
computation

Article

Artificial Immune Classifier Based on ELLipsoidal
Regions (AICELL) †

Aris Lanaridis *, Giorgos Siolas and Andreas Stafylopatis

Intelligent Systems Laboratory, National Technical University of Athens, Athens 15780, Greece;
giosiolas@gmail.com (G.S.); andreas@cslab.ntua.gr (A.S.)
* Correspondence: aristeides@gmail.com
† This paper is an extended of our paper published in Lanaridis, A.; Stafylopatis, A. An Artificial Immune

Classifier Using Pseudo-Ellipsoid Rules. In Proceedings of the 26th International Symposium on Computer
and Information Sciences, London, UK, 26–28 September 2011.

Received: 31 March 2017; Accepted: 7 June 2017; Published: 17 June 2017

Abstract: Pattern classification is a central problem in machine learning, with a wide array of
applications, and rule-based classifiers are one of the most prominent approaches. Among these
classifiers, Incremental Rule Learning algorithms combine the advantages of classic Pittsburg and
Michigan approaches, while, on the other hand, classifiers using fuzzy membership functions often
result in systems with fewer rules and better generalization ability. To discover an optimal set of rules,
learning classifier systems have always relied on bio-inspired models, mainly genetic algorithms.
In this paper we propose a classification algorithm based on an efficient bio-inspired approach,
Artificial Immune Networks. The proposed algorithm encodes the patterns as antigens, and evolves
a set of antibodies, representing fuzzy classification rules of ellipsoidal surface, to cover the problem
space. The innate immune mechanisms of affinