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Abstract: Reaction networks can be simplified by eliminating linear intermediate species in partial
steady states. In this paper, we study the question whether this rewrite procedure is confluent, so that
for any given reaction network with kinetic constraints, a unique normal form will be obtained
independently of the elimination order. We first show that confluence fails for the elimination of
intermediates even without kinetics, if “dependent reactions” introduced by the simplification are
not removed. This leads us to revising the simplification algorithm into a variant of the double
description method for computing elementary modes, so that it keeps track of kinetic information.
Folklore results on elementary modes imply the confluence of the revised simplification algorithm
with respect to the network structure, i.e., the structure of fully simplified networks is unique. We
show, however, that the kinetic rates assigned to the reactions may not be unique, and provide
a biological example where two different simplified networks can be obtained. Finally, we give
a criterion on the structure of the initial network that is sufficient to guarantee the confluence of both
the structure and the kinetic rates.

Keywords: simplification; confluence; reaction network; ordinary differential equations;
deterministic semantics; elementary modes; system biology; rewriting rules

1. Introduction

Chemical reaction networks are widely used in systems biology for modeling the dynamics of
biochemical molecular systems [1–4]. A chemical reaction network has a graph structure that can be
identified with an (unmarked) Petri net [5]. Beside of this, it assigns to each of its reactions a kinetic
rate that models the reaction’s speed. Chemical reaction networks can either be given a deterministic
semantics in terms of ordinary differential equations (ODEs), which describes the evolution of the
average concentrations of the species of the network over time, or a stochastic semantics in terms of
continuous time Markov chains, which defines the evolution of molecule distributions of the different
species over time. In this paper, we focus on the deterministic semantics.

Reaction networks modeling molecular biological systems—see, e.g., the examples in the
BioModels database [6]—may become very large if modeling sufficient details. Therefore, biologists like
to abstract whole subnetworks into single black-box reactions, usually in an adhoc manner that ignores
kinetic information [7,8]. The absence or loss of kinetic information, however, limits the applicability
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of formal analysis techniques. Therefore, much effort has been spent on simplification methods for
reaction networks that preserve the kinetic information (see [9] for an overview).

The classical example for a structural simplification method is Michaelis-Menten’s reduction of
enzymatic networks with mass-action kinetics [10]. It removes the intermediate species—the complex
C and enzyme E—under the assumption that their concentrations C(t) and E(t) are quasi steady,
i.e., approximately constant for all time points t after a short initial phase. Segel [11] shows how to infer
Michaelis-Menten’s simplification from the assumptions that C(t) is constant and that the conservation
law C(t) + E(t) = E(0) holds. This is equivalent to our exact steadiness assumption for both C(t)
and E(t).

S + E
k1SE


k2C

C
k3C−−→ P + E simplifies to S

k3(E(0)+C(0)) S
k2+k3

k1
+S

−−−−−−−−−−−−−→ P

The ODEs for C inferred from this network jointly with exact steady state assumptions for
C and E entail that the concentration of substrate S must be constant too, even if the network
is used in a bigger context where the intermediate C is neither produced nor consumed. In the
literature, this consequence is usually mentioned but ignored when considering the production rate of
product P as a function of the concentration of S for the enzymatic network in isolation (see e.g., [12]).
This oversimplification can be avoided when studying the enzymatic network in the context of a larger
network. For instance, the steady state assumptions for C, E, and thus S can be satisfied in the context

of the reaction network with the reaction ∅
k4−→ S which produces S with constant speed k4, and the

reaction P
k5P−−→ ∅ which degrades P with mass-action kinetics with rate constant k5. In this context,

the concentration of P will saturate quickly under exact steady state assumptions for C, E, and thus
S, as illustrated in Figure 1, while in other contexts it may grow without bound or even oscillate.
The Michaelis-Menten simplification of the enzymatic network indeed preserves the dynamics of
a network in any context which does not produce nor consume the intermediates E and C, under the
assumption that E and C are exactly in steady state with respect to the network in the context.
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Figure 1. Evolution of the concentration of S, E, C and P in enzymatic network with mass-action
kinetics with the parameters k1 = k2 = k3 = 1, the initial concentrations E(0) = 1, C(0) = 2, S(0) = 4,

P(0) = 0, and in the context of the network with a reaction ∅
k4−→ S which produces S with constant

speed k4 = 2, and a reaction P k5P−−→ ∅ which degrades P with parameter k5 = 0.2.

Whether exact steady state assumptions are realistic is an interesting question since the
concentrations may be at most close to steady in practice. In the literature it has been argued that the
Michaelis-Menten simplification yields a good approximation under appropriate conditions [11,13,14],
which typically depend on the context. Whether such properties can be extended to more general
simplification methods as developed in the present article is an interesting question but out of the
scope of the paper.
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Alternatively, much work was spent on simplifying the ODEs inferred from a given reaction
network [15,16], rather than the reaction network by itself. Indeed, any structural simplification method
on the network level, that preserves the kinetic information with respect to the deterministic semantics,
must induce a reduction method on the ODE level. The opposite must not be true, since some ODEs
may not be derivable from any reaction network or may be inferred from many different ones [17].
Furthermore, it is not clear what it could mean for an ODE simplification method to be contextual.
Therefore, ODE simplification alone cannot be understood as a simplification of biological systems.

A general structural simplification algorithm for reaction networks with deterministic semantics
was first presented by Radulescu et al. They proposed yet another method [18] for simplifying
reaction networks with kinetic expressions in partial steady states. Their method assumes the same
linearity restriction considered in this paper, preserves exactly the deterministic semantics, but uses
different algorithmic techniques. Their simplification algorithm is based on a graph of intermediate
species. It computes cycles for simplifying the network structure rather than on elementary modes,
and spanning trees for simplifying the kinetic expressions. A set of intermediate species is eliminated
in one step, leading to a unique result, that is included in the results found with the algorithm of the
present paper. We have not understood yet what distinguishes this result from the others obtained
with our algorithm; a clarification of this point might shed light on the relationship between the
two methods. In the same paper, the authors also observe that applying the method iteratively to
intermediates one by one leads to different results even with different structure. The reason is that
dependency elimination is lost in this manner.

A purely structural simplification algorithm method for reaction networks without kinetic rates
was proposed in [19]. The method allows to remove some intermediate species by combining the
reaction producing and consuming them. For instance, one can simplify the network with the following
two reactions on the left into the single reaction on the right, by removing the intermediate species B:

A1 + . . . + An AB
BAC1 + . . . + Cm

}
simplifies to A1 + . . . + An AC1 + . . . + Cm

Since no partial steady state assumptions can be imposed in a kinetics free framework,
the intermediate elimination rules need some further restrictions. Given these, the simplification
steps were shown correct with respect to the attractor semantics. contextual equivalence relation was
obtained by instantiating the general framework for observational program semantics from [20].
Rather than being based on termination as observable for concurrent programs, it relies on the
asymptotic behaviours of the networks represented by the terminal connected components, which are
often called attractors.

Outline

We first recall some basic notions on confluence, multisets, and commutative semigroups in
Section 2. In Section 3 we recall the basics on reaction networks without kinetics and elementary flux
modes. In Section 4, we present the rewrite rules for intermediate elimination, illustrate the failure of
confluence, and propose a rewrite rule for eliminating dependent reactions, which however turns out to
be non-confluent on its own. In Section 5 we present the refined algorithm in the case without kinetics
based on the notion of flux networks for representing reaction networks, and prove its confluence by
reduction to a folklore result on elementary flux modes. In Section 6, we introduce reaction networks
with kinetic expressions, and extend them with kinetic constraints. In Section 7, we lift the revised
algorithm to constrained flux networks with kinetics. In Section 8 we present a linearity restriction, that
is preserved by reductions, and thus structurally confluent. In Section 9, we present a counter example
that shows that full confluence is still not achieved, and present a further syntactic restriction based on
elementary modes avoiding this problem. Section 10 provides a biological example of non-confluence
with kinetics. Section 11 studies the relation between the simplification and the underlying ODEs
simplification. Finally, we conclude in Section 12.
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2. Preliminaries

We recall basic notions on confluence of binary relations, on multisets, and more general
commutative semigroups. We will denote the set of all natural numbers including 0 by N and
the set of integers by Z.

2.1. Confluence Notions

We recall the main confluence notions and their relationships from the literature.
Let (S,∼) be a set with an equivalence relation and→ ⊆ S× S a binary relation. In most cases,

∼ will be chosen as the equality relation of the set S, which is =S= {(s, s) | s ∈ S}. We define→0 = ∼
and→k =→ ◦ →k−1 for all k ∈ N \ {0}. The relation→∗ = ∪k∈N →k is called the reflexive transitive
closure of→.

Definition 1. We say that a binary relation → on (S,∼) is confluent if ←∗ ◦ →∗ ⊆ →∗ ◦ ∗← and
locally confluent if ← ◦ → ⊆ →∗ ◦ ∗←. We say that two binary relations ⇒ and → on S commute if
⇐ ◦ → ⊆→ ◦ ⇐.

The confluence notions are illustrated by the diagrams in Figure 2. Clearly, a confluence of relation
→ is confluent if its reflexive transitive closure→∗ commutes with itself. It is also obvious that local
confluence implies confluence, and well known that the converse does not hold. In this paper, we will
always use binary relations that are terminating, i.e., for any s ∈ S there exists a k ∈ N such that
{s′ | s →k s′} = ∅, i.e., the length k of sequences of reduction steps starting with s is bounded. It is
well known that locally confluent and terminating relations are confluent (Newman’s lemma).

s

s1 s2

s′

∗ ∗

∗ ∗

s

s1 s2

s′
∗ ∗

s

s1 s2

s′

Figure 2. Confluence, local confluence, and commutation.

Lemma 1. If a binary relation → on (S,∼) is confluent and commutes with ∼, then the binary relation
∼ ◦ → ◦ ∼ on (S,=S) is confluent.

Definition 2. Let (S,∼,→) and (S′,≈,⇒) be two sets each endowed with two binary relations. A function
T : S → S′ is called a simulation from (S,∼,→) to (S′,≈,⇒) if for any s1, s2 ∈ S, if s1 ∼ s2 then
T(s1) ≈ T(s2), and if s1 → s2 then T(s1)⇒ T(s2).

The conditions that have to be satisfied by simulations are illustrated by the diagrams in Figure 3.

s1 s2

T(s1) T(s2)

∼

≈

T T

s1 s2

T(s1) T(s2)

T T

Figure 3. Simulation diagrams.
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2.2. Multisets

Let R be a finite set. A multiset M with elements in R is a function M : R → N. For any r ∈ R
we call M(r) the number of occurrences of r in M. We say that r is a member of multiset M and write
r ∈ M if M(r) 6= 0. We denote byMR the set of all multisets (over R), and will simply writeM if the
set R is clear from the context.

Given numbers k, n1, . . . , nk ∈ N and a subset {r1, . . . , rk} ⊆ R with k different elements,
we denote by M = n1r1 + · · ·+ nkrk = ∑n

i=1 niri the multiset that for any 1 ≤ i ≤ k contains M(ri) = ni
occurrences of ri and M(r) = 0 occurrences of all other elements in R.

The sum of two multisets M1 +
M M2 is the multiset M that satisfies M(r) = M1(r) +N M2(r)

for all r ∈ R. The empty multiset 0M is the function that maps all elements of R to 0. The algebra of
multisets (M,+M, 0M) over a given set R is a commutative semigroup with a neutral element.

It should be noticed that our notation may give rise to some ambiguities, since we will also write
+ for the addition of natural numbers instead of +N. This may be problematics if R = N. In this case,
the notation introduced below we will permit us to write (n1r1 + · · ·+ nkrk)

M = (∑n
i=1 niri)

M for
sums of multisets and (n1r1 + · · ·+ nkrk)

N = (∑n
i=1 niri)

N for sums of natural numbers.

2.3. Commutative Semigroups

Let (G,+G , 0G) and (F ,+F , 0F ) be two semigroups with neutral element. Beside of the algebras
of multisets (depending on the choice of R) we are interested in the algebra of vectors of naturals
(Nn,+Nn

, 0N
n
) for any n ∈ N.

A homomorphism between two semigroups is a function h : G → F such that h(g1 +
G g2) =

h(g1) +
F h(g2) for all g1, g2 ∈ G and h(0G) = 0F . A homomorphism h : MR → F on multisets is

determined by the values of h on singleton multisets inMR via the equation:

h(n1r1 + . . . + nkrk) = h(1r1) +
F . . . +F h(1r1)︸ ︷︷ ︸
n1 times

+F . . . +F h(1rk) +
F . . . +F h(1rk)︸ ︷︷ ︸
nk times

.

Given a homomorphism h :MR → F , we define the interpretation MF = h(M) for all multisets
M ∈ MR. Clearly, the interpretation depends on the homomorphism h, even though only its
co-domain F appears in our notation. This works smoothly since there will never be any ambiguity
about the homomophism that is chosen. If R = F , then we use the homomorphism evalF :MF → F
with evalF (1 f ) = f for all elements f ∈ F . In this case, any multiset n1 f1 + . . . + nk fk with elements
in F is evaluated to a single element (n1 f1 + . . . + nk fk)

F = evalF (n1 f1 + . . . + nk fk) and thus by the
above equation:

(n1 f1 + . . . + nk fk)
F = f1 +

F . . . +F f1︸ ︷︷ ︸
n1 times

+F . . . +F fk +
F . . . +F fk︸ ︷︷ ︸
nk times

.

If F =MR then we use the identity homomorphism idMR :MR →MR with idMR(M) = M for
all M ∈ MR. In this case we have that (n1r1 + . . . + nkrk)

MR = n1r1 + . . . + nkrk is the multiset itself.
We will also use this notation in order to distinguish the operator + of multisets inMN from

the operator + of natural numbers in N which we overloaded (as stated earlier). For instance,
if n, m ∈ N, then (2n + 5m)MN is a multiset of natural numbers while (2n + 5m)N is a natural number.
Note also that different multisets may have the same interpretation. For instance if n = 3 and
m = 4, then (2n + 5m)N = 26 = (n2 + m5)N where we use evalN as homomorphism while
(2n + 5m)MN 6= (n2 + m5)MN where we use idMN as homomorphism.

For any subset G ⊆ G of a semigroup, we can define the (positive integer convex) cone of G,
as the set of all positive integer linear combinations of elements of G:
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cone(G) = {(n1g1 + ... + nkgk)
G | k ∈ N, g1...gk ∈ G, n1...nk ∈ N}.

Here we use evalG as homomorphism.

3. Reaction Networks without Kinetics

Let Spec be a finite set of species that is totally ordered. A (chemical) solution with species in
Spec is a multiset of species s : Spec → N. A (chemical) reaction with species in Spec is a function
r : Spec → Z, which assigns to each species A the stoichiometry of A in r. A chemical reaction
r consumes the chemical solution Consr = −r|{A∈Spec|r(A)<0} and produces the chemical solution
Prodr = r|{A∈Spec|r(A)>0}. Clearly r(A) = Prodr(A) − Consr(A) for all species A, while Consr and
Prodr are disjoint multisets in chemical reactions r (since their definition is based on stoichiometries).

We will freely identify a reaction r with the pair of chemical solutions consumed and produced
by r. We will denote such pairs as Consr AProdr. For instance, B + 2C AA is the chemical
reaction r with r(A) = 1, r(B) = −1, and r(C) = −2. Note also that we do not consider
2A + BA3A + 2C as a chemical reaction, since the species A belongs to the chemical solutions on both
sides. When removing 2A on both sides, we obtain a chemical reaction BAA+ 2C. The rewrite relation
of a chemical reaction r contains all pairs of chemical solutions (s, s′) such that s′(A) = s(A) +N r(A)

for all species A.

Definition 3. A reaction network (without kinetics) over Spec is a finite set of chemical reactions over Spec,
with a total order.

To any reaction network N with total order < we assign a unique vector of reactions r =

(r1, . . . , rn) such that N = {r1, . . . , rn} and r1 < . . . < rn. Conversely, for any tuple of distinct reactions
r = (r1, . . . , rn), we write Nr for the reaction network {r1, . . . , rn} with the total order r1 < . . . < rn.

Any reaction network can be represented by a bipartite graph as for a a Petri net, with a node
for each species and a node of a different type for each reaction. We will draw species nodes with
ovals and reaction nodes with squares. An arrow labeled by k from the node of a species A to the
node of a reaction r means that A is consumed k times by r, i.e., r(A) = −k. Conversely, an arrow with
label k from the node of a reaction r to the node of a species A means that A is produced k times by r,
i.e., r(A) = k. We will freely omit the labels k = 1.

Example 1. Consider the reaction network presented in Figure 4. It has m = 2 species Spec = {X, Y} and
n = 4 reactions {r1, . . . , r4} in that order. Reaction r1 produces two molecules of species X out of nothing,
reaction r2 transforms an X into a molecule Y, while r3 transforms a molecule Y back into a molecule X.
Reaction r4 degrades a molecule X.

The set of chemical reactions defines an algebra (R,+R, 0R) where 0R is the empty reaction A,
and +R is the addition of integer valued functions on Spec. Note that s′As +R sAs′ = 0R for any
two disjoint chemical solutions s and s′. By interpretation in this algebra (that is using the identity
homomorphism), we can evaluate each multiset of chemical reactions M as a chemical reaction MR

itself, as shown in Section 2.2.

Definition 4. An invariant of a reaction network N without kinetics is a multiset M of reactions of N such
that MR = 0R. We denote the set of all invariants of N by inv(N).

The reaction network in Figure 4 has the set of invariants {(n1M1 + n2M2)
M | n1, n2 ∈ N} where

M1 = r1 + 2r4 and M2 = r2 + r3. We next relate the notion of invariants of a reaction network to the
kernel of its stoichiometry matrix.
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r1 = A2X
r2 = X AY
r3 = Y AX
r4 = X A

X

Y

r1

r2

r3

r4

2  r1 r2 r3 r4
X 2 −1 1 −1
Y 0 1 −1 0



Figure 4. A reaction network and the associated graph and stoichiometry matrix.

3.1. Stoichiometry Matrices

The stoichiometry information of a reaction network is usually collected in its stoichiometry matrix.
For this we consider a set of species Spec = {A1, . . . , Am} and a reaction network N = {r1, . . . , rn},
such that both sets are totally ordered by the indices of their elements.

The stoichiometry matrix S of N is the m× n matrix of integers, such that the entry of S at row i
and column j is equal to rj(Ai) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Note that reaction rj contributes in the
j′th column, while species Aj contributes the j’s row of S. For instance, the stoichiometry matrix of the
reaction network in Figure 4 is given on the right.

It can now be noticed that, for any vector v = (n1, . . . , nn) of natural numbers, the multiset
n1r1 + ... + nnrn is an invariant of reaction network N if and only if its stoichiometry matrix satisfies
Sv = 0, i.e., if v belongs to the kernel of the stoichiometry matrix. Therefore, we define the (positive
integer) kernel of a matrix S by:

ker+(S) = {v ∈ Nn | Sv = 0}.

3.2. Elementary Modes

The support of a vector v = (n1, . . . , nk) is the subset of indices i such that ni is non-null,
i.e., supp(v) = {i ∈ {1, . . . , k} | ni 6= 0}.

Definition 5. An elementary mode of an m× n matrix S over Z is a vector v ∈ ker+(S) \ {0N
n} such that:

v is on an extreme ray: there exists no v′ ∈ ker+(S) \ {0N
n} such that supp(v′) ( supp(v), and

v is factorised: there exists no v′′ ∈ ker+(S) such that v = kv′′ for some natural number k ≥ 2.

The condition v ∈ ker+(S) means that an elementary mode must be a (positive integer) steady state
of S. Geometrically, the set of all positive integer steady states forms a pointed cone, that is generated
by convex combinations of its extreme rays. The first condition states that any elementary flux mode v
must belong to some extreme ray of the cone. The second condition requires that an elementary mode
is maximally factorised, i.e., it is the vector on the extreme ray with the smallest norm.

Theorem 1 (Folklore [21]). Let S be an m× n matrix of integers. Then the set E of all elementary modes of S
has finite cardinality and satisfies ker+(S) = cone(E).

The intuition is ker+(S) is a cone with a finite number of extreme rays, so that these extreme ray
generated the cone. The set of elementary modes E contains exactly one point on each of the extreme
rays of ker+(S). Therefore, ker+(S) = cone(E), i.e., the set of elementary modes is a finite generator of
ker+(S).

Let us point out two differences between the definition of elementary mode considered here and
in [21]. First, we added condition 2. Without this condition, any multiple of an elementary mode would
be an elementary mode, so that there would be infinitely many. The double-description method as
recalled there, however, computes the set of elementary modes in the above sense, so this difference is
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minor. Second, note that [21] considers a slightly more general problem, where some of the coordinates
of v may be negative. This corresponds to the addition of reversible reactions that we do not consider
in the present paper.

3.3. Elementary Flux Modes

We next lift the concept of elementary modes from matrices to reaction networks, via the
stoichiometry matrix. Given a vector of reactions r = (r1, . . . , rn) and a vector v = (n1, . . . , nn)

of natural numbers we define the multiset of reactions vr and the corresponding reaction rv as follows:

vr = n1r1 + . . . + nnrn and rv = (vr)R.

Definition 6. An elementary flux mode of a reaction network N = Nr is a multiset of reactions vr such that the
vector v is an elementary mode of the stoichiometry matrix of N.

The kernel condition v ∈ ker+(S) of elementary modes v yields that any elementary flux mode vr
satisfies rv = 0R, i.e., the reaction defined by the elementary flux mode must be empty. For instance,
reconsider the reaction network in Example 1 with m = 2 species and n = 4 reactions r = (r1, r2, r3, r4)

in that order. Its stoichiometry matrix has two elementary modes: the vectors v1 = (1, 0, 0, 2) and
v2 = (0, 1, 1, 0). The corresponding elementary flux modes are the multisets of reactions v1r = r1 + 2r4

and v2r = r2 + r3 illustrated in Figure 5 by the arrows coloured in apricot and aquamarine respectively.
First consider the multiset r1 + 2r4: the first reaction r1 produces 2X which are then degraded by
2r4. So the reaction rv1 = (r1 + 2r4)

R = 0R is indeed empty. Consider now the multiset of reactions
r2 + r3: its first reaction r2 transforms X to Y and its second reaction r3 does the inverse. Thus, rv2 =

(r2 + r3)
R = 0R is the empty reaction too. The intuition is that applying to a chemical solution at the

same time all reactions of an elementary flux mode with their multiplicities does not have any effect.

v1 = (1, 0, 0, 2) v1r = r1 + 2r4
v2 = (0, 1, 1, 0) v2r = r2 + r3

X

Y

r1

r2

r3

r4

2

Figure 5. The elementary modes of the reaction network in Figure 4.

It should be noticed that the vector v = (1, 1, 1, 2) is also a solution of the steady state equation
Sv = 0, and thus the multiset of reactions r1 + r2 + r3 + 2r4 is also an invariant of the example network.
It is the multiset sum of two elementary flux modes v1r +M v2r which is also equal to (v1 +

N4
v2)r.

4. Simplifying Reaction Networks without Kinetics

We study the question whether the step-by-step intermediate elimination relation proposed in [22]
is confluent in the case of reaction networks without kinetics. We present a counter example against
the confluence and illustrate the reason for this problem.

4.1. Intermediate Elimination

Let I ⊆ Spec be a finite set of species that we will call intermediate species or intermediates for short.
The simplification procedure will remove all intermediates from a given reaction network, step-by-step
and in arbitrary order.

Our objective is to remove an intermediate X ∈ I from a network N by merging any pair of
reactions of N, a reaction r that produces X and another reaction r′ that consumes it. This is done
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by the (INTER) rule in Figure 6, and is based on the merge operation r �X r′ which returns a linear
combination of r and r′ and thus of the reactions in the initial network:

r �X r′ = (−r′(X)r + r(X)r′)R.

Since r produces r(X) molecules X while r′ consumes r′(X) molecules X, we have (r �X r′)(X) = 0.
Therefore, X is not present in the solutions consumed and produced by reaction r �X r′.

(INTER)
X ∈ I

N VInter

{r �X r′ | r, r′ ∈ N, r(X) > 0, r′(X) < 0}
∪{r ∈ N | r(X) = 0}

(DEP) k ∈ N s ∈ Nk v ∈ Nk

N ] {sv}VDEP N

Figure 6. Simplification of reaction networks without kinetics with respect to a set I of
intermediate species.

In Example 2 below, we will denote vectors (n1, . . . , nn) of natural numbers by 1n1 . . . nnn ,
while freely omitting components ini with ni = 0 and simplifying component j1 to j. For instance if
r = (r1, . . . , r4), we can write r142 instead of r(1,0,0,2).
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Figure 7. Elimination of intermediates X and Y in reaction network N in both possible orders, leading to
two different final results NXY and NYX .

Example 2. We consider the network N in Figure 7 with species Spec = {A, B, X, Y} and reaction vector
r = (r1, . . . , r4). We consider the elimination of the intermediates in I = {X, Y} in both possible orders.
On the top, we first eliminate the intermediate species X from N, obtaining network NX . We have to combine
reaction r1 producing 2 X molecules with reaction r2 which consumes 1 X molecule. We obtain the reaction
r1 �X r2 = r122 = (r1 + 2r2)

R that transforms one A molecule into 2 Y molecules. We proceed in the same way
with the other 3 pairs of reactions that produce and consume X. Then, we can remove the intermediate species
Y from network NX and obtain the network NXY in the top right. Note that we keep empty reactions such as
r23. At the bottom, we show network NY, obtained by eliminating the intermediate species Y first. The only
reaction producing Y in N is r2 and the only reaction consuming Y is r3. Merging them produces reaction r23.
When eliminating intermediate X from NY, we obtain network NYX on the bottom right.

It turns out that NXY and NYX differ in that the former contains the reaction r1223242 in addition to the
reactions r142 and r23 shared by both networks.
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4.2. Eliminating Dependent Reactions

Example 2 shows that intermediate elimination with the (INTER) rule alone is not confluent,
given that it may produce two different networks that cannot be simplified any further, NXY and
NYX , depending on whether we first eliminate the intermediate X or the intermediate Y. The reaction
network NXY contains an additional reaction, which is a linear combination of two other reactions:

r1223242 = (r142 + 2r23)
R.

In order to solve this non-confluence problem, we propose the new simplification rule (DEP)
in Figure 6. It eliminates a reaction that is a positive linear combination of other reactions of the network,
i.e., some reaction sv = (n1r1 + . . . + nkrk)

R where s = (r1, . . . , rk) ∈ Nk and v = (n1, . . . , nk) ∈ Nk for
some k ∈ N.

Unfortunately, the simplification relation with rules (INTER) and (DEP) is still not confluent.
The problem is that even applying rule (DEP) alone fails to be confluent as shown by the following
counter example.

Example 3. Consider the network N′′ in Figure 8 in the absence of intermediates, i.e., where I = ∅. There are
two ways of applying rule (DEP) to this network, since r4 = (r1 + 2r2)

R and r2 = (r3 + r4)
R. We can thus

either eliminate r4 leading to N′′r4
or r2 leading to N′′r2

. The two results are different even though they contain no
more dependencies.

A Br1 r2

r3

r4
2

Network N′′

A Br1

r3

r4
2

Network N′′r2

A Br1 r2

r3

Network N′′r4

Figure 8. Dependency elimination is not confluent.

This example shows that general dependency elimination cannot be done in a confluent manner.
On the other hand, what we need in order to solve the confluence problem for intermediate elimination
as illustrated in Figure 7, is a little more restricted: it is sufficient to remove those dependent reactions
that were introduced by intermediate elimination. Such dependencies can be identified from the
vectors of natural numbers that we used to name the reactions. In the example, we have r1223242 =

(r142 + 2r23)
R, so the dependency of this reaction follows from the dependency of the vectors 1223242 =

((142) + 2(23))N
4
.

5. Simplifying Flux Networks

We next introduce vector representations of reaction networks without kinetics, called flux
networks, and show that the simplification of such representations can indeed be done in
a confluent manner.

For the reminder of this section, we fix an n-tuple r of distinct reactions and a subset of species
I ⊆ Spec.

5.1. Vector Representations of Reaction Networks

The objective is to simplify the initial reaction network Nr by removing the intermediates from I .
The iterative elimination of intermediate species generates a sequence of networks with reactions in
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cone(Nr) = {rv | v ∈ Nn}. The idea is now to use the vectors v ∈ Nn as representations of reactions
rv. These vectors will tell us about the provenance of the reaction obtained when simplifying the
network Nr .

The mapping of vectors v ∈ Nn to reactions rv ∈ R is a homomorphism between commutative
semigroups, whose image is cone(Nr). It should be noticed, however, that it is not an isomorphism since
any element of ker+(S) will be mapped to 0R, where S is the stoichiometry matrix of Nr . Therefore,
it makes a difference whether we will work with vectors in Nn representing a reaction or with the
reactions itself. Intuitively, the difference is that we know where the reaction does come from.

Definition 7. An n-ary flux network V is a finite subset of vectors in Nn that is totally ordered.

Any n-ary flux network V defines a reaction network rV = {rv | v ∈ V}, that we call the reaction
network represented by V. The total order of the reactions in network rV is the one induced by the
total order of V.

5.2. Simplification Rules

Let I ⊆ Spec be a finite set of species that we call intermediates. In Figure 9, we rewrite the
simplification rules (F-INTER) and (F-DEP) so that they apply to flux networks. For this we have to
lift the merge operation from reactions to vectors that represent them. For any v1, v2 ∈ Nn we define:

v �X v′ = (−rv′(X)v + rv(X)v′)N
n
.

In the rule for the dependency elimination, we now use a notation for linear combinations of
vectors in Nn. Given a vector v = (v1, . . . , vk) of vectors in Nn and a vector v = (n1, . . . , nk) of natural
numbers we define:

vv = (n1v1 + . . . + nkvk)
Nn

.

The counter example for the non-confluence of dependency elimination can no more be applied
in this way, since rule (F-DEP) is not based on the dependency of the reactions as with (DEP) but on
the dependencies of the vectors that define the reactions.

(F-INTER)
X ∈ I {v ∈ V | rv(X) 6= 0} 6= ∅

VVF-INTER

{v �X v′ | v, v′ ∈ V, rv(X) > 0, rv′ (X) < 0}
∪{v ∈ V | rv(X) = 0}

(F-DEP) k ∈ N v ∈ Vk v ∈ Nk

V] {vv}VF-DEP V

(F-FACT)
v ∈ Nn \ {0Nn} k ≥ 2

V] {(kv)N
n}VF-FACT V∪ {v}

Figure 9. Simplifying flux networks for an initial n-tuple of reactions r and a set of intermediate
species I .

5.3. Factorization

The simplification relation with axioms (F-INTER) and (F-DEP) is still not confluent, as shown
in Example 4.

Example 4. We consider the vector of initial reactions r = (r1, r2, r3) of the network N′′ in Figure 10. Let I =

{X, Y, Z} be the set of intermediate species. Note that N′′ = rV3 where V3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊆ N3

is the flux network to which we apply the simplification algorithm. If we remove the species X first from
V3, we obtain a flux network representing the reaction network N′′X, and from that we get a flux network
representing N′′XYZ by eliminating Y and Z (in any order). This flux network has only one flux vector which
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is 122232 = (2(123))N
3
. If we remove Y first we obtain a flux network representing N′′Y , and from that a flux

network representing N′′YXZ by removing X and Z. The latter flux network is the singleton with the flux
vector 123.

X

Y Z

r1 r2r3

2

Network N′′ = rV3

Y Z

r123 r223

Network N′′X = r{123, 223}

r122232

Network N′′XYZ = r{122232}

X

Z

r2r13

Network N′′Y = r{13, 2}

r123

Network N′′YXZ = r{123}

Figure 10. Elimination of intermediate species from flux networks in different orders is not confluent
without factorization.

What is needed is a rule for the factorization of scalar multiples (kv)N
n

of vector v. This is done
by the rule (F-FACT) in Figure 9, which, in the previous example, allows to simplify N′′XYZ into N′′YXZ.

We first note a consequence of the Folklore Theorem 1 and the following Lemma that is equally
well known.

Lemma 2. Let v, v′ ∈ Nn be two elementary modes of the same matrix S. If supp(v) = supp(v′) then v = v′.

Proof. Suppose that supp(v) = supp(v′). Write v = (n1, . . . , nn) and v′ = (n′1, . . . , n′n). Let i ∈ supp(v)
be such that ni/n′i is maximal. Without loss of generality we can assume that ni/n′i ≥ 1 since otherwise,
we can exchange v and v′. Consider the vector of integers w = niv′ − n′iv. For any j ∈ supp(v) we have:

nin′j − n′inj = n′in
′
j(ni/n′i − nj/n′j) ≥ 0.

Therefore, w ∈ Nn, and thus w ∈ ker+(S). Furthermore, i /∈ supp(w) so that supp(w) ( supp(v).
Since v is an elementary mode of S this implies that w = 0, and thus niv′ = n′iv. Without loss of
generality we can assume that ni and n′i have no common prime factors. If ni = n′i = 1 we are done.
Otherwise ni ≥ 2 since ni/n′i ≥ 1. Thus v can be factorized by ni, contradiction.

Corollary 1. Let S be an m× n matrix of integers and E ⊆ Nn the set of all elementary modes of S. For any
set E′ ⊆ Nn such that cone(E′) = ker+(S), if E′ is irreducible byVF-FACT

andVF-DEP
then E′ = E.

Proof. By Theorem 1, we have cone(E) = ker+(S) = cone(E′).
We first show that E ⊆ E′. Let v ∈ E. Since v 6= 0N

n
and E ⊆ cone(E′), v is of the form

v = n1v1 + . . . + nkvk for some k ≥ 1, factorized vi ∈ E′ \ {0Nn} and ni ∈ N \ {0}. Since all ni
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and vi are positive, it follows that supp(vi) ⊆ supp(v) for all 1 ≤ i ≤ k. Consider i = 1. Since v is
an elementary mode and v1 ∈ ker+(S), this implies that supp(v1) = supp(v). Since v1 is factorized,
and a member of ker+(S) with minimal support, it is also an elementary mode of S. Lemma 2 thus
implies that v1 = v, and so v ∈ E′. (It also follows that k = n1 = 1).

We next show that E′ ⊆ E. Let v ∈ E′. Since E′ ⊆ cone(E′) = cone(E), vector v has the
form v = n1v1 + . . . + nkvk for some vi ∈ E. Since E ⊆ E′ and E′ is closed by rule (F-DEP) it
follows that k = 1. Hence, v = n1v1. Since E′ is closed by rule (F-FACT) it follows that n1 = 1.
Hence v = v1 ∈ E.

5.4. Proving Confluence via Elementary Modes

Given a tuple of initial reactions r of size n and a set of intermediates I ⊆ Spec as parameters,
we obtain a simplification relation on flux networks:

VF =df (VF-INTER
∪VF-DEP

∪VF-FACT
).

We now show that this relation is confluent for all possible choices of the parameters. The proof
is by reduction to the Corollary 1 of the folklore Theorem 1 on elementary modes. We start with
an fundamental property of the diamond operator �X, that we formulate in a sufficiently general
manner so that is can be reused later on.

Lemma 3 (Diamond). Let (G,+G , 0G , ·G , 1G) be a commutative semi-ring and h : Nn → G a semi-group
homomorphism with respect to addition. Given a tuple (v1, . . . , vk) of vectors in Nn, a tuple (g1, . . . , gk) of
elements of G, and a species X ∈ Spec, we define:

P = {p ∈ {1...k} | rvp(X) > 0}, prod = (∑p∈P rvp(X)gp)G ,
C = {c ∈ {1...k} | rvc(X) < 0}, cons = (∑c∈C −rvc(X)gc)G

It then holds that:

∑Gp∈P ∑Gc∈C gp ·G gc ·G h(vp �X vc) = ∑Gp∈P gp ·G cons ·G h(vp) +G ∑Gc∈C gc ·G prod ·G h(vc)

Proof. We use some elementary rules of commutative semi-rings to distribute and factorize the sums
contained in the definition of the diamond:

∑Gp∈P ∑Gc∈C gp ·G gc ·G h(vp �X vc)

= ∑Gp∈P ∑Gc∈C gp ·G gc ·G ((−rvc(X)h(vp))G +G (rvp(X)h(vc))G)

= ∑Gp∈P ∑Gc∈C gp ·G gc ·G (−rvc(X)h(vp))G +G ∑Gp∈P ∑Gc∈C gp ·G gc ·G (rvp(X)h(vc))G

= ∑Gp∈P gp ·G (∑c∈C −rvc(X)gc)G ·G h(vp) +G ∑Gc∈C gc ·G (∑p∈P rvp(X)gp)G ·G h(vc)

= ∑Gp∈P gp ·G cons ·G h(vp) +G ∑Gc∈C gc ·G prod ·G h(vc)

Our next objective is to show that the simplification preserves the invariants, when relativised
to r. For any flux network V, we therefore define the set of relatived invariants of V as follows:

invr(V) = {(n1v1 + . . . + nkvk)
Nn

r | n1rv1 + . . . + nkrvk ∈ inv(rV)}.

For Vn = {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} ⊆ Nn with the vectors ordered in the way they are
enumerated, note that we have rVn = Nr and invr(Vn) = inv(Nr). We next show that such relativised
invariants are preserved by the simplification of flux networks.

Lemma 4. If V VF V′ then invr(V) = invr(V′).
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Proof. We assume V VF V′ and first show the inclusion invr(V) ⊆ invr(V′).
Let n1v1 + . . . + nkvk ∈ invr(V). Then n1rv1 + . . . + nkrvk ∈ inv(rV). This means (n1rv1 + . . . +

nkrvk )
R = 0R. SinceVF is the unionVF-FACT

∪VF-DEP
∪VF-INTER

, three cases are to be considered.

Case V VF-FACT V′. Suppose that (F-FACT) replaces vector v1 by vector v′1 so that v1 = k′v′1 for
some k′ 6= 0. Hence n1k′rv′1

+ n2rv2 + . . . + nkrvk ∈ inv(rV′). And thus, (n1k′v′1 + n2v2 + . . . +

nkvk)
Nn

r ∈ invr(V′), which is equivalent to (n1v1 + . . . + nkvk)
Nn

r ∈ invr(V′) as required.
Case V VF-DEP V′. By rule (F-DEP) there exist k ∈ N, v ∈ Vk and v ∈ Nk such that V = V′ ] {vv}. If all

vi are distinct from vv then trivially n1rv1 + . . . + nkrvk ∈ inv(rV′). Otherwise, we can assume
without loss of generality that v1 = vv with v and v as in rule (F-DEP). Suppose that these have
the forms v = (m1, . . . , ml) and v = (w1, . . . , wl). Since rvv = (m1rw1 + ... + mlrwl )

R, it follows
that:

n1m1rw1 + ... + n1mlrwl + n2rv2 + . . . + nkrvk ∈ inv(rV′).

This yields (n1m1w1 + ...+ n1mlwl + n2v2 + . . . + nkvk)
Nn

r ∈ invr(V′). Since v1 = vv = (m1w1 +

... + mlwl)
Nn

this is is equivalent to (n1v1 + . . . + nkvk)
Nn

r ∈ invr(V′) as required.
Case V VF-INTER V′. Suppose that the intermediate species X ∈ I was eliminated thereby. Recall that

∑k
i=1 nirvi ∈ inv(rV). We can assume without loss of generality that ni 6= 0 for all 1 ≤ i ≤ k. Let P,

C, prod, and cons be as introduced in the Diamond Lemma 3, where G = Nn, homomorphism h
the identity on Nn, and gi = ni for all 1 ≤ i ≤ k. The lemma then yields:

(∑p∈P ∑c∈C npnc (vp �X vc))N
n
= (∑p∈P np cons vp + ∑c∈C nc prod vc)N

n
.

Since (∑k
i=1 nirvi )

R = 0R it follows that prod = cons. Furthermore, prod 6= 0 since otherwise
P = C = ∅ so that (F-INTER) could not be applied. Since cons = prod, this tuple is equal to
prod(∑p∈P npvp + ∑c∈C ncvc)N

n
. With M = {m ∈ {1...k} | rvm(X) = 0} we get:

(∑p∈P ∑q∈C npnc(vp �X vc) + ∑m∈M prod nmvm)N
n
r = (∑k

i=1 prod nivi)
Nn

r .

This multiset is an invariant, since (∑k
i=1 nirvi )

R = 0R. It follows that:

(∑p∈P ∑c∈C npnc(vp �X vc) + ∑m∈M nm prod vm)N
n
r ∈ inv(rV′) .

This implies (∑k
i=1 prod nivi)

Nn
r ∈ invr(V′). Since prod 6= 0 and since invr(V′) is closed by

factorization with nonzero factors, it follows that ∑k
i=1 nirvi ∈ invr(V′) as required.

The proof of the inverse inclusion invr(V) ⊇ invr(V′) differs in that the Diamond Lemma is
not needed. Let n1v′1 + . . . + nkv′k ∈ invr(V′). Then n1rv′1

+ . . . + nkrv′k
∈ inv(rV′). This means

(n1rv′1
+ . . . + nkrv′k

)R = 0R. We distinguish three cases depending on which rule was applied:

Case V VF-FACT V′. Suppose that (F-FACT) replaces vector v1 by vector v′1 so that v1 = k′v′1 for some
k′ 6= 0. Since (k′n1rv′1

+ . . . + k′nkrv′k
)R = 0R we have n1rv1 + n2k′rv′2

+ . . . + nkk′rv′k
∈ inv(rV).

And thus, (n1v1 + n2k′v′2 + . . . + nkk′v′k)
Nn

r ∈ invr(V), which is equivalent to (n1k′v′1 + . . . +
nkk′v′k)

Nn
r ∈ invr(V), and thus (n1v′1 + . . . + nkv′k)

Nn
r ∈ invr(V) as required.

Case V VF-DEP V′. By rule (F-DEP) there exist k ∈ N, v ∈ Vk and v ∈ Nk such that V = V′ ] {vv}. If all
v′i are distinct from vv then trivially n1rv′1

+ . . . + nkrv′k
∈ inv(rV). Otherwise, we can assume

without loss of generality that v′1 = vv with v and v as in the rule. Suppose that these have the
forms v = (m1, . . . , ml) and v = (w1, . . . , wl). Since rvv = (m1rw1 + ... + mlrwl )

R, it follows that:

n1m1rw1 + ... + n1mlrwl + n2rv′2
+ . . . + nkrv′k

∈ inv(rV).

This yields (n1m1w1 + ... + n1mlwl + n2v′2 + . . . + nkv′k)
Nn

r ∈ invr(V). Since v′1 = vv = (m1w1 +

... + mlwl)
Nn

this is is equivalent to (n1v′1 + . . . + nkv′k)
Nn

r ∈ invr(V) as required.
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Case V VF-INTER V′. Suppose that the intermediate species X ∈ I was eliminated thereby. We recall
that ∑k

i=1 nirv′i
∈ inv(rV′). Without loss of generality, we can assume that all elements of V′ occur

exactly once in this sum. Let V = {v1, . . . , vl}, P = {p | rvp(X) > 0}, C = {c | rvc(X) < 0},
and M = {m | rvm(X) = 0}. If v′i = vp �X vc for p ∈ P and c ∈ C, we note opc = ni. Otherwise, if
v′i = vm with m ∈ M, we note om = ni. By the rule (F-INTER) we have:

(∑k
i=1 niv′i)

Nn
= (∑p∈P ∑c∈C opcvp �X vc + ∑m∈M omvm)N

n

=
(

∑p∈P(∑c∈C opcrvc(X))vP + ∑c∈C(∑p∈P opcrvp(X))vC + ∑m∈M omvm

)Nn

Hence (∑k
i=1 niv′i)

Nn
r ∈ invr(V).

We start the reminder of the proof with the case where all species are intermediates so that
I = Spec.

Lemma 5. If I = Spec and V is irreducible byVF-INTER
then {vvr | v ∈ Vk, v ∈ Nk, k ∈ N} = invr(V).

Proof. Given that V is irreducible by VF-INTER
, all intermediates species must be eliminated in all

reactions of rV . Since I = Spec this implies that all species are eliminated in all reactions of rV ,
so for all v ∈ rV it follows that rv = 0R. Thus for any v ∈ V and v ∈ Vk we have (vv)R = 0R,
so that vv ∈ invr(V). Hence {vvr | v ∈ Vk, v ∈ Nk, k ∈ N} ⊆ invr(V). The inverse inclusion
holds trivially.

Proposition 1. Let I = Spec and Vn V∗F V such that V irreducible forVF-INTER
. Then cone(V) = ker+(S),

where S is the stoichiometry matrix of Nr .

Proof. By Lemmas 4 and 5 we have: {vvr | v ∈ Vk, v ∈ Nk, k ∈ N} = invr(V) = invr(Vn) = inv(Nr).
This yields {vv | v ∈ Vk, v ∈ Nk, k ∈ N} = ker+(S), i.e., cone(V) = ker+(S).

Theorem 2. Consider the simplification relation for flux networksVF that is parametrised by I = Spec and
a tuple of initial reactions r. If Vn V∗F V for some flux network V that is irreducible for VF, then V = E,
where E is the set of elementary modes of the stoichiometry matrix of Nr .

Proof. From Proposition 1 it follows that cone(V) = ker+(S) where S is the stoichiometry matrix of Nr .
Furthermore, V is irreducible with respect toVF-FACT

∪VF-DEP
, so that Corollary 1 implies V = E.

Corollary 2. The simplification relationVF restricted to flux networks in the set {V | Vn V∗F V} is confluent.

Proof. We notice thatVF is terminating, since (F-INTER) reduces the number of intermediate species
X ∈ I for which there exists a vector v such that rv(X) 6= 0, (F-DEP) reduces the number of vectors in
the set, and (F-FACT) reduces the norm of one of the vectors.

We first consider the case Spec = I . Let V be such that Vn V∗F V, whereVF is parametrised by I
and a tuple r of initial reactions. Suppose that V V∗F V1 and V VF V2. SinceVF is terminating there
exist V′1 and V′2 that are irreducible withVF such that V1 V∗F V′1 and V1 V∗F V′2. Theorem 2 proves that
V′1 = E = V′2, where E is the set of elementary modes of the stoichiometry matrix of rVn = Nr .

We next reduce the general case where Spec ⊆ I to the case Spec = I . We define r|I by restricting
all reactions in the tuple r to I , i.e., if r = (r1, . . . , rn) then r|I = (r1|I , . . . , rn |I ). We then observe
that the relationVF with respect to r coincides with the relationVF with respect to r|I . Hence the
confluence result from the case I = Spec can be applied.

As shown by Theorem 2, the exhaustive simplification of flux networks V withVF can be used
to compute the set of elementary modes of the stoichiometry matrix of the reaction network rV .
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Interestingly, this algorithm is essentially the same as the double description method, as recalled for
instance in [21]. The correspondence comes from the fact that any reaction network can be identified
with its stoichiometry matrix, so that the algorithm can be formulated either for the one or the
other representation. Still there is a minor difference between this algorithm and the one in [21].
The algorithm presented here is slightly more flexible, in that the rule (F-DEP) can be applied at any
stage of the simplification while in the double description method as described in [21], the rule (F-DEP)
is applied at the same time as the rule (F-INTER). However, as we have shown with the confluence
Theorem 2, this additional freedom in the application order of the rules does not affect the final result.

6. Reaction Networks with Deterministic Semantics

We now consider reactions with kinetic expressions, and recall some basic definitions. We first
define expressions and networks with kinetics. Then we recall how to associate a system of equations
to a reaction network. Finally we use this system of equations to define the deterministic semantics of
reaction networks.

6.1. Kinetic Expressions

We now define a class of kinetic expressions. Their syntax is the same as that of arithmetic
expressions, by their semantics is by interpretation as functions of type R+ → R,

Let Param be a set of parameters of type R+. As set of variables of type R+ → R+, we will use
the set Spec. A variable A ∈ Spec is intended to represent the temporal evolution of the concentration
of A over time.

We define the set of expressions Expr by the terms with the abstract syntax in Figure 11.
Expressions describe functions of type R+ to R. They are built from species A of type R+ to R+,
and constant functions defined by parameters k ∈ R+, constants c ∈ R, and expressions e(0),
standing for the value of e at time 0. Beside of these, expressions can be constructed by addition,
subtraction, multiplication, and division. For convenience, we will use parenthesis (e) whenever
the priority of the operators might not be clear. For any species e we denote by pSpec(e) the
subset of species that occur properly in e, that is outside of a sub-expression e(0). So for instance
pSpec(B = A(0)) = {B}.

Syntax

e ∈ Expr ::= A | k | c | e(0) | e + e′ | ee′ | 1/e | −e

Shortcuts

e/e′ =df e(1/e′), e− e′ =df e + (−e′), en =df e . . . e︸ ︷︷ ︸
n times

.

Semantics

JkKα =

{
R+ → R+

t 7→ β(k) JcKα =

{
R+ → R+

t 7→ c

JAKα = α(x) J−eKα = −RJeKα

Je(0)Kα =

{
R+ → R+

t 7→ JeKα(0)
Je + e′Kα = JeKα +R Je′Kα

J1/eKα =

{
1/RJeKα if ∀t ∈ R+. JeKα(t) 6=R 0
⊥ otherwise

Jee′Kα = JeKα ∗R Je′Kα

Figure 11. Expressions where A ∈ Spec, k ∈ Param, c ∈ R, and n ∈ N.
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The semantics of expressions is parametrised by a function β : Param → R+ that interprets all
parameters as positive real numbers. In order to simplify the notation, we assume that β is fixed,
but notice that our simplification algorithms will be correct for any interpretation β.

The value of an expression JeKα ∈ (R+ → R+) ∪ {⊥} is specified in Figure 11 for any variable
assignment α : Vars → (R+ → R+). It may either be a function of type R+ → R or undefined ⊥.
The latter is necessary for the interpretation of J1/eKα, which is defined only if JeKα(t) 6= 0 for any time
point t. We call an expression e nonnegative if e ≥ 0 is valid, i.e., if for all non-negative assignment α

and all time points t ∈ R+, we have JeKα(t) ≥ 0.

Definition 8. A kinetic expression is a nonnegative expression e ∈ Expr.

6.2. Constrained Flux Networks

The next objective is to add kinetic expressions to reactions and flux networks. Furthermore,
we need to be able to express constraints about these kinetic expressions in order to express partial
steady state hypothesis and conservation laws. This will lead us to the notion of constrained
flux networks. A reaction with kinetics expressions is a pair r; e where r is a reaction without kinetics
and e is a kinetic expression. As before we now use flux reaction to represent a reaction but now with
a kinetic expression.

Definition 9. An n-ary flux reaction with kinetic expression is a pair v; e composed of a vector v ∈ Nn and
a kinetic expression e ∈ Expr. Given a tuple of reactions r = (r1, . . . , rn), the flux reaction v; e represents the
reaction rv; e.

The set C of constraints on kinetic functions is defined in Figure 12. A constraint C ∈ C is
a conjunction of atomic constraints. The first kind is an equation e = e′ stating that the expressions
e and e′ must have the same value but different from ⊥. The atomic constraint cst(e) requires that
e is a constant function, e 6= 0 that e may never becomes equal to zero, and e ≥ 0 that e is always
non-negative. More formally, we define in Figure 12 the interpretation JCKα ∈ B∪ {⊥} of a constraint
C for a given variable assignment α, where B = {true, false} is the set of boolean values.

Syntax

C ∈ C ::= e = e′ | e 6= 0 | e ≥ 0 | cst(e) | C∧ C′ | true

Shortcuts

e > 0 =df e ≥ 0∧ e 6= 0.

Semantics

Je = e′Kα =

{
JeKα = Je′Kα if JeKα, Je′Kα ∈ R+ → R
⊥ otherwise Jcst(e)Kα = ∃c.∀t. JeKα(t) =R c

Je 6= 0Kα = ∀t ∈ R+. JeKα(t) 6=R 0 JC∧ C′Kα = JCKα ∧B JC′Kα

Je ≥ 0Kα = ∀t ∈ R+. JeKα(t) ≥R 0 JtrueKα = true

Figure 12. Constraints on kinetic functions.

Definition 10. An n-ary constrained flux network is a pair W = V&C where V is a set of n-ary flux reactions
with kinetic expressions and C a constraint.

Let W = V&C be a constrained flux network. We denote by Expr(W) the set of kinetic expressions
e such that v; e ∈ V or such that e occurs in the constraint C. We set:

pSpec(W) = {A | v; e ∈ V, rv(A) 6= 0 or A ∈ pSpec(e)} ∪ pSpec(C).
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6.3. Systems of Constrained Equations with ODEs

We now recall how to assign systems of equations to constrained flux networks. Note that
systems constrained equations may contain both constraints and ordinary differential equations (ODEs)
in particular.

The set of systems of constrained equations is defined in Figure 13. They are conjunctions of
constraints C and ODEs Ȧ = e where A ∈ Spec and e ∈ Expr. Note that the constraints may subsume
the non-differential arithmetic equations e = e′. We denote by Spec(E) the set of (free) variables
occurring in E, and by Expr(E) the set of expressions contained in E.

Syntax
E ::= Ȧ = e | C | E ∧ E′

Semantics

JȦ = eKα =

{
dJAKα(t)

dt =R+→R JeKα if for all t ∈ R+: JeKα(t) 6= ⊥
⊥ otherwise

JCKα = . . . see Figure 12
JE ∧ E′Kα = JEKα ∧B JE′Kα.

Figure 13. Systems of constrained equations with ODEs.

The denotation of a system of constrained equations E is a value in JEKα ∈ B∪ {⊥} as defined in
Figure 13. The set of solutions of sol(E) is the set of assignments α : Spec→ R+ that make E true, i.e.,

sol(E) = {α | JEKα = true}.

We say that a constrained equation E logically implies another E′ and write E |= E′ if sol(E) ⊆
sol(E′). For instance, true |= kA + kB = k(A + B), e 6= 0 |= e/e = 1, cst(A) |= Ȧ = 0.

Definition 11. Two constrained equation systems E and E′ are called logically equivalent, denoted E |=| E′,
if they have the same solutions, i.e.,

E |=| E′ iff sol(E) = sol(E′).

Clearly, E |=| E′ if and only if E and E′ logically imply each other, i.e., E |= E′ and E′ |= E.

6.4. Deterministic Semantics

We assign to any constrained flux network W = V&C a system of constrained equations E(W) in
Figure 14. Note that E(W) does depend on the tuple of initial reactions r and the set of intermediates I .
The system contains an ODE for any species A stating that the change of the concentration of A is equal
to the sum of the rates rv(A)e of the flux reactions v; e ∈ V. The factor rv(A) makes the rate negative if
A is consumed and positive if A is produced. It also takes care of the multiplicities of consumption
and production. Finally, the constraint C of the constrained flux network is added to the system of
constrained equations.

E(V&C) = C∧
∧

A∈Spec
Ȧ = ∑

v;e∈V
rv(A)e

Figure 14. System of constrained equations of a constrained flux network V&C.

Example 5. We consider the flux network for the classical Michaelis-Menten example [10]. Its system of
constrained equations is then represented in Figure 15. It contains four ODEs and two constant constraints.
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Ṡ = −k1SE + k2C ∧ Ė = −k1SE + (k2 + k3)C
∧ Ċ = k1SE− (k2 + k3)C ∧ Ṗ = k3C
∧ cst(E) ∧ cst(C)

Figure 15. System of constrained equations for Michaelis-Menten.

6.5. Contextual Equivalence

Two constrained flux networks W and W ′ are non-contextually equivalent, denoted W 'W ′, if their
systems of constrained equations are logically equivalent:

W 'W ′ iff E(W) |=| E(W)′.

We now extend the definition to a contextual equivalence. The idea is that networks can be
exchanged with equivalent networks in any context, without affecting the semantics. As contexts,
we use flux networks themselves W ′ = V′&C′. We define the combination of a network W = V&C
and the context W ′ as follows:

W |W ′ =df V ∪V′&C∧ C′.

We now assume a set of intermediate species I ⊆ Spec and call a context W ′ compatible if
pSpecs(W ′) ∩ I = ∅.

Definition 12. Two constrained flux networks W and W ′ are (contextually) equivalent if they have the same
solutions in any compatible context, that is:

W ∼W ′ iff ∀W ′′compatible. W |W ′′ 'W ′ |W ′′.

We note that the definition of equivalence of constrained flux networks has two parameters:
r and I . The equivalence ∼ depends on the tuple of initial reactions r, since the non-contextual
equivalence relation ' relies on the deterministic semantics of constrained flux networks, which in
turn depends on r. The equivalence relation ∼ also depends on the set of intermediates I since the
notion of compatibility depends on it.

Our simplification algorithm will rewrite constrained flux networks up to logical equivalence
of constraints. Therefore, we can hope for confluence only up to logical equivalence. More formally,
we defined the similarity relation ∼= as the least equivalence relation on constrained flux networks that
satisfies the following two inference rules for all C, C′, V, e, e′:

C |= e = e′

{v; e} ∪V&C∼={v; e′} ∪V&C
,

C |=| C′

V&C∼=V&C′
.

The first rule states that expressions that are logically equivalent under the constraints of the
constrained flux network can be replaced by each other. The second rule allows to exchange logically
equivalent constraints by each other. Similar networks are trivially equivalent:

Lemma 6. Similarity W∼=W ′ implies contextual equivalence W ∼W ′.

Proof. Straightforward from the definitions.

7. Simplification of Constrained Flux Networks

Our next objective is to simplify constrained flux networks by lifting the confluent simplification
algorithm for flux networks to the case with kinetic expressions. This will require to impose partial
steady state and linearity restrictions on the constrained flux networks, since otherwise, we would
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not know how to remove intermediates from the constrained equations assigned to the constrained
flux network.

7.1. Linear Steadiness of Intermediate Species

The following restriction will allow us to eliminate an intermediate species from the constraint
equations of a constrained flux network.

Definition 13. We say that a species X ∈ I is linearly steady in a constrained flux network V&C if it satisfies
the following four conditions:

Partial steady state: the concentration of X is steady, i.e., C |= cst(X).
Linear consumption: if a reaction in V consumes X then its kinetic expression is linear in X, that is: if

v; e ∈ V such that rv(X) < 0 then C |= e = Xe′ for some expression e′ such that X /∈ pSpecs(e′).
Independent production: if a reaction in V produces X then its kinetic expression does not contain X except

for subexpressions X(0): for any v; e ∈ V, if rv(X) > 0 then X /∈ pSpecs(e).
Nonzero consumption: the consumption of X is nonzero: C |= ∑ {e | v; e ∈ V, rv(X) < 0} 6= 0.

Suppose that X is linearly steady in W = V&C. Since X is in partial steady state, we have
C |= cst(X) and hence C |= Ẋ = 0. The constrained equations of W thus imply that the production
and consumption of X are equal:

E(W) |= prod = cons where

{
prod = ∑{ rv(X)e | v; e ∈ V, rv(X) > 0}
cons = ∑{−rv(X)e | v; e ∈ V, rv(X) < 0}

The linear consumption of X imposes that C |= cons = Xe for some expression e such that
X 6∈ pSpecs(e). The independent production of X imposes that X 6∈ pSpecs(prod). Because of nonzero
consumption, we have:

E(W) |= X = X
prod
cons

=
prod

e
.

where the expression prod
e does not contain the species X properly. Therefore, we can eliminate the

variable X from the constrained equation E(W) by substituting X by prod
e . This give us hope that we

can also eliminate linearly steady intermediate species from the constrained flux networks too by
adapting the rule (F-INTER) to kinetic expressions.

7.2. Simplification

We now lift the simplification rules for flux networks to constrained flux networks. The lifted
rules are presented in Figure 16. They define the simplification relation for constrained flux networks:

VC =df VC-INTER
∪VC-MOD

∪VC-DEP
.

The first rule (C-INTER) eliminates a linearly steady intermediate species X, by merging any
pair of reactions, so that the one produces and another consumes X. The rule can be applied only
under the hypothesis that the constraints of the network imply that X is linearly steady, and so that
X is in partial steady state in particular. It should also be noticed that the conditions on the initial
value of X are preserved by the constraint X(0) = X prod

cons . As argued above, the linear steadiness of X
implies that the latter is equivalent to some other expression that does not contain species X properly.
So except for constraints on the initial value X(0), the species X got removed from the constrained flux
network. The rule also replaces X by X(0) in all the kinetic expressions of reactions, in which X is used
as a modifier, i.e., v; e ∈ V such that rv = 0 and X ∈ pSpecs(e). Furthermore, the same substitution is
applied to the constraints of the flux network.
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(C-INTER)

X ∈ I X is linearly steady in V&C prod = ∑
{v;e∈V|rv(X)>0}

rv(X)e cons = ∑
{v;e∈V|rv(X)<0}

−rv(X)e

V&CVC-INTER


{v �X v′; ee′

cons | v; e ∈ V, v′; e′ ∈ V, rv(X) > 0, rv′ (X) < 0}
∪{v; e[X := X(0)] | v; e ∈ V, rv(X) = 0}

&C[X := X(0)] ∧ X(0) = X prod
cons

(C-MOD)
X ∈ I ∀v; e ∈ V. rv(X) = 0

V&CVC-MOD {v; e[X := X(0)] | v; e ∈ V}&C[X := X(0)]

(C-DEP)

n1, . . . , nk ∈ N v = ( ∑
1≤i≤k

nivi)
Nn

{vi; ei | 1 ≤ i ≤ k} ∪ {v; e} ∪V&C VC-DEP {vi; ei + nie | 1 ≤ i ≤ k} ∪V&C

(C-SIM)
W1∼=W ′1 W ′1 VC-γ W ′2 W ′2∼=W2 γ ∈ {INTER, MOD, DEP}

W1 VC-γ W2

Figure 16. Simplification rules for n-ary constrained flux networks, with I the set of intermediate
species and r the n-tuple of initial reactions.

The rule (C-MOD) removes an intermediate that is never a reactant or a product of a reaction,
and replaces X with its initial value X(0). Then the rule (C-DEP) removes a dependent reaction.
In contrast to the case without kinetics, the kinetic expressions of the remaining reactions need to be
modified. The last rule (C-SIM) states that simplification is applied modulo similarity of constraint
flux reaction networks.

The simplification defined here is sound for the contextual equivalence relation of constrained
flux networks:

Proposition 2. Given a constrained flux network W, if W VC W ′ then W ∼W ′.

The proof is given in Appendix A. The arguments are direct from the definitions, except that the
Diamond Lemma 3 is needed in forVC-INTER

.

7.3. Michaelis-Menten

We illustrate the simplification on the classical Michaelis-Menten example [10].
We consider the simplification of a three-step enzymatic scheme with mass-action kinetics into

a single reaction with Michaelis-Menten kinetics. In the initial network, MMnet depicted in Figure 17,
a substrate S can bind to an enzyme E and form a complex C. The complex can either dissociate back
to S and E, or produce a product P, while releasing E. We assume here that the enzyme E and the
complex C are intermediate species, i.e., they are at steady-state and cannot interact with the context.
Therefore, the intermediate species E and C are linearly steady in this network.

We first look at the elimination of the intermediate C with (C-INTER). To this end, we merge each
reaction that produces C (that is, reaction r1) with each reaction that consumes C (reactions r2 and
r3) and obtain the network MMnetC. Thus, merging reactions r1 and r2 (resp. r1 and r3) of MMnet
(Figure 17) results in the reaction r12 (resp. r13) of MMnetC. The simplification also replaces the atomic
constraint cst(C) with cst(k1SE/(k2 + k3)). Since we also have the constraint S, and the parameters
are constant too, we can rewrite cst(k1SE/(k2 + k3)) into the similar cst(S). We also add the constraint
C(0) = k1SE/(k2 + k3).
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S

E

C

P

r1
k1SE

r2
k2C

r3
k3C

cst(E) ∧ cst(C)

S

E

Pr13
k1k3

k2+k3
SE

r12
k1k2

k2+k3
SE

cst(E) ∧ cst(S) ∧ C(0) =
k1

k2 + k3
SE

MMnet MMnetC

S

C

Pr13
k3C

r12
k2C

cst(S) ∧ cst(C) ∧ E(0) =
(k2 + k3)C

k1S

S Pr13

k1k3
k2+k3

SE(0)

r12
k1k2

k2+k3
SE(0)

cst(S) ∧ C(0) =
k1

k2 + k3
SE(0)

MMnetE MMnetCE
∼=MMnetEC

Figure 17. Reaction networks for the Michaelis-Menten example. MMnetE and MMnetC are obtained
from the initial network MMnet after removing E and C respectively. MMnetCE is obtained after
removing both C and then E in this order. MMnetEC is obtained by inverting the order of elimination.

To remove E before the elimination of C, one would merge r3 with r1, r2 with r1, and obtain the
network MMnetE. At this point, in both networks we have an intermediate species that is neither
a product nor a reactant of any reaction, but is used as a modifier. We can then remove it with
(C-MOD), replacing E with E(0) (resp. C with C(0)). We obtain respectively the networks MMnetCE
and MMnetEC. Note that these networks are similar. We can rewrite C(0) = k1SE(0)/(k2 + k3) into
E(0) = (k2 + k3)C(0)/(k1S), and use this equation to rewrite the kinetic rate. Additionally, we can
also use it to transform the kinetic expression of r12 into the usual one for Michaelis-Menten, using the
following transformation. First, we have:

E(0) = (E(0) + C(0))− C(0)
= (E(0) + C(0))− k1SE(0)/(k2 + k3).

We can then rewrite it into:

E(0) =
(E(0) + C(0))(k2 + k3)

k2 + k3 + k1S
.

By replacing E(0) with this expression in the kinetic expressions of r13 in MMnetCE, we obtain
after basic rewriting the classical rate:

k3(E(0) + C(0))
S

k2 + k3

k1
+ S

.

The following diagram illustrates the confluence of the simplifications on these networks.
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MMnet

C-IN
TER
W

V
C-IN

TER

MMnetC MMnetE
V

C-M
OD C-M

OD
W

MMnetCE
∼= MMnetEC

8. Preservation of Linear Steadiness

As we have seen in the previous section, to remove an intermediate species X, we need to impose
that X is linearly steady. When removing a set of intermediate species I , we then need that any X ∈ I
is linearly steady, and moreover than when we remove one intermediate species, the other species
in I remain linearly steady. We therefore introduce the following additional conditions, and denote
by LinNets the set of networks that satisfy these conditions. We then prove that the set LinNets is
stable under the simplification, i.e., that the simplification of a network in LinNets is still a network
in LinNets.

8.1. LinNets

We first define the new conditions, and present some examples to motivate them. For any flux
v; ex, we note ConsI (rv) = {X ∈ I | rv(X) < 0} and ProdI (rv) = {X ∈ I | rv(X) > 0}.

Definition 14. We denote by LinNets the set of constrained flux networks W such that W is similar to
a constrained flux network V&C and that for all intermediates X ∈ I :

1. Either X is linearly steady in V&C, or X is only a modifier, that is for any v; e ∈ V we have rv(X) = 0.
2. No intermediate species different from X occurs in the kinetic expression of a reaction that consumes X:

for any v; e ∈ V, if X ∈ ConsI (rv), then Specs(e) ∩ I ⊆ {X}.
3. The rate of a reaction that produces X but does not consume an intermediate species does not depend on

the concentration of any intermediate species: for any v; e ∈ V, if X ∈ ProdI (rv) and ConsI (rv) = ∅,
then I ∩ Specs(e) = ∅.

4. The total stoichiometry of the intermediate species in the reactant (resp. product) of a reaction is never
greater than one: for any v; e ∈ V, |ConsI (rv)| ≤ 1 and |ProdI (rv)| ≤ 1.

Note that, as a consequence of the stoichiometry condition, the sets ConsI (rv) and ProdI (rv) are
either empty or consist of a single intermediate species.

We illustrate the motivations for these new conditions on the following examples.
Let us first consider the case where a reaction consuming X has a kinetic rate that depends on

another intermediate (here Y in the kinetic rate of r2), so that Condition 2 is not satisfied. It is illustrated
in Figure 18.

A

B

C

X

Y

r1

k1A

r2

k2XY

r3
k3x

r4
k4Y

Figure 18. Example illustrating the need of Condition 2.
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If we remove Y first by merging r3 and r4, then we compute the expression Y =
k3

k4
X. We replace

Y with this expression in the kinetic rate of r2, obtaining a reaction with a non-linear kinetic

expression
k2k3

k4
X2.

Similarly, consider a reaction producing X with a kinetic rate that depends on Y, i.e., a network
where Condition 3 is not satisfied (Figure 19).

A

B

C

X

Y

r1

k1AY

r2

k2X

r3
k3X

r4
k4Y

Figure 19. Example illustrating the need of Condition 3.

If we remove the intermediate Y, the kinetic expression of r1 becomes
k1k3

k4
AX. We obtain

a reaction producing X, with a kinetic expression depending on X. Therefore, the differential equation

for X will not have the required form: 0 = Ẋ = X(
k1k3

k4
A − (k2 + k3)), and we cannot compute

an expression for X.
This kind of situation may also appear as the result of the simplification of reactions where one

intermediate has a stoichiometry greater than one, i.e., Condition 4 is not satisfied (Figure 20).

A

B

C

X

Y

r1

k1A

r2

k2X

r3
k3X

r4
k4Y

2

Figure 20. Example illustrating the need of Condition 4.

In this network, reaction r3 produces two molecules of Y. If we remove Y, the merging of r3 and
r4 is a reaction that produces one molecule of X (and one of C), with kinetic expression k3X.

Finally, if we have two intermediate species that are both reactants (or both products) in the same
reactions (Condition 4 again), then the stoichiometry of one intermediate can become greater than one
as a result of the elimination of the other intermediate (Figure 21).

A

B

C

X

Y

r1

k1A

r2

k2X

r3
k3X

r4
k4Y

Figure 21. Example illustrating the need of Condition 4.
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If we remove Y, the merging of r3 and r4 is a reaction with two molecules of X as reactants.

8.2. Stability of LinNets

Now, we prove that LinNets is stable for our simplification.
We first consider the following proposition.

Proposition 3. Let W, W0 be reaction networks such that W0 ∈ LinNets and W0 V∗C W. Let v; e ∈ W be
a flux that depends on v1; e1, . . . , vk; ek ∈W. Then:

• there exists an index i such that ConsI (rvi ) = ConsI (rv), ProdI (rvi ) = ProdI (rv), and
• for any j 6= i, ProdI (rvj) = ConsI (rvj) = ∅.

The proof of this proposition is quite long and requires some new notions and definitions, and is
given in Appendix B.

We now prove that LinNets is stable for the simplification.

Proposition 4. The set of networks LinNets is stable for the simplification, that is if W ∈ LinNets and
W V W ′, then W ′ ∈ LinNets.

Proof. If the simplification is done with (C-MOD) or (C-SIM), then the conditions of LinNets are
trivially preserved.

Let us assume that the simplification is done with the rule (C-DEP), removing a flux v; e that
depends on vi; ei with coefficient ai. So the simplified network contains the fluxes vi; ei + aie. By
Proposition 3, there is an i such that ConsI (rvi ) = ConsI (rv) and ProdI (rvi ) = ProdI (rv), and for any
other j 6= i, ConsI (rvj) = ProdI (rvj) = ∅.

The fourth condition on the stoichiometry is trivially preserved by the simplification.
For j 6= i, ConsI (rvj) = ProdI (rvj) = ∅ implies that the conditions on the kinetic expressions are

directly satisfied. If vi; ei + aie consumes X, then since ConsI (rvi ) = ConsI (rv), the flux v; e consumes
X too. Then by induction, e and ei are linear in X, and no other intermediate species occurs in them.
Therefore, this is also the case for ei + aie.

If vi; ei + aie produces X without consuming any other intermediate, then it is also the case for v; e.
Then by induction, e, ei, and ei + aie do not depend on the concentration of any intermediate species.
Therefore, the kinetic conditions are satisfied, and W ′ ∈ LinNets.

Finally, consider the case of a rule (C-INTER) applied on a species X. We denote by prod and
cons the expressions defined in the rule. Since W ∈ LinNets, note that for any Z ∈ I , we have
Z /∈ Vars(cons).

Let v; e ∈W ′ be a reaction such that ConsI (rv) = {Y}. We consider the second condition, on the
linearity of Y in e. If v; e ∈ W (that is the flux has not been changed at all by the simplification
rule), then the linearity condition is trivially preserved by induction. v; e cannot be the simplification
of a flux v; e′ with X as modifier, since that would contradict the linearity condition in W. So now
assume the v; e is the merging of a flux vp; ep and vc; ec ∈ W. Then we have ConsI (rvp) = {Y} and
ProdI (rvp) = ConsI (rvc) = {X}. Therefore, the linearity condition implies ep = Ye′p and ec = Xe′c,
with for any Z ∈ I , Z /∈ Spec(e′p), Spec(e′c). Then we have e = Ye′pe′c/cons, and the linearity condition
is satisfied in W ′.

Now let v; e ∈W ′ be a reaction such that ConsI (rv) = ∅ and ProdI (rv) = {Y}, and consider the
third linearity condition. By linearity, v; e cannot be the simplification of a reaction of W with X as
modifier. If we had v; e ∈ W, then the condition is satisfied in W by induction, and therefore in W ′

too. Assume that v; e is the merging of a reaction vp; ep and vc; ec ∈W. Then we have ConsI (rvp) = ∅,
ProdI (rvp) = ConsI (rvc) = {X}, and ProdI (rvc) = {Y}. Therefore, the linearity conditions on W
imply ec = Xe′c, with for any Z ∈ I , Z /∈ Spec(ep), Spec(e′c). Then we have e = epec/cons, and the
condition is satisfied in W ′.



Computation 2017, 5, 14 26 of 43

Finally, consider the stoichiometric condition. We only have to verify this property for new fluxes
v; e that are the merging of a flux vp; ep and vc; ec. We have ProdI (rvp) = ConsI (rvc) = {X}. Moreover,
by normalization, we have

ProdI (rvp�vc) = ProdI (rvc)\ConsI (rvp).

Since |ProdI (rvc)| ≤ 1, we have |ProdI (rvp�vc)| ≤ 1, and similarly for ConsI (rvp�vc).

Then the set LinNets is stable for the simplification. This directly implies that the simplification
can remove every intermediate species in I .

9. Confluence of the Simplification Relation

We now study the confluence of the simplification relation. We first show that the structural
confluence, that is the confluence of the fluxes without kinetics, is a direct consequence of the
previous results. We next present an example that illustrates that, however, the distribution of the
kinetics between the fluxes can be different. Finally, we give a criterion on the modes of a network,
that guarantees the full confluence, that is confluence of the structure and the rates.

In the following, we only consider networks in LinNets.

9.1. Structural Confluence

We say that two constrained flux networks W = V&C and W ′ = V′&C′ are structurally similar,
denoted W∼=struc W ′, if they have the same structure, that is the same fluxes when neglecting the
kinetic expressions:

{v | ∃e. v; e ∈ V} = {v′ | ∃e′. v′; e′ ∈ V′}.

Theorem 3 (Structural confluence). The relationVC on (LinNets,∼=struc) is confluent.

Proof. This is a direct consequence of the stability of the LinNets (Proposition 4) and of the confluence
of the simplification without kinetics (Theorem 2).

9.2. Non-Confluence of the Kinetic Rates

Let us consider the reaction network W, depicted on Figure 22, with 7 species and 6 fluxes.
The intermediate species are X, Y and Z. Initially, the kinetics are all mass-action.

We can remove the intermediate species in different orders with (C-INTER). If we start by
eliminating X, followed by Y and finally Z, we obtain the network WXYZ, while if we first eliminate
X, then Z and Y, we obtain WXZY. These networks are different, since WXYZ has one additional flux.
This illustrates the necessity of the rule (C-DEP) to obtain the same network structure.

Indeed, the additional flux v123456 in WXYZ is dependent on v123 and v456 and can therefore be
removed with (C-DEP), while updating the kinetic expressions. We then obtain exactly the network
WXZY. However, v123456 also depends on v25 and v1346. Therefore, we could as well remove it while
updating these reactions. In that case, we obtain the different network WXYZd. This network has the
same structure as WXZY, but not the same distribution of rates between the fluxes.
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k3(k2+k4)
A

r456
k1k2

4k5(k3+k5)
k3(k4+k5)K
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r123456
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cst(A) ∧ X(0) =
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D
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k1k2

k2+k4
A
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k1k4

k2+k4
A

r25
k1k2k5

k3(k2+k4)
A

r456
k1k4k5
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cst(A) ∧ X(0) =
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r1346k1k4(k3+k5)
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k3(k2+k4)K

A

r456
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4k5(k3+k5)
k3(k2+k4)K
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cst(A) ∧ X(0) =
k1(k3 + k5)

k3(k2 + k4)
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∧Y(0) =
k1
k3

A ∧ Z(0) =
k1k4(k3 + k5)

k3k6(k2 + k4)
A

WXYZd

Figure 22. Network W and its simplifications. (top left) Network W. (top right) Network WXYZ

after eliminating X, Y and Z (in this order). (bottom left) Network WXZY after eliminating X, Z and
Y. (bottom right) Network WXYZd after eliminating X, Y, Z, and the dependent reaction. The new
parameter is K = k2k3 + k3k4 + k4k5.

9.3. Criterion for the Full Confluence

We now give a criterion that guaranties the full confluence of the simplification.

Definition 15. A vector of reactions r = (r1, . . . , rn) is uniquely decomposable if any mode v ∈ ker+(S)
has an unique decomposition in elementary modes, where S is the stoichiometric matrix of Nr|I .

Example 6. Consider the network W represented in the Figure 22, with I = {X, Y, Z}. It has 4 different
elementary modes: v1 = (1, 1, 1, 0, 0, 0), v2 = (1, 0, 1, 1, 0, 1), v3 = (0, 1, 0, 0, 1, 0) and v4 = (0, 0, 0, 1, 1, 1).
Then the mode v = (1, 1, 1, 1, 1, 1) can be decompose in either v1 + v4, or in v2 + v3. The two decompositions
are illustrated in Figure 23. r is not uniquely decomposable, and the simplification is not confluent for the kinetic
rates, as we have seen before.
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Figure 23. Two decompositions of the mode (1, 1, 1, 1, 1, 1) in the network W.

Theorem 4 (Confluence). If the initial vector of reactions r is uniquely decomposable, then the relationVC on
(LinNets,∼=) is confluent, for both the structure and the kinetic rates.

The theorem is the consequence of the following lemmas, that analyze the different critical pairs.
That is, if a network W can be simplified in two different manners into W1 and W2, then these two
networks can be simplified into W ′1 and W ′2 such that W ′1∼=W ′2.

Lemma 7. Assume r is uniquely decomposable. Let W be a network such that W VC-DEP
Wi for i ∈ {1, 2}.

Then ∃W ′i such that Wi V∗C W ′i and W ′1∼=W ′2.

Proof. Let viei be the dependent flux removed when simplifying W into Wi, for i ∈ {1, 2}, with vi; ei
dependent on v1

i ; e1
i , . . . , vki

i ; eki
i with coefficients a1

i , . . . , aki
i .

If v1 = v2, since r is uniquely decomposable, we have {v1
1, . . . , vk1

1 } = {v1
2, . . . , vk2

2 }. So the
simplified networks are trivially the same, that is W1 = W2.

Assume v1 6= v2, and that for any i ∈ {1, 2}, for any j, vi 6= vj
3−i, that is v1 does not depend on

v2 and reciprocally. Then we can still remove v1 in W2, and v2 in W1, and we find the same network
modulo similarity: W ′1∼=W ′2.

If v1 depends on v2, and v2 depends on v1, then since dependencies are positive linear
combinations, that directly implies v1 = v2.

