parameter in the coupling.
Only for k = 1, minor deficiencies in the overall accuracy and coupling convergence could be observed.
In all our studies, we choose k = 2 as compromise between minimizing the overlap region on the
one hand and tightly coupling flow information of both solvers on the other hand. We expect the
application of Cartesian grids—in particular on NS side—to be no strict requirement. Different grids
and solvers (such as finite volume or finite element schemes) may be used, and (the thickness of) the
overlap region needs to be adapted correspondingly.
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Inlet Outlet ΩNS

ΩLB

ΩOvlp

Figure 1. Decomposition of the computational domain into subdomains ΩNS and ΩLB for the NS and
LB solver, and an overlap region ΩOvlp.

We construct valid information on the outer overlap boundary cells of LB/NS using second-order
interpolation, applied to the NS/LB quantities, see Figure 2.

NS cell in the
overlap region

NS velocity 
component

NS pressure

LB cell
center

Interpolated
LB cell

NS Velocity

LB Cell center

NS Interpolated
Velocity

NS Boundary condition
Imposed Pressure

(a) (b)

Figure 2. Grids and interpolation rules. (a) Interpolation of LB values. The outer red-colored nodes
correspond to the LB boundary layer. The surrounding NS values in- and outside the (gray-colored)
overlap region are used to interpolate density, velocity and shear stresses on these LB nodes;
(b) Interpolation of NS values. The LB nodes marked as red crosses are used to interpolate the
velocity values at the marked green locations of the staggered NS grid.

Since NS and LB solver work at different units, velocity and pressure values as well as kinematic
viscosity need to be matched. Given a kinematic viscosity ν, characteristic velocity uc and pressure pc

on NS side, LB values are computed as follows:

νLB = ν ·
dtLB

dxLB2

uLB
c = uc ·

dtLB

dxLB

pLB
c = pc ·

dtLB2

dxLB2

(8)

where dxLB, dtLB correspond to LB mesh size and time step.

From Lattice Boltzmann to Navier–Stokes

Dirichlet velocity boundary conditions are constructed from LB values and are imposed to the
NS solver. LB velocity values are interpolated at the NS staggered grid nodes and scaled to NS units
(based on Equation (8)). The Dirichlet velocity boundary conditions yield homogeneous Neumann
conditions for the pressure [25].
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From Navier–Stokes to Lattice Boltzmann

The number of unknown distributions fi, i = 1, ..., Q, is larger than the number of known
quantities (pressure, velocity, fluid stresses) on Navier–Stokes side, Q > 1 + 3 + 6. Various approaches
to construct the distributions from pressure, velocity [28] and stresses [11,29] have been proposed.
We apply the optimization-based approach from [10,11] to obtain a unique set of distributions.
Each distribution function is split into equilibrium and non-equilibrium part, fi = f eq

i (ρLB, uLB) + f neq
i .

To compute f eq
i , the LB density and velocity are determined from the known NS pressure and

velocity values by second-order interpolation and scaling (see Equation (8)). The NS pressure is
not necessarily fixed, but may be shifted by an arbitrary constant throughout the whole computational
domain. We introduce a reference pressure pre f which is given by the pressure value at the outlet
(in a respective channel scenario). We set this pressure value to zero, pre f = 0. We note that an
alternative approach consists in choosing pre f as average of the pressure values in the LBNS overlap
region [9]; both approaches showed same performance and comparable accuracy in our simulations.
The LB density ρLB is computed from

ρLB = 1 +
pLB − pLB

re f

c2
s

pre f =pLB
re f =0

= 1 +
pLB

c2
s

. (9)

The non-equilibrium parts f neq
i are minimized while retaining the viscous stresses at the LBNS

interface. The arising minimization problem reads:

min
f neq∈RQ

∑
i

(
f neq
i
wi

)2

such that

∑
i

f neq
i = 0

∑
i

f neq
i ciα = 0 ∀α ∈ {1, ..., 3}

∑
i

f neq
i ciα ciβ

= −c2
s τ
(

∂xβ
uLB

α + ∂xα uLB
β

)
∀α, β ∈ {1, ..., 3}.

(10)

This approach is similar to the one taken by entropic LB schemes and Grad’s approximation
techniques [30]. In contrast to the regular asymptotic Chapman–Enskog expansion of LB towards the
Navier–Stokes systems, the right hand side of the last side constraint from Equation (10) is normalized
by the fluid density ρLB to match the incompressible NS description. The minimization problem
can be solved analytically by the method of Langrange multipliers and yields a unique solution.
This solution is computed from a cell-local, computationally cheap matrix-vector product; the input
vector corresponds to the right hand side of the side constraints in Equation (10).

2.3.2. Sequential Coupling

A standard approach to solve steady-state coupled problems is given by Schwarz coupling [31],
cf. Algorithm 2. Both LB and NS solver are executed alternately using the other solver’s data as
boundary conditions. When steady-state is reached, boundary data is extracted and imposed to the
other solver, which is subsequently iterated until it reaches steady-state. This alternation is continued
until the global solution has converged. Since LB and NS solver need to be executed one after the other,
we refer to this method as sequential coupling.

Let tLB/NS
par/seq denote the time-to-solution for LB/NS solver in one particular coupling cycle in

sequential mode, where par/seq stand for the parallelizable and strictly sequential parts of the
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underlying program. We assume that both solvers are executed on the same processes. The total
time-to-solution tsol

seq for the sequential coupling using M processes evolves at

tsol
seq =

tLB
par + tNS

par

M
+ tLB

seq + tNS
seq . (11)

Algorithm 2 Sequential Schwarz coupling
while global solution not converged do

while LB not at steady-state do

solve LB
end while
send data from LB to NS and init boundaries
while NS not at steady-state do

solve NS
end while
send data from NS to LB and init boundaries

end while

2.3.3. Parallel Coupling

A simple parallel coupling strategy arises from strictly processing both solvers simultaneously as
shown in Algorithm 3.

Algorithm 3 Parallel Schwarz coupling
while global solution not converged do

send data from LB/NS to NS/LB and init boundaries
while LB and NS not at steady-state do

solve LB and NS simultaneously
end while

end while

This results in the approximate time-to-solution

tsol
par = max

{
tLB

par

MLB + tLB
seq,

tNS
par

MNS + tNS
seq

}
, (12)

where MNS, MLB denote the number of processes used simultaneously for NS and LB. If the numbers
of processes MLB, MNS are chosen such that the computational loads of both solvers are perfectly
balanced, i.e.,

tLB
par

MLB + tLB
seq

!
=

tNS
par

MNS + tNS
seq , (13)

and that all computational resources M are used,

M !
= MLB + MNS, (14)

we obtain

tsol
par =

tNS
par

M−MLB + tNS
seq . (15)
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Inserting Equations (13)–(15) into Equation (11) yields a comparison of perfectly balanced parallel
and sequential coupling:

tsol
seq = tsol

par +
MLB

M
tNS
seq +

(
1−

MLB

M

)
tLB
seq. (16)

The runtime per coupling cycle of the sequential coupling is thus always slower than in the
parallel coupling. Determining the perfect splitting MNS, MLB for each coupling cycle, however,
is difficult: computational loads may significantly vary between coupling cycles, and dynamic load
balancing is required. Furthermore, the NS/LB solver uses “old” data from the LB/NS solver as
boundary input in case of the parallel coupling. The number of coupling cycles needs to be doubled
compared to sequential coupling to achieve the same level of convergence.

2.3.4. Anderson Accelerated Coupling

Convergence of the sequential and parallel coupling can be accelerated by applying a fixed-point
correction to the interface values, like the Anderson acceleration method [19,21]. For fluid-structure
interaction problems, we showed that both sequential and parallel coupling result in nearly the same
convergence order if an Anderson acceleration is applied [32]. The parallel Anderson accelerated
coupling thus allows to simultaneously solve both problems, while not degrading the convergence
order. We therefore restrict our considerations in this section to the parallel coupling, see Algorithm 4.

Algorithm 4 Parallel Anderson accelerated coupling
while global solution not converged do

send data from LB/NS to NS/LB and init boundaries
while LB and NS not at steady-state do

solve LB and NS simultaneously
end while
perform Anderson acceleration with LB and NS data

end while

Let NS, LB denote operator representations of the LB and NS solver, acting only on the
overlap region:

NS : uLB
ovlp 7→ (uNS

ovlp, pNS
ovlp), LB : (uNS

ovlp, pNS
ovlp) 7→ uLB

ovlp.

with uLB/NS
ovlp , pNS

ovlp denoting the vectors of all velocity and pressure values in the overlap region that are

calculated by the LB/NS solver. Thus, NS imposes uLB
ovlp as boundary condition (cf. Section 2.3.1) and

iterates the NS domain until steady-state. Afterwards, the velocity and pressure values from the NS
solver in the overlap region are returned. LB imposes pNS

ovlp, uNS
ovlp and arising stress terms as boundary

condition (cf. Section 2.3.1), iterates the LB solver until steady-state and returns uLB
ovlp. The output of

each solver is, therefore, solely determined by the values in the overlap region. Steady-state of the
coupled LBNS system is reached, when the parallel fixed-point equation(

0 NS
LB 0

)(
(uNS

ovlp, pNS
ovlp)

uLB
ovlp

)
=

(
(uNS

ovlp, pNS
ovlp)

uLB
ovlp

)
(17)

is fulfilled. For simplification, we abstract Equation (17) to the classical fixed-point equation notation

H : Rn → Rn, H(x) !
= x. The parallel coupling of Section 2.3.3 corresponds to a simple fixed-point

iteration of this fixed-point equation, i.e., xk+1 = H(xk). In this section, we accelerate the fixed-point
iteration. To this end, in each iteration, the Anderson acceleration computes a least-squares optimal
extrapolation based on the history of in- and output values x, x̃ := H(x). Please note, that the
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extrapolation only modifies the coupling variables in the overlap regions. Inner variables of both
solvers are not changed during the acceleration. Furthermore, we are free to decide which coupling
variables, uLB/NS

ovlp and pNS
ovlp, we include in the vector x and, thus, in the acceleration. We call such

coupling variables primary variables of the coupling. Secondary variables are coupling variables that
are not part of the fixed-point equation, and are deduced from the same linear combination with
coefficients α. Algorithm 5 gives a formal description.

Algorithm 5 Anderson acceleration in pseudocode

k = 0, initial value xk, x̃k = H(xk), and Rk = x̃k − xk

xk+1 = xk + R0

while fixed-point iteration (global solution) not converged do

k = k + 1

// send data from LB/NS to NS/LB and solve LB/NS simultaneously
x̃k = H(xk) and Rk = x̃k − xk

// perform Anderson acceleration
Vk = [∆Rk

0, . . . , ∆Rk
k−1] with ∆Rk

i = Ri − Rk

Wk = [∆x̃k
0, . . . , ∆x̃k

k−1] with ∆x̃k
i = x̃i − x̃k

decompose Vk = QkUk

solve the first k lines of Ukα = −QkT Rk

∆x̃ = Wα
xk+1 = x̃k + ∆x̃k

end while

3. Results

3.1. Implementation

We implement the different coupling approaches in the Advanced Scientific Computing
Development Toolkit (ASCoDT) [33], a specialized component-based architecture. Optimized for
HPC applications, the component architecture supports multiple component multiple data (MCMD)
parallelization, where each parallel application is a component on its own. The LB solver, NS solver and
coupling scheme are each modeled as a component and are implemented in C++. For the realization
of parallel components, we attach multiple instances of a server responsible for handling incoming
connections and interaction calls from other components. The data exchange is established via parallel
request-based data communication [34].

The LB solver is given by a 3D test implementation using standard domain decomposition for
distributed memory execution.

For solving the NS system, we rely on the in-house code NS-EOF. It uses a modular
design separating Cartesian grid data structures, domain decomposition handling, grid traversal,
and cell-wise (stencil-like) operator evaluations. The pressure Poisson equation is solved using PETSc,
version 3.3 [35].

The implementation of the coupling component, in particular the Anderson acceleration,
is realized by reusing a module of preCICE, a coupling library particularly designed for fluid-structure
interaction [36].
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3.2. Validation: Optimization-Based LB Boundary Conditions

Given pressure/density, velocity and fluid stresses, we use the cell-local optimization-based
boundary condition on LB side to specify the respective NS values. We validate this boundary treatment
for the discretizations D3Q15, D3Q19, D3Q27 in three different scenarios of type “flow between two
parallel infinite plates”, as illustrated in Figure 3. In all three setups, a cubic domain is considered,
consisting of 10× 10× 10 inner cells and one additional layer of boundary cells. We impose a parabolic
velocity profile and linear pressure drop in the boundary cells of the cube: pressure, velocity values
and stresses are specified as required by the optimization problem, cf. Equation (10). We consider a
coordinate system aligned with the Cartesian LB grid. The setups are defined as follows:

• Normal: the LB grid is aligned with the plates and the main flow direction, cf. Figure 3a. The main
flow direction is thus given by (1, 0, 0)>.