Finally, if v1 6= v2, and v1 depends on v2, with coefficient a, but v2 does not depend on v1

(or conversely), we have v1 = ∑
j

aj
1vj

1 + av2 and v2 = ∑
j

aj
2vj

2. If we remove v1, v2; e2 becomes

v2; e2 + ae1, and can be removed. The fluxes obtained are of the form vj; ej + aj
1e1 + aj

2(e2 + ae1). If we

remove v2 first, then we can remark that v1 is still dependent, with v1 = ∑
j

aj
1vj

1 + a(∑
j

aj
2vj

2), and can

be removed. We obtain the fluxes vj; ej + aj
2e2 + (aj

1 + aaj
2)e1. Then the simplified fluxes are similar,

and W ′1∼=W ′2.

Lemma 8. Let W be a network such that W VC-DEP
W1 and W VC-MOD

W2. Then ∃W ′i such that Wi V∗C W ′i
and W ′1∼=W ′2.

Proof. This case is quite trivial. Let v; e be the dependent flux, X the modifier, and v′; e′ another reaction
such that v depends on v′ with factor a. If we remove X first and then v, the flux v′; e′ is simplified into
v′; e′[X := X(0)] + ae[X := X(0)]. Otherwise, it is simplified into v′; (e′ + ae)[X := X(0)]. The two
expressions are trivially similar.

Lemma 9. Let W be a network such that W VC-DEP
W1 and W VC-INTER

W2. Then ∃W ′i such that Wi V∗C W ′i
and W ′1∼=W ′2.

Proof. The full proof is given in Appendix C. The main idea is to use Proposition 3 to prove that if X is
in the dependent flux vd, it is also in one of the fluxes vi that vd depends on. Therefore, if we eliminate
X and combine vd with another flux v′, we also merge vi with v′. Then vd �X v′ is still dependent on
vi �X v′ and other fluxes, and can be removed.
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Lemma 10. Let W be a network such that W VC-MOD
Wi for i ∈ {1, 2}. Then ∃W ′i such that Wi V∗C W ′i and

W ′1∼=W ′2.

Proof. This case is trivial, since the substitutions commute.

Lemma 11. Let W be a network such that W VC-MOD
W1 and W VC-INTER

W2. Then ∃W ′i such that Wi V∗C W ′i
and W ′1∼=W ′2.

Proof. Once again, since the two removed species cannot be the same, this case is trivial.

Lemma 12. Let W be a network such that W VC-INTER
Wi for i ∈ {1, 2}. Then ∃W ′i such that Wi V∗C W ′i and

W ′1∼=W ′2.

Proof. The full proof is given in Appendix C. The idea is that after removing one intermediate species,
we can still remove the other one, either with (C-MOD) or with (C-INTER). In the second case,
some dependent fluxes are generated, that we can eliminate to find the same simplified network,
whatever the order of elimination of the intermediate species.

10. An Example from the BioModels Database

We have shown that the simplification system that we presented can exhibit non-confluence of
the rates, even in a simple scenario with a small number of intermediates. To find if such a situation
occurs in practice, we investigated the SBML models in the curated BioModels database [6]. We were
thus able to find a network, for the model BIOMD0000000173, that does not verify the confluence
criterion, and such that two different simplified networks can be identified. Note that this was the
only model not satisfying the criterion, when considering every model of the BioModels database with
mass-action kinetics and with three or four linear intermediate species.

The network identified is a model of the Smad-based signal transduction mechanisms from the
cell membrane to the nucleus, presented in [23]. We only consider here a sub-network W of this model,
sufficient to illustrate the non-confluence. It is represented in Figure 24.

In this network, a molecule of S4c, that represents the species Smad4 in the cytoplasm, can bind
with either a molecule of Smad2 in a phosphorylated form (pS2c) and form the complex S24c

(reaction r5), or with a molecule of G in a phosphorylated form (pGc), and form the complex G4c

(reaction r22). These two reactions are reversible (r5′ and r22′ ). The same transformations can occur
in the nucleus (reactions r6, r6′ , r23 and r23′ ). The species Smad4 can also move from the cytoplasm to
the nucleus, or reciprocally (r1 and r1′ ). Finally, the complex of Smad2 and Smad4 can move from the
cytoplasm to the nucleus (r7).

G4c pGc S4c pS2c S24c

G4n pGn S4n pS2n S24n

r22

CkonpGcS4c

r22′CkoffG4c

r5

CkonS4cpS2c

r5′CkoffS24c

r23NkonpGnS4n

r23′ NkoffG4n

r6 konNS4npS2n

r6′ koffNS24n

r1kinS4c r1′ koutS4n r7 kinCIFS24c

Figure 24. Sub-network W of the Smad-based signal transduction model from [23].
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We assume that I = {S4c, S24c, S4n, S24n}. The network is in LinNets. Therefore, we can consider
the elimination of the four intermediate species. According to the order of the simplification, we can
then obtain two different networks, with the same structure, but with different kinetic expressions.
They are represented in Figure 25. The network W1 is obtained by removing S4n first, then S24n,
then S24c, and finally S4c and the dependent fluxes. The network W2 is obtained by removing S4n,
then S24n, S4c, S24c and the dependent fluxes.

G4c pGc pS2c

G4n pGn pS2n

r1 22′ 23

e1

r1′ 22 23′
e2

r5 6′ 7 22′ 23 e3 r1′ 5 6′ 7 e4

In W1 In W2

e1
2G4cpGn

K1

G4cpGn(K1 + K3pS2c)

K1K2

e2
2G4npGc

K1

2G4npGc

K1

e3
G4cpGnpS2c

K1

G4cpGnpS2c(pGc + pS2c + 1)K3
K1K2

e4
pS2c(G4c + G4n)

K1

pS2c(G4c(pS2c + pGc)K3 + G4nK2)

K1K2

Parameters :
K1 = 2G4c + 2pGc + 2G4cpGc + pGcpS2c
K2 = G4c + pGc + pS2c + G4cpGc + pS2cpGc
K3 = 1 + pGc

Figure 25. Simplified networks from W. Both networks have the same structure, and the kinetic
expressions are defined in the table. The network W1 is obtained by removing in order S4n, S24n, S24c,
S4c and the dependent fluxes. The network W2 is obtained by removing in order S4n, S24n, S4c, S24c

and the dependent fluxes.

We now show that the criterion is not satisfied in the initial network, i.e., that W is not uniquely
decomposable. We consider the following mode:

v = v22′ + v1 + v1′ + v5 + v7 + v6′ + v23.

This mode has two possible decompositions into elementary modes, {vred, vblue} and
{vgreen, vmagenta}, with:

vred = v22′ + v5 + v7 + v6′ + v23,
vblue = v1 + v1′ ,

vgreen = v22′ + v1 + v23,
vmagenta = v1′ + v5 + v7 + v6′ .
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We represent these fluxes in Figure 26, where we omit the non-intermediate species and the kinetic
expressions for the sake of simplicity.

S4c S24c

S4n S24n

r22

r22′

r5

r5′

r23

r23′

r6

r6′

r1 r1′ r7

S4c S24c

S4n S24n

r22

r22′

r5

r5′

r23

r23′

r6

r6′

r1 r1′ r7

Figure 26. In red the elementary mode vred, in blue vblue, in green vgreen, and in magenta vmagenta.

11. Simplification of Systems of Equations

In this section, we study the relation between the simplificationVC on reaction networks and
a simplification⇒ on systems. We show that the assignment of a system E(W) to a network W is
a simulation for the simplifications.

11.1. Simplification of Systems of Equations

The simplification of systems is illustrated in Figure 27. The first rule replaces a constant variable
x with its initial value x(0), and ẋ with 0. The second rule extends the simplification to similar systems.
We define the simplification:

⇒ =df ⇒E-INTER .

(E-INTER)
E |= cst(x)

E⇒E-INTER E[x := x(0)][ẋ := 0]

(E-SIM)
E1∼= E′1 E′1 ⇒E-INTER E′2 E′2∼= E2

E1 ⇒E-INTER E2

Figure 27. Simplification rules for systems of equations.

Lemma 13. The simplification is correct for the equivalence, that is:

E⇒ E′ implies E ' E′.

Theorem 5. The relation⇒ on (Syst,∼=) is uniformly confluent.

Proof. It is trivial, since the substitutions commute.

11.2. Simulation

The assignment of a system E(W) to a network W is a simulation from (LinNets,VC) to
(Systems,⇒∗).

Lemma 14. Given a network W ∈ LinNets, if W VC W ′, then E(W)⇒∗ E(W ′).

Proof. The rule (C-SIM) for the networks is directly imitated by the rule (E-SIM) for the systems.
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For the rule (C-MOD), if W VC-MOD
W ′, then we directly have E(W)⇒E-INTER E(W ′).

For the rule (C-INTER), assume that we remove a species X from W to obtain W ′. Then E(W) |=
cst(xX), therefore, we can simplify E(W) into a system E′. We have to prove that E′ ∼ E(W ′).
First, observe that the systems have the same variables.

Consider a differential equation of E(W), for a species A 6= X:

Ȧ = ∑
v;e∈W

rv(A)e

= ∑
{v;e∈W|rv(X)>0}

rv(A)e + ∑
{v;e∈W|rv(X)<0}

rv(A)e + ∑
{v;e∈W|rv(X)=0}

rv(A)e.

We define prod = ∑
{v;e∈W|rv(X)>0}

e and cons = ∑
{v;e∈W|rv(X)<0}

e. The differential equation in E(W ′) becomes:

Ȧ = ∑
v;e∈W ′

rv(A)e

= ∑
{v;e,v′ ;e′∈W|rv(X)>0,rv′ (X)<0}

rv�Xv′(A)
ee′

cons
+ ∑
{v;e∈W|rv(X)=0}

rv(A)e[X := X(0)]

= ∑
{v;e,v′ ;e′∈W|rv(X)>0,rv′ (X)<0}

(rv(A) + rv′(A))
ee′

cons
+ ∑
{v;e∈W|rv(X)=0}

rv(A)e[X := X(0)]

= ∑
{v;e∈W|rv(X)>0}

rv(A)
e

cons
( ∑
{v′ ;e′∈W|rv′ (X)<0}

e′ ) + ∑
{v′ ;e′∈N|rv′ (X)<0}

rv′(A)
e′

cons
( ∑
{v;e∈W|rv(X)>0}

e )

+ ∑
{v;e∈W|rv(X)=0}

rv(A)e[X := X(0)]

= ∑
{v;e∈W|rv(X)>0}

rv(A)
econs
cons

+ ∑
{v′ ;e′∈W|rv′ (X)<0}

rv′(A)
e′prod
cons

) + ∑
{v;e∈W|rv(X)=0}

rv(A)e[X := X(0)].

The system E(W ′) also contains the constraint X(0) = X
prod
cons

. In addition, by the linearity

conditions, we know that for any v; e ∈ W such that rv(X) > 0, we have X /∈ Vars(e), so e =

e[X := X(0)]. For any v′; e′ ∈ W such that rv′(X) < 0, we have e′ = Xe′′, with X /∈ Vars(e′′).

Therefore,
e′prod
cons

= e′′
Xprod
cons

= e′′X(0) = e′[X := X(0)]. So we can rewrite the previous differential
equation into:

Ȧ = ∑
v;e∈W

rv(A)e[X := X(0)].

In E′, we directly have
Ȧ = ∑

v;e∈W
rv(A)e[X := X(0)].

Moreover, in E′, the equation Ẋ = prod− cons is replaced by 0 = prod[X := X(0)]− cons[X :=
X(0)]. We then have prod[X := X(0)] = prod, while cons = Xe for some e such that X /∈ Vars(e).

Then cons[X := X(0)] = Xe[X := X(0)] = X(0)e =
X(0)

X
cons. So we can rewrite the equation

0 = prod[X := X(0)] − cons[X := X(0)] into 0 = prod − X(0)
X

cons, and then into X(0) =
Xprod
cons

.

Therefore, the two systems E′ and E(W ′) have the same differential equations and the same constraint,
and they are similar.

Finally, consider the rule (C-DEP). Let v; e be the removed reaction, depending on v1; e1, . . . , vk; ek,
with coefficients a1, . . . , ak. We write V′ for the set of the other fluxes in W. Let A be a species.
The ordinary differential equation for A in E(W) is:

Ȧ = rv(A)e + ∑
1≤i≤k

rvi (A)ei + ∑
v′ ;e′∈V′

rv′(A)e′.
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Since we have rv = ∑
1≤i≤k

airvi , the equation is similar to:

Ȧ = ∑
1≤i≤k

airvi (A)e + ∑
1≤i≤k

rvi (A)ei + ∑
v′ ;e′∈V′

rv′(A)e′

= ∑
1≤i≤k

rvi (A)(ei + aie) + ∑
v′ ;e′∈V′

rv′(A)e′.

This is the equation for A in the system E(W ′) for the simplified network. Therefore,
E(W)∼= E(W ′).

12. Conclusions

We have first shown that when neglecting the kinetic expressions, the elimination of linear
intermediate species and dependent reactions is a reformulation of the double description method,
that computes the elementary modes, and therefore that the network structure of simplified networks
is unique. In a second time, when considering kinetic expressions, we provided a biological example
illustrating that the simplification can produce two networks with the same structure but different
kinetics. We then gave a sufficient criterion on the network structure of the initial network that
guarantees the confluence of both the structure and the rates.

Note that the criterion seems to be satisfied in most cases in practice. When looking at the
networks with mass-action kinetics from the BioModels database [6], and considering at most four
intermediate species, only the Smad-model BIOMD0000000173 was identified as not satisfying the
criterion. On the other hand, the linearly steadiness as well as the conditions required for a network
to be in LinNets (such as the stoichiometry conditions, etc.) are not always satisfied in real biological
networks, and these are therefore a real restriction on our simplification approach.
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Appendix A. Soundness of the Simplification Rules for Constrained Flux Networks

We prove Proposition 2, stating that the simplification is sound for the congruence: W VC W ′

implies W ∼W ′.
We prove, for each simplification rule, that for any context W ′′ with Spec(W ′′) ∩ I = ∅ and for

any assignment α, we have α ∈ sol(E(W |W ′′)) iff α ∈ sol(E(W ′ |W ′′)). Let us assume that W = V&C,
W ′ = V′&C′, and W ′′ = V′′&C′′. We therefore have

E(W |W ′′) = (
∧

A∈Spec
Ȧ = eV

A + eV′′
A ) ∧ C∧ C′′

where
eV

A = ∑
v;e∈V

rv(A)e and eV′′
A = ∑

v;e∈V′′
rv(A)e.

(C-MOD) Suppose that the removed species is X ∈ I . Since Spec(W ′′) ∩ I = ∅ for any A ∈ Spec,
X 6∈ Vars(eV′′

A ) ∪ Vars(C′′) and eV′′
X = 0. Moreover, ∀v; e ∈ V.rrv(X) = 0, thus eV

A = 0 and the ODE
for X in E(W | W ′′) is Ẋ = 0, which is also the equation for X in E(W ′ | W ′′). As a consequence any
solution α should verify X = X(0). In addition, since E(W | W ′′) and E(W ′ | W ′′) only differ by the
substitution of X(0) for X, they have the same solutions.
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(C-DEP) Let V = V0 ∪ {v; e} ∪ {vi; ei | 1 ≤ i ≤ n} where v = ∑1≤i≤n aivi, i.e., v depends on
v1, . . . , vn with coefficients a1, . . . , an. For any species A, we can write its ODE in E(W |W ′′) as

Ȧ = ∑
v′ ;e′∈V0∪V′′

rv′(A)e′ + rv(A)e + ∑
1≤i≤n

rvi (A)ei

= ∑
v′ ;e′∈V0∪V′′

rv′(A)e′ + ( ∑
1≤i≤n

airvi (A))e + ∑
1≤i≤n

rvi (A)ei

= ∑
v′ ;e′∈V0∪V′′

rv′(A)e′ + ∑
1≤i≤n

rvi (A)(aiei + e)

which is exactly the ODE for A in E(W ′ | W ′′). In addition, the constraints in E(W | W ′′) and
E(W ′ |W ′′) are the same. Therefore, their solutions are identical.

(C-SIM) The soundness of this rule comes directly from Lemma 6.
(C-INTER) Suppose that the removed species is X ∈ I . We note that eV′′

X = 0.
Let (v1, . . . , vk) and (e1, . . . , ek) be such that V = {v1; e1, . . . , vk; ek). Let P, C, prod, and cons be as

in the Diamond Lemma 3, with G the set of kinetic expressions, gi = ei for all 1 ≤ i ≤ k, and h : Nn → G
the homomorphism with h(v) = rv(A). P is the set of indices for fluxes that produce X, C the set of
indices for fluxes that consume X, while prod is the total rate of production of X, and cons its total rate
of consumption.

The ODE for X in E(W | W ′′) is Ẋ = prod− cons. Since X is linearly steady in W, it follows that
C |= (prod = cons) ∧ cons 6= 0. Therefore, we have that C |=| C[X := X(0)] ∧ X(0) = X prod

cons . Let A 6= X
be a species. The ODE for A in E(W |W ′′) writes as

Ȧ = ∑
p∈P

rvp(A)ep +∑
c∈C

rvc(A)ec + ∑
{v;e∈V∪V′′ |rv(X)=0}

rv(A)e.

We next consider the ODE for A in E(W ′ | W ′′) and show that it can be rewritten to obtain the
same result. We have

Ȧ = ∑
p∈P

∑
c∈C

rvp�X vc (A)
epec

cons
+ ∑

m∈M
rvm (A)em[X := X(0)] + ∑

v;e∈V ′′
rv(A)e

= 1
cons ∑

p∈P
∑
c∈C

epech(vp �X vc) + ∑
{v;e∈V∪V ′′ |rv(X)=0}

rv(A)e[X := X(0)] (X 6∈ pSpecs(V′′) by compatibility)

= 1
cons (∑

p∈P
ep cons h(vp) +∑

c∈C
ec prod h(vc)) + ∑

{v;e∈V∪V ′′ |rv(X)=0}
rv(A)e[X := X(0)] (Diamond Lemma 3)

= ∑
p∈P

eprvp (A) + ∑
c∈C

ecrvc (A) + ∑
{v;e∈V∪V ′′ |rv(X)=0}

rv(A)e[X := X(0)] (C |= prod = cons∧ cons 6= 0).

Without the substitution [X := X(0)], this is indeed the equation of A in E(W | W ′′).
The substitution is permitted since we argue modulo similarity of constrained flux networks, and since
C |= cst(X). Therefore, E(W |W ′′) |=| E(W ′ |W ′′) so that W ∼W ′.

Appendix B. Proofs for the Stability of LinNets

We first need to introduce some new notions.
We write r = (r1, . . . , rn) for the initial vector of reactions, and (v1, . . . , vn) for the corresponding

unit vectors, that is, for any i, rvi = ri. Let W0 ∈ LinNets be a constrained flux network, and W
a network obtained by simplifying W0, that is W0 V∗C W.

We first introduce the notion of paths. We will then relate them to the fluxes in W. Note that we
need to distinguish between the case of circular and the case of non-circular path.

Definition A1. Let r be the initial vector of reactions.

• a path ṽ = v1 . . . vk is a (non empty) sequence of unit vectors vi ∈ Nn, such that for any 1 ≤ i < k,
we have ProdI (rvi ) = ConsI (rvi+1) 6= ∅;
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• we denote the vector of a path by ∑ ṽ = ∑
1≤i≤k

vi;

• a path is circular if ProdI (rvk ) = ConsI (rv1) 6= ∅, and non-circular otherwise;
• for a circular path ṽ, we denote the number of intermediate species occurring in the path by ṽ(X) = |{1 ≤

i ≤ k | ProdI (rvi ) = {X}}|;
• for a non-circular path ṽ, we denote its beginning and its end by ConsI (rṽ) = ConsI (rv1) and

ProdI (rṽ) = ProdI (rvk ). In addition, we define the multiset ṽ(X) = |{1 ≤ i < k | ProdI (rvi ) =

ConsI (rvi+1) = {X}}|. Note that we do not count ConsI (rṽ) and ProdI (rṽ) in this multiset.

Example A1. For instance, consider the initial network W0, with I = {X, Y, Z}, in Figure A1 (left). We
denote by vi the unit vector for reaction ri.

The path v1v2v3 is non-circular. It has for vector (1, 1, 1, 0, 0). We have ConsI (rv1v2v3) = ∅ and
ProdI (rv1v2v3) = Z. The multiset is defined by v1v2v3(X) = v1v2v3(Y) = 1, and v1v2v3(Z) = 0 (since Z is
the end of the path, and not an intermediate node).

The path v3v4 is circular. It has for vector (0, 0, 1, 1, 0). The multiset is defined by v3v4(X) = 0 and
v3v4(Y) = v3v4(Z) = 1.

A

X Y

Z

B

r1k1A

r2
k2X

r3

k3Y

r4

k4Z

r5
k5Y

A

X

Z

B

r1k1A r34

k3k4Z
k3+k5

r23

k2k3X
k3+k5

r45

k4k5Z
k3+k5

r25
k2k5X
k3+k5

Figure A1. Networks W0 (left); and W (right).

We will see later that if a path ṽ satisfies some conditions w.r.t. some reaction network W,
then there is a corresponding flux v in W such that ∑ ṽ = v. The reciprocal property also holds.
Such a particular path, called a flux-path, is formally defined as follows.

Definition A2. Let W, W0 be reaction networks such that W0 V∗C W,

• a non-circular flux-path ṽ is a non-circular path in W such that for any intermediate species X with
ṽ(X) > 0, we have X ∈ Spec(W0)\Spec(W) (meaning that one of the simplification steps W0 V∗C W
removes X from W0), and such that ConsI (rṽ) and ProdI (rṽ) are either the empty solution ∅, or the
intermediate species that are still in W,

• a circular flux-path ṽ is a circular path in W if there is at most one intermediate species X such that
ṽ(X) > 0 and X ∈ Spec(W) (i.e., X is not yet simplified),

• we call flux-path a path that is either a circular or a non-circular flux-path.
• a flux-path ṽ is said to correspond to a flux v in W if ∑ ṽ = v.

Example A2. Let us consider the simplified network W in Figure A1 (right).
The non-circular path v1v2v3 is not a non-circular flux-path, since v1v2v3(X) > 0 and X has not been

removed. The path v2v3 is a non-circular flux-path, and corresponds to the flux v23.
The path v3v4 is a circular flux-path, since there is a unique intermediate species, Z, that has not been

removed and such that v3v4(Z) > 0. It corresponds to v34.

We first prove the following lemma on the dependent flux.
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Lemma A1. Let v; e be a flux that depends on v1; e1, . . . , vk; ek with coefficients a1, . . . , ak. For any i, let ṽi be
a corresponding flux-path for vi. Then:

v = ∑
1≤i≤k

ai ∑ ṽi.

Proof. We directly have v = ∑
1≤i≤k

aivi and for any i, vi = ∑ ṽi.

We can now prove the key lemma of this section.

Lemma A2. Let W, W0 be reaction networks such that W0 ∈ LinNets and W0 V∗C W. Then the following
properties hold:

1. for any flux v; e ∈W, there is a corresponding flux-path ṽ for W such that ∑ ṽ = v. Moreover, if v is not
dependent then, for any intermediate species X, we have ṽ(X) ≤ 1;

2. for any flux-path ṽ for W such that for any X, ṽ(X) ≤ 1, there is a corresponding flux v; e ∈W, that is
∑ ṽ = v;

3. if v; e ∈W depends on v1; e1, . . . , vk; ek ∈W, then

• there exists an index i such that ConsI (rvi ) = ConsI (rv), ProdI (rvi ) = ProdI (rv), and
• for any j 6= i, ProdI (rvj) = ConsI (rvj) = ∅ and any flux-path ṽj that corresponds to v is circular.

Proof. We proceed by induction on the simplification steps. We start by proving each conclusion of
the Lemma for the base case, that is W = W0.

(1) for flux v; e in the initial network W0, v is necessarily a unary vector vi for some i. So we can directly
associate the flux-path ṽ = vi that trivially corresponds to v. Since it is a unary vector, the flux v
is also necessarily not dependent. Because a flux-path of size 1 is always non-circular, we also
have, for any intermediate species X, ṽ(X) = 0, and thus ṽ(X) ≤ 1 as required.

(2) any flux-path ṽ for W0 is necessarily of size 1. Otherwise, for ṽ being a non-circular flux-path,
there would exist some X ∈ Specs(W0)\Specs(W0) = ∅. And for ṽ being a circular
flux-path, there would exist at least two species X and Y such that ṽ(X) > 0 and ṽ(Y) > 0,
which contradicts the definition of circular flux-path. Then there exists vi; e ∈ W0 such that
vi = ṽ.

(3) as said above, a flux v; e ∈W0 v can not be dependent.

Now, considering the inductive case, we assume that the Lemma is true for a network W ′ such
that W0 Vk

C W ′ (for some k > 0) and W ′ VC W. If W ′ VC-MOD
W or W ′ VC-SIM

W, only the kinetics are
modified between W ′ and W. Therefore, the Lemma is still true in W. It remains to investigate the
cases W ′ VC-DEP

W and W ′ VC-INTER
W.

(C-DEP) Assuming that W ′ VC-DEP
W, we prove that each point of the Lemma is satisfied by W.

(1) Let v; e ∈ W, then it is the case that v; e′ ∈ W ′ for some expression e′ because the rule
(C-DEP) only removes a dependent flux and modifies some kinetic expressions. By induction
hypothesis, there is a flux-path ṽ for W ′ such that ∑ ṽ = v. Also, because Specs(W) = Specs(W ′),
any flux-path for W ′ is also a flux-path for W, which proves that ṽ is a flux-path for v. Finally,
if v is dependent in W, it is necessarily dependent in W and satisfies ∀X ∈ I .ṽ(X) ≤ 1 by
induction hypothesis.

(2) Let ṽ be a flux-path for W such that, for any intermediate species X, ṽ(X) ≤ 1. Again,
because Specs(W) = Specs(W ′), ṽ is also a flux-path for W ′. By induction hypothesis, there is
a corresponding flux v; e ∈ W ′. If v; e is not the flux that is removed by the application of
(C-DEP), then this flux still occurs in W (possibly with an updated kinetic) and we conclude
directly. We now show that it can not actually be otherwise, and more precisely, that assuming v
removed by (C-DEP) contradicts ṽ(X) ≤ 1.
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Suppose that v is removed by (C-DEP), then v depends on some fluxes v1; e1, . . . vk; ek in W ′.
For the sake of simplicity, we only consider the case where ConsI (rṽ) = X for some intermediate
X ∈ W. The other case works similarly. We necessarily have k > 1, because k = 1 contradicts
the linearity assumption. By induction hypothesis and Point 3, there exists in particular at
least one j such that ProdI (rvj) = ConsI (rvj) = ∅. Again, by induction hypothesis, there exists
ṽ′ = v′1, . . . , v′l a circular flux-path corresponding to vj in W ′. Since it is circular, there exist some
intermediate species X1, . . . , Xl such that for any 1 ≤ i < l, ConsI (rv′i

) = Xi and ProdI (rv′i
) =

Xi+1, and ConsI (rv′l
) = Xl , ProdI (rv′l

) = X1. Note that we also have Xi 6= X, since, by definition

of flux-path, Xi /∈ W ′ for any i, while X ∈ W. Since ∑ ṽ = v = ∑ vk and vj = ∑ ṽ′ = ∑
i

v′i,

the unit vectors v′i also appear in the flux-path ṽ. So the intermediate species Xi are present at
least one time in ṽ. Moreover, there is at least one i such that in ṽ, the unit vector vi is preceded
by a unit vector that is not one of ṽ′. Therefore, Xi is produced by another flux, i.e., ṽ(X) > 1,
which contradicts the hypothesis.

(3) Let v; e ∈W be a flux dependent on v1; e1, . . . , vn; en ∈W, that is, in particular, v = ∑1≤i≤k nivi for
some ni > 0. Since (C-DEP) removes one flux and possibly modifies some kinetics, there is a flux
v; e′ ∈ W in W ′ that either depends on v1; e′1, . . . , vn; e′n ∈ W or on v0; e′0, v1; e′1, . . . , vn; e′n ∈ W
where v0; e′0 is the flux removed by (C-DEP). The latter case is not possible, since it would
imply that v = ∑1≤i≤k nivi = n0v0 + ∑1≤i≤k nivi for some n0 > 0 and unary vector v0.
Thus, we conclude that v; e′ ∈W depends on v1; e′1, . . . , vn; e′n ∈W that, by induction hypothesis,
satisfies the conditions of Point 3.

(C-INTER) Now, assuming that W ′ VC-INTER
W, we again prove that each point of the Lemma is

satisfied by W.

(1) Let v; e be in W. Either there is a corresponding flux v; e′ ∈ W ′, and we conclude directly by
induction hypothesis, or v; e is the result of merging some vp; ep ∈W ′ that produces X and some
vc; ec ∈W ′ that consume it. In this case, by induction hypothesis, there are some corresponding
flux-paths ṽp and ṽc. The concatenation ṽ = ṽpṽc of these paths is a flux-path. Indeed,

• the production of ṽp coincides with the consumption of ṽc because there is an intermediate
species X such that ProdI (rvp) = ConsI (rvc) = {X}, ProdI (rṽp) = ProdI (rvp) and
ConsI (rṽc) = ConsI (rvc).

• if ṽ is non-circular, for any intermediate species Y such that ṽ(Y) > 0, either Y = X
and Y ∈ Specs(W0)\Specs(W), or, ṽp(Y) > 0 or ṽc(Y) > 0 and by induction hypothesis,
Y ∈ Specs(W0)\Specs(W ′) that is Y ∈ Specs(W0)\Specs(W).

• if ṽ is circular, there exists an intermediate species Y which is both consumed by vp and
produced by vc. The flux-path ṽc cannot be circular, as this would imply ConsI (rvc) =

ProdI (rvc) = ∅ 6= X, and similarly for ṽp. By definition of non-circular flux-path, X and Y
are the only two species in ṽc and ṽp such that X ∈ Specs(W ′) and Y ∈ Specs(W ′). Thus, Y is
the only non-eliminated intermediate species in ṽ w.r.t. W, meaning again that ṽ is indeed
a circular flux-path.

Moreover, ṽ trivially corresponds to v. We prove with Point 3 that if ṽ is non-dependent,
then ṽ(X) ≤ 1 for any X.

(2) Let ṽ be a flux-path for W such that for any Y, ṽ(Y) ≤ 1. Let X be the intermediate species
removed by (C-INTER), in particular ṽ(X) ≤ 1, hence either ṽ(X) = 0 or ṽ(X) = 1.
Since Specs(W) = Specs(W ′)\{X}, if ṽ(X) = 0, then ṽ is also a flux-path for W ′, so by induction
there is a corresponding flux v; e′ ∈ W ′. Since ṽ(X) = 0, we still have a flux v; e ∈ W,
that corresponds to ṽ. If ṽ(X) = 1 then we can decompose ṽ into ṽp producing X and ṽc

consuming X such that ṽ = ṽpṽc. ṽp and ṽc can not be circular, as this would imply that X is
both consumed and produced by ṽp and by ṽc, contradicting the fact that ṽ(X) = 1. Therefore
ṽp(X) = ṽc(X) = 0. Again, because Specs(W) = Specs(W ′)\{X} and X is the species removed
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by (C-INTER) and ṽ is a flux-path, ṽp and ṽc are (non-circular) flux-paths for W ′. We can then
apply the induction hypothesis and infer that there are some corresponding fluxes vp, vc ∈W ′,
the first one that produces X and the second one that consumes it. Consequently, there is a flux
v; e ∈W that is the merging of vp and vc, and that corresponds to ṽ.

(3) Let v; e ∈ W be a flux that depends on v1; e1, . . . , vk; ek ∈ W and X be the intermediate species
removed by (C-INTER). We distinguish two cases: either (case 1) v; e is the simplification of some
flux v; e′ (meaning that v does neither produce nor consume X) or (case 2) it results from merging
fluxes that produce and consume X.