• Diagonal: the LB grid is rotated 45◦ away from the main flow axis and kept aligned with the plates,
cf. Figure 3b. The main flow direction is hence parallel to (1, 1, 0)>.

• Bi-Diagonal: the LB grid is rotated such that only one corner is placed on each boundary plane,
cf. Figure 3c. The main flow direction is aligned with (1, 1, 1)>, the normal of the plates is given

by ±
√

6
−1

(1,−2, 1)>.

The LB viscosity is set to νLB = 1/6. The avg. inlet velocity is given by uLB = 0.05 for Normal and
Diagonal, and by uLB = 0.05 ·

√
6

4 for Bi-Diagonal to retain the same Reynolds number as in the other
two setups. After reaching steady-state, the profiles of the velocity and the shear stress expression
S12 := ∑

i
f neq
i ci1 ci2 along the channel cross-section through the center point of the cubic simulation

domain are evaluated.

(a) (b) (c)

Figure 3. Test setups for the optimization-based boundary treatment in the LB solver. The blue region
corresponds to the Cartesian grid-based computational domain used by the LB solver, the direction of
the parabolic flow profile is sketched on the left side of the gray plates. (a) Setup Normal; (b) Setup
Diagonal; (c) Setup Bi-Diagonal.

The results for the different LB discretizations are shown in Figure 4. For all discretizations,
both velocity and shear stress are captured correctly. The same holds for the linear pressure drop
(not shown in Figure 4).
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Normal Diagonal Bi-Diagonal
D3Q15: Velocity

D3Q15: Shear stress S12

D3Q19: Velocity

D3Q19: Shear stress S12

D3Q27: Velocity

D3Q27: Shear stress S12

Figure 4. Velocity and stress profiles in setups Normal, Diagonal, Bi-Diagonal for discretizations D3Q15,
D3Q19, D3Q27. The best approximation “Lin. Fit” matches the analytic solution within a tolerance
of ≤1%. The small oscillations in the setup Bi-Diagonal stem from the evaluation and data extraction
of flow quantities from the Cartesian grid data structure, abstaining from interpolation despite the
consideration of a rotated system.
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3.3. LBNS Validation: Plane Channel

For validation of the coupled scenario, we consider laminar flow in an empty channel. The channel
has a box-like shape, stretching over (lNS

x , lNS
y , lNS

z ) = (4.0× 2.0× 2.0); the lower left front corner is
located at (0, 0, 0). In the NS simulation, the channel is discretized using 40× 20× 20 cells, yielding a
uniform mesh size dxNS = 0.1. The viscosity is set to ν = 1.0. On the left side, an inlet velocity profile

uNS(x, y) = 36
uNS

c
l2
y l2

z
y(y− ly)z(z− lz) (18)

is prescribed, with an average inlet velocity uNS
c = 1.0. Outlet conditions are imposed on the right

side of the channel in form of a fixed pressure, pNS = 0.0. All walls are treated as no-slip boundaries.
A cubic subdomain ranging from (1.0, 0.5, 0.5) (lower left front corner) to (2.0, 1.5, 1.5) (upper right
back corner) is solved by the LB simulation, using a mesh size dxLB = 0.25dxNS = 0.025. The overlap
region is chosen to have a thickness of two NS cells. The relaxation time in the BGK model is chosen
as τ = 1.0.

With the parallel coupling exactly converging 50% slower than the sequential method, we restrict
the considerations to the parallel coupling and the Anderson accelerated coupling. The Anderson
acceleration starts “remembering and reusing” information only after one coupling cycle. Besides,
the LB simulation is initialized at zero velocity and unit density, yielding a significantly different
solution than the channel flow prediction of the NS solver in the first coupling cycle. For these reasons,
we activate the Anderson acceleration after two coupling iterations. The different coupling methods
(parallel/Anderson acceleration) converge towards the same solution, cf. Figure 5. The Anderson
acceleration significantly speeds up the convergence. The velocity profiles are measured along a
cross-section through the coupling region for the different coupling methods. After the first few
iterations, the Anderson acceleration converges significantly faster than the sequential coupling.
The overhead of the Anderson acceleration—compared to the parallel coupling scheme—amounts
in the current (non-optimized) implementation to approx. 63% (computed from the average
computational time over the first 10 coupling cycles). However, only 10–11 Anderson coupling
iterations are required to reach an accurate description of the velocity profile, compared to 35 coupling
iterations in the case of parallel coupling (17–18 coupling iterations in case of sequential coupling,
respectively), cf. Figure 5. Since the Anderson acceleration allows for faster convergence in terms of
coupling iterations and yields a better ratio of parallelizable to purely sequential tasks, we conclude
that Anderson accelerated coupling is a promising candidate for massively parallel LBNS simulations.

(a) (b)

Figure 5. Convergence of the velocity profile at cross-section through empty channel at
(1.5, y · dxNS, 1.0), y ∈ [0, 20], towards steady state. (a) Simple parallel coupling; (b) Anderson
accelerated parallel coupling.
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We further computed the solution using LB everywhere in the channel at the same resolution
dxLB. Figure 6 shows good agreement between the pure LB and LBNS solution for both velocity profile
and linear pressure drop.

(a) (b)

Figure 6. Pressure and velocity profile in channel flow for LB and LBNS. (a) Velocity profile at
cross-section (1.5, y, 1.0), y ∈ [0.0, 2.0]; (b) Pressure profile along centerline of the channel (x, 1.0, 1.0),
x ∈ [0.5, 2.5].

3.4. LBNS: Flow Past Spherical Obstacle

Next, we consider the same channel setup, cf. Section 3.3, and extend it by introducing a spherical
obstacle in the middle of the LB domain. We use the half-way bounce back scheme to treat the
spherical boundary as no-slip obstacle. The sphere is located at (1.5, 1.0, 1.0) and has a radius r = 0.25.
The coupled setup is shown in Figure 7.

Figure 7. Steady-state velocity field for the LBNS scenario for flow past a spherical obstacle. The inner
black-framed box shows the LB simulation domain, the region between inner black- and white-framed
box corresponds to the overlap region.

The three coupling schemes show similar convergence properties compared to the empty channel
scenario, see Figure 8. We further compared the steady-state LBNS solution with the pure LB simulation.
For this purpose, we consider the profiles before (x = 0.5), at (x = 1.5) and behind (x = 3.0) the obstacle
at respective cross-sections. As it can be seen from Figure 9, all profiles are in excellent agreement.
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(a) (b)

Figure 8. Convergence of the velocity profile for channel flow past a spherical obstacle at cross-section
at x = 2.0, y ∈ [0.0, 2.0] towards steady state. (a) Simple parallel coupling; (b) Anderson
accelerated coupling.

(a) (b) (c)

Figure 9. Velocity profile at different cross-sections for channel flow past a spherical obstacle obtained
from LB and LBNS simulations. (a) (0.5, y, 1.0); (b) (1.5, y, 1.0); (c) (3.0, y, 1.0), y ∈ [0, 2.0].

3.5. Anderson Acceleration: Parameter Study

In order to further evaluate the performance of the Anderson acceleration applied to our coupled
simulation (cf. Section 2.3.4), we reconsider the plane channel scenario, cf. Section 3.3. We quantify the
convergence rate using the relative convergence criterion

‖Rk‖2

‖x̃k‖2

!
< εrel. (19)

The criterion is evaluated for each coupling variable individually between two successive
iterations. This yields a zick-zack-like convergence of both LB and NS solver for the parallel coupling,
cf. Figure 10a. Both LB and NS solver converge at the same rate, but convergence is shifted by
one iteration.

To avoid imbalances in the least-squares system of the Anderson acceleration, that is to put more
weight on either LB or NS, we extend the formulation by normalizing the vectors of coupling variables
uNS

ovlp, pNS
ovlp, and uLB

ovlp. Slightly faster convergence is observed for the normalized variants compared
to the original scheme, see Figure 10b. The first zick-zack of the parallel coupling is also visible in
this case, due to the initialization of the coupled setup: zero velocity is initially imposed in the LB
region, and at least one coupling iteration is required to transport flow information from NS into the
LB region. Since this still implies very low velocities in the LBNS overlap, the solution and thus the
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convergence rate are hardly affected. The mean speed of convergence of the normalized Anderson
accelerated coupling is significantly faster than for the parallel coupling, see Figure 10a.
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(a) (b)
Figure 10. (a) Relative convergence criterion of the simple parallel (Jacobi-type) coupling scheme
compared to the Anderson acceleration scheme (normalized, primary: uNS

ovlp, uLB
ovlp, secondary: pNS

ovlp);
(b) Relative convergence criterion of the Anderson acceleration scheme. Normalized coupling variables
are compared to the original values (primary: uNS

ovlp, uLB
ovlp, secondary: pNS

ovlp).