(Case 1) By induction hypothesis and Point 1, there exists a flux-path ṽ corresponding to v for
W ′. We have ṽ(X) = 0 since X has not been removed. Suppose that there is i ∈ {1, . . . , k}
such that vi is the merging, by (C-INTER), of fluxes that produce and a consume X. In this
case, for any ṽi corresponding to vi, ṽi(X) > 0 and, by the Lemma A1, we would have that
ṽ(X) > 0, which contradicts ṽ(X) = 0. Therefore, none of the vis are the merging of other fluxes
by (C-INTER), therefore, there are v1; e′1, . . . , vk; e′k ∈W ′ such that v; e′ depends on those fluxes.
Since, by induction hypothesis, Point 3 is satisfied for v; e′ in W ′, it is also satisfied for v; e in W.
(Case 2) Let vp; ep ∈ W ′ be a flux that produces X, and vc; ec ∈ W ′ a flux that consumes it and
v; e ∈ W their merging. Let ṽp and ṽc be flux-paths in W ′ for, respectively, vp and vc (such flux
paths exist by induction hypothesis). Any corresponding path ṽ is then the concatenation of
corresponding paths ṽp and ṽc.

We first prove that, if either vp; ep or vc; ec is dependent in W ′, then v; e is also dependent in W.
By induction, if vp; ep depends on v′1; e′1, . . . , v′`; e′`, there exists a unique i such that ConsI (rv′i

) =

ConsI (rvp), ProdI (rv′i
) = ProdI (rvp) = {X}, and, for any j 6= i, ConsI (rv′j

) = ConsI (rv′j
) = ∅.

Then, there is a flux v′′i ; e′′i in W that is the merging of v′i and vc, and there are fluxes v′j; e′j in W
for j 6= i. Then v; e depends on v′′i ; e′′i and the v′j; e′j.

If both vp; ep and vc; ec are not dependent, by induction hypothesis, for any Y 6= X, in the
corresponding flux-path, we have ṽp(Y) ≤ 1 and ṽc(Y) ≤ 1. If ṽp(Y) + ṽc(Y) ≤ 1, then ṽ(Y) ≤ 1.
We also have ṽ(X) = 1 (indeed, X is the removed species, so ṽp(X) = ṽc(X) = 0 and the X
produced by ṽp is merged with the X consumed by ṽc in ṽ). Therefore, in this case Point 1 is
satisfied. If there is a Y such that ṽp(Y) = ṽc(Y) = 1, then Y occurs twice in ṽ, and there is
an intermediate species Z (that can possibly be Y if no other intermediate species occurs more
than once between both occurrences of Y) such that ṽ(Z) = 2 and such that there is a circular
flux-path ṽcyc, subpath of ṽ that begins and end with Z:

ṽ :

ṽp︷ ︸︸ ︷
...→ Y → ...→︸ ︷︷ ︸

ṽ1

Z → ...→ X

ṽc︷ ︸︸ ︷
→ ...→ Z︸ ︷︷ ︸

ṽcyc

→ ...→ Y → ...︸ ︷︷ ︸
ṽ2

Then using Point 2, there is a corresponding flux vcyc ∈ W, with ConsI (rvcyc) = ProdI (rvcyc).
We can repeat the same operation on the remaining path ṽ1ṽ2, and obtain at each step a new
(circular) flux. We stop when we obtain a remaining path ˜vrem, such that for any Y, we have

˜vrem(Y) ≤ 1. Then there is a corresponding flux vrem with ConsI (rvrem) = ConsI (rv),
and ProdI (rvrem) = ProdI (rv). Then v is dependent on vrem and the set of circular fluxes we
obtained in this process. Therefore, in this case Point 3 is satisfied.

Now assume that vp; ep and vc; ec are dependent, and so that v; e is dependent too. By induction
and using Point 3, vp; ep depends on a flux vp,i; ep,i with ConsI (rvp,i ) = ConsI (rvp) and
ProdI (rvp,i ) = ProdI (rvp), and on other fluxes such that ConsI (rvp,j) = ConsI (rvp) = ∅,
and similarly for vc; ec. Then any vp,j; ep,j and any vc,j; ec,j is still in W, while vp,i; ep,i is merged
with vc,i; ec,i, forming a new flux vi; ei. Then v; e depends on vi; ei, the vp,j; ep,j and the vc,j; ec,j.
Since ProdI (rvi ) = ProdI (rvc,i ) = ProdI (rvc) = ProdI (rv), and similarly ConsI (rvi ) =

ConsI (rv), Point 3 is satisfied.
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Then Proposition 3 is a direct corollary of Point 3 of Lemma A2.

Appendix C. Proofs of the Full Confluence of the Simplification

We prove Lemmas 9 and 12.

Lemma A3. Let W be a network such that W VC-DEP
W1 and W VC-INTER

W2. Then ∃W ′i such that Wi V∗C W ′i
and W ′1∼=W ′2.

Proof. Let X be the intermediate species, and vd; ed the dependent reaction, that depends on
v1; e1, . . . , vn; en, with coefficients a1, . . . , an.

The main idea is to use the Proposition 3 to prove that if X is in the dependent flux vd, it is also in
one of the fluxes vi whose vd depends on. Therefore, if we eliminate X and combine vd with another
flux v′, we also merge vi with v′. Then vd �X v′ is still dependent on vi �X v′ and other fluxes, and can
be removed.

Let us first assume that X is not involved in vd (that is, X /∈ ProdI (rvd) ∪ ConsI (rvd)).
By Lemma A2, Point 3, X is not involved in the vi either. Then vd will still be dependent in W2, so we
can still remove it after removing X. Reciprocally, X can still be removed in W1. We now show that the
simplification of the fluxes vi, ei are the same in W ′1 and W ′2. The case for the other fluxes is trivial. In W ′1,
we obtain the flux vi; (ei + aied)[X := X(0)]. In W ′2, we obtain vi; ei[X := X(0)] + aied[X := X(0)].
Therefore, these two expressions are similar, and W ′1∼=W ′2.

Assume that X ∈ vd, for instance ProdI (rvd) = {X}. Then, again by Lemma A2 and Point 3,
there is a flux vi; ei with ProdI (rvi ) = {X}, and for any other j 6= i, ProdI (rvj) = ConsI (rvj) = ∅.
We denote by prod and cons the expressions as defined in the rule (C-INTER), by Vprod the fluxes that
produce some X, and Vcons the ones that consume it.

In W2 after removing X, we obtain the fluxes:

• the combination of vd and the consuming fluxes: {vd � vcons; edecons/cons | vcons; econs ∈ Vcons},
• the combination of ri and the consuming reactions: {vi � vcons; eiecons/cons | vcons; econs ∈ Vcons},
• the other combined fluxes: {vprod � vcons; eprodecons/cons | vprod; eprod ∈ Vprod, vcons; econs ∈ Vcons},
• the remaining fluxes not combined: {vj; ej[X := X(0)]}j 6=i,
• the other fluxes that are not in Vprod, Vcons, vj, where we substitute X by X(0).

Since vd was dependent on v1, . . . , vn, we have that any flux vd � vcons in the first set is dependent
on a flux vi � vcons in the second set and the fluxes vj. Therefore, we can recursively remove those
fluxes with the rule (C-DEP). We obtain the network W ′2 with the fluxes:

• {vi � vcons; eiecons/cons + edecons/cons},
• {vprod � vcons; eprodecons/cons},
• {vj; ej)[X := X(0)] + ∑

econs

aiedecons/cons},

• the other fluxes that are not in Vprod, Vcons, vj, where we substitute X by X(0).

Now, if we first remove vd, in W1 we obtain the fluxes:

• vi; ei + ed
• {vj; ej + ajed}j 6=i
• Vcons\{vd, vi},
• Vprod,
• the other fluxes that are not in Vprod, Vcons, vj.

We can still remove X, we obtain the reactions:

• {vi � vcons; (ei + ed)econs/cons},
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• {vprod � vcons; eprodecons/cons},
• {vj; (ej + ajed)[X := X(0)]},
• the other fluxes that are not in Vprod, Vcons, vj, where we substitute X by X(0).

Note that we have:

ej[X := X(0)] + ∑
econs

ajedecons/cons ∼= ej[X := X(0)] + ajed

∼= (ej + ajed)[X := X(0)].

The fluxes of the two simplified networks are therefore similar, that is W ′1∼=W ′2. The case with
ConsI (rvd) = {X} is similar.

Lemma A4. Let W be a network such that W VC-INTER
Wi for i ∈ {1, 2}. Then ∃W ′i such that Wi V∗C W ′i and

W ′1∼=W ′2.

Proof. The main idea here is that after removing one intermediate species, we can still remove the
other one, either with (C-MOD) or with (C-INTER). In the second case, some dependent fluxes are
generated, that we can eliminate to find the same simplified network, whatever the order of elimination
of the intermediate species.

Let X and Y be the intermediate species removed to obtain W1 and W2. We can partition the fluxes
of W into:

• VX = {vX ; eX | X ∈ ProdI (rvX ), Y /∈ vX}, the fluxes producing X without Y,
• VX′ = {vX′ ; XeX′ | X ∈ ConsI (rvX′ ), Y /∈ vX′}, the fluxes consuming X without Y,
• Vmod(X) = {vmod(X); emod(X) | X /∈ ProdI (rvmod(X)

) ∪ ConsI (rvmod(X)
), X ∈ Vars(emod(X)), Y /∈

vmod(X)}, the fluxes with modifier X and without Y,
• VY = {vY; eY | Y ∈ ProdI (rvY ), X /∈ vY}, the fluxes producing Y without X,
• VY′ = {vY; YeY′ | Y ∈ ConsI (rvY ), X /∈ vY}, the fluxes consuming Y without X,
• Vmod(Y) = {vmod(Y); emod(Y) | Y /∈ ProdI (rvmod(Y)) ∪ ConsI (rvmod(Y)), Y ∈ Vars(emod(Y)), X /∈

vmod(Y)}, the fluxes with modifier Y and without X,
• VXY′ = {vXY′ ; YeXY′ | X ∈ ProdI (rvXY′ ), Y ∈ ConsI (rrXY′ )}, the fluxes producing X and

consuming Y,
• VX′Y = {vX′Y; XeX′Y | Y ∈ ProdI (rvX′Y ), X ∈ ConsI (rvX′Y )}, the fluxes producing Y and

consuming X,
• Vmod(XY) = {vmod(XY); emod(XY) | X, Y /∈ vmod(XY)}, the fluxes with modifier X and Y.

We define the following variables:

• TX = ∑
VX

eX TX′ = ∑
VX′

eX′

• TY = ∑
VY

eY TY′ = ∑
VY′

eY′

• TX′Y = ∑
VX′Y

eX′Y TXY′ = ∑
VXY′

eXY′

Let first remove X. We obtain the following combined fluxes:

• VX �VX′ = {vX � vX′ ; eXeX′/(TX′ + TX′Y)},
• VX �VX′Y = {vX � vX′Y; eXeX′Y/(TX′ + TX′Y)},
• VXY′ �VX′ = {vXY′ � vX′ ; eXY′ eX′Y/(TX′ + TX′Y)},
• VXY′ �VX′Y = {vXY′ � vX′Y; eXY′ eX′YY/(TX′ + TX′Y)}.

The fluxes with X as modifier become (with X(0) = (TX + YTXY′)/(TX′ + TX′Y):

• V′mod(X) = {vmod(X); emod(X)[X := X(0)]},
• V′mod(XY) = {vmod(XY); emod(XY)[X := X(0)]}.
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Finally, some fluxes are not modified:

• VY = {vY; eY},
• VY′ = {vY; YeY′},
• Vmod(Y) = {vmod(Y); emod(Y)}.

There are now two cases to consider. First, it is possible that Y is now only a modifier in W1.
This means that VX = VX′ = VY = VY′ = 0, that is any flux with X as reactant (resp. product) also
admits Y as product (resp. reactant), and reciprocally. We can then apply (C-MOD) on W1, and obtain
the fluxes (with X(0) = Y(0)TXY′/TX′Y):

• VXY′ �VX′Y = {vXY′ � vX′Y; eXY′ eX′YY(0)/TX′Y}.
• V′mod(X) = {vmod(X); emod(X)[X := X(0)]},
• Vmod(Y) = {vmod(Y); emod(Y)[Y := Y(0)]},
• V′mod(XY) = {vmod(XY); emod(XY)[xX := X(0)][Y := Y(0)]}.

Using the constraint X(0) = Y(0)TXY′/TX′Y to rewrite the first kinetic expression into
eXY′ eX′YX(0)/TXY′ , we can see by symmetry that we obtain similar fluxes by removing Y first (with
(C-INTER)) and then X (with (C-MOD)).

In the other case, we can still remove Y with (C-INTER). We first compute the sum UY (resp. UY′ )
of the kinetics of the fluxes that produced (resp. consumed) Y :

UY =
TX′TY + TYTX′Y + TXTX′Y

TX′ + TX′Y
UY′ =

TX′TY′ + TY′TX′Y + TX′TXY′

TX′ + TX′Y
.

We write T = TX′TY′ + TY′TX′Y + TX′TXY′ . We obtain the following combined fluxes:

• (VX �VX′Y) � (VXY′ �VX′) = {vX � vX′Y � vX′ � vXY′ ;
eXeX′ eXY′ eX′Y
(TX′ + TX′Y)T

},

• (VX �VX′Y) �VY′ = {vX � vX′Y � vY′ ;
eXeY′ eX′Y

T
},

• VY � (VXY′ �VX′) = {vY � vXY′ � vX′ ;
eYeXY′ eX′

T
},

• VY �VY′ = {vY � vY′ ;
eYeY′(TX′ + TX′Y)

T
}.

The fluxes with Y as modifier become:

• (VXY′ �VX′Y)
′ = {vXY′ � vX′Y;

TX′TY + TYTX′Y + TXTX′Y
T(TX′ + TX′Y)

eXY′ eX′Y},

• V′′mod(X) = {vmod(X); emod(X)[X :=
TXTY′ + TXTXY′ + TYTXY′

T
]},

• V′′mod(XY) = {vmod(XY); emod(XY)[X :=
TXTY′ + TXTXY′ + TYTXY′

T
][Y :=

TYTX′ + TYTX′Y + TXTX′Y
T

]},

• V′mod(Y) = {vmod(Y); emod(Y)[xY :=
TYTX′ + TYTX′Y + TXTX′Y

T
]}.

Finally, some fluxes do not involve Y:

• RX � RX′ = {vec(rX) + vec(rX′); eXeX′/(TX′ + TX′Y)}

Now we can observe that we obtained some dependent fluxes. Any flux in (VX �VX′Y) � (VXY′ �
VX′) is the combination of a flux from (VXY′ � VX′Y)

′ and VX � VX′ . We can then remove the first
flux, while modifying the kinetics of the others. Finally, after simplifying the kinetic expressions by
similarity, the simplified network has the following fluxes:

• VX �VX′ = {vX � vX′ ;
eXeX′(TY′ + TXY′)

T
},

• VY �VY′ = {vY � vY′ ;
eYeY′(TX′ + TX′Y)

T
},



Computation 2017, 5, 14 42 of 43

• (VX �VX′Y) �VY′ = {vX � vX′Y � vY′ ;
eXeY′ eX′Y

T
},

• VY � (VXY′ �VX′) = {vY � vXY′ � vX′ ;
eYeXY′ eX′

T
},

• V′′mod(X) = {vmod(X); emod(X)[xX :=
TXTY′ + TXTXY′ + TYTXY′

T
]},

• V′mod(Y) = {vmod(Y); emod(Y)[xY :=
TYTX′ + TYTX′Y + TXTX′Y

T
]},

• (VXY′ �VX′Y)
′ = {vXY′ � vX′Y;

(TY + TX)eXY′ eX′Y
T

},

• V′′mod(XY) = {vmod(XY); emod(XY)[xX :=
TXTY′ + TXTXY′ + TYTXY′

T
][xY :=

TYTX′ + TYTX′Y + TXTX′Y
T

]},

We can observe that:

• the 2 first sets are symmetric to each other, in the sense that if we switch X and Y in the first set,
we obtain the second one,

• the 2 following sets are symmetric to each other,
• the 2 following sets are symmetric to each other too,
• the following set is symmetric in X and Y,
• the last set is symmetric in X and Y (since the substitutions commute).

Therefore, by symmetry, we can obtain exactly the same network if we first remove Y, then remove
X and the dependent fluxes. We conclude that W ′1∼=W ′2.
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