Table 1 lists the number of iterations that different Anderson acceleration approaches need to
converge below a threshold of 10−5 and 10−7. The maximum number of iterations in uNS

ovlp, uNS
ovlp or

pNS
ovlp (shown as bold number in Table 1) dictates the overall number of iterations that are required

for convergence. Similarly, in Table 2, we study the effect of different ratios of Lattice Boltzmann to
Navier–Stokes cells on the convergence rate. Several aspects can be observed in both tables and are
detailed in the following.

Table 1. Influence of normalization and the choice of primary and secondary variables for the Anderson
accelerated coupling. Runs with only one primary coupling variable do not converge. The bold
numbers in columns 4,5 correspond to the absolute number of coupling iterations (maximum of the
given iteration numbers for each coupling variable) to reach convergence. We use dim(uNS

ovlp) = 302580

and dim(uLB
ovlp) = 5760.

Primary Secondary Norm. Iterations till 10−5 Iterations till 10−7

(uNS/uLB
ovlp/pNS

ovlp) (uNS
ovlp/uLB

ovlp/pNS
ovlp)

uNS
ovlp, uLB

ovlp pNS
ovlp no 15 / 13 / 15 23 / 21 / 23

uNS
ovlp, uLB

ovlp pNS
ovlp yes 14 / 15 / 14 20 / 23 / 20

uNS
ovlp, uLB

ovlp, pNS
ovlp - yes 15 / 15 / 15 22 / 23 / 22

pNS
ovlp, uLB

ovlp uNS
ovlp yes 14 / 17 / 14 22 / 24 / 22

Normalizing the vectors of coupling variables has an influence on the convergence speed, and can
shift the bias from the Navier–Stokes to the Lattice Boltzmann variables and vice versa, compare also
Figure 10b. This influence, however, is very limited in this example which is mainly due to the fact
that all coupling variables already live on the same characteristic physical scale. Furthermore, Table 1
shows that the normalization is not necessarily the optimal balance. Due to its very limited influence,
we omit further detailed studies here.

If only coupling variables of one solver are considered, the coupling information is incomplete,
and the overall scheme does not converge in this case.
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Consider Table 1. Introducing pNS
ovlp as a third primary coupling variable does not imply faster

convergence. Apparently, this does not result in new information compared to uNS
ovlp. We can even

observe a slight decrease in the overall convergence due to an imbalance in LB and NS information
within the least-squares system.

Consider Table 1. If pNS
ovlp is used as a primary variable instead of uNS

ovlp, we observe a slightly
slower convergence. This substitution, however, reduces the size of the least-squares system by a
factor of ∼3 (the size of the vector uLB

ovlp ∈ R5760 is much smaller than the size of uNS
ovlp ∈ R302580 in this

example).
Consider Table 2. The ratio of of Lattice Boltzmann and Navier–Stokes cells in the overlap region

has no significant influence on the convergence behavior.

Table 2. Influence of the ratio, and of the normalization on the convergence behavior of the Anderson
accelerated coupling. All runs use uNS

ovlp and uLB
ovlp as primary variables, and pNS

ovlp as a secondary
variable. The mesh is coarsened by a factor of two compared to the results in Table 1. The bold numbers
in columns 5,6 correspond to the absolute number of coupling iterations (maximum of the given
iteration numbers for each coupling variable) to reach convergence.

Ratio dim(uNS
ovlp) dim(uLB

ovlp) Norm. Iterations till 10−5 Iterations till 10−7

(uNS
ovlp/uLB

ovlp/pNS
ovlp) (uNS

ovlp/uLB
ovlp/pNS

ovlp)

1 10080 460 no 9 / 9 / 9 12 / 13 / 12
1 10080 460 yes 8 / 10 / 8 12 / 13 / 16
2 34980 460 no 10 / 7 / 10 13 / 11 / 13
2 34980 460 yes 8 / 10 / 8 12 / 14 / 13
4 129780 460 no 11 / 7 / 10 14 / 13 / 17
4 129780 460 yes 8 / 11 / 8 13 / 15 / 17
8 499380 460 no 11 / 7 / 11 16 / 14 / 16
8 499380 460 yes 8 / 11 / 8 14 / 15 / 14

We conclude from this parameter study that the usage of the two velocity vectors uNS
ovlp and uLB

ovlp

as primary variables is recommended. A substitution of uNS
ovlp by pNS

ovlp can be useful for scenarios,
where the size of the least-squares system matters, i.e., scenarios with a big overlap region compared to
the overall domain. The normalization of coupling variables as well as the ratio between the number
of Lattice Boltzmann and Navier–Stokes cells have little influence on the convergence behavior.

3.6. LBNS Showcase: Flow in Porous Structures

Finally, we apply the LBNS methodology to flow through a porous structure [5,37,38], pointing out
the applicability of our method to parallel (component-based) simulations with complex geometries.
The setup is shown in Figure 11 and consists of a channel domain Ω of size 32.0× 16.0× 16.0 with
a set of 100 random-sized rigid spheres packed inside a volume ΩLB of 8.0× 8.0× 8.0. This volume,
i.e., its lower left front corner, is located at 8.0 × 4.0 × 4.0. Due to the complex geometry of the
porous medium-like sphere packing, we apply the highly localized LB method in this region ΩLB.
The rest of the channel ΩNS = Ω\ΩLB is solved by NS. We discretize ΩNS with Cartesian grid cells of
equidistant size dxNS = 0.1 and ΩLB with cells of size dxLB = dxNS/4 = 0.025 respectively, resulting
in 320× 160× 160 NS and 321× 321× 321 LB nodes. The fluid parameters are chosen as ν = 1.0 and
τ = 1.0, the avg. inlet velocity is set to uNS

c = 1.0. Ten iterations of the parallel coupling scheme are
carried out using 32 NS processes and 64 LB processes. A visualization of the flow field around and in
the porous structure after the tenth coupling iteration is shown in Figure 12.



Computation 2016, 4, 38 16 of 19

Figure 11. Channel flow with 100 random-sized rigid spherical obstacles forming a porous structure.
The gray and black lines indicate the domain decomposition of NS and LB solver.

(a)

Figure 12. Cont.
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(b) (c)

Figure 12. Visualization of the flow field of the channel flow with porous structure. (a) Flow field of the
whole computational domain; (b) Flow field inside the porous structure; (c) Cut through the velocity
field at y = 8.0 in porous structure. velNS Magnitude corresponds to the magnitude of the velocity in
NS units.

4. Conclusions

We presented a novel spatial coupling method for fully three-dimensional, steady-state
simulations. The method combines Lattice Boltzmann and incompressible Navier–Stokes solvers
and allows to locally exploit the features of each simulation approach. We validated the LB boundary
conditions used in the LBNS overlap region, studied the Anderson acceleration method for LBNS
coupling and compared it to purely sequential and simple Schwarz-based parallel coupling schemes.
All coupling schemes converged in the presented test cases, i.e., plane channel flow and flow past a
spherical obstacle, towards the expected solution. The Anderson acceleration method showed very
good performance in terms of convergence rates which clearly outperformed the sequential and
simple parallel coupling (11 vs. 18/35 coupling cycles, cf. Section 3.3). We currently work towards
incorporating the iterative LBNS coupling into transient LBNS simulations to investigate whether this
approach reduces any compressibility perturbations in the flow field. Besides, more detailed studies
are required in future to evaluate the influence of normalization of the different coupling vectors
(cf. Section 3.5). Although the influence was limited in the presented study, it may become more
significant in case of more complex scenarios, or in case of bigger gradients in the coupling region.

Supplementary Materials: The coupling tool preCICE (including Anderson acceleration) is open source and
available at https://github.com/precice/precice. The Navier–Stokes implementation NS-EOF is hosted at
https://gitlab.lrz.de. For access, please contact Philipp Neumann, philipp.neumann@tum.de.
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Abbreviations

The following abbreviations are used in this manuscript:

LB Lattice Boltzmann
NS Navier–Stokes
PDE Partial differential equation
HPC High-performance computing
BGK Bhatnagar-Gross-Krook
MCMD multiple component multiple data
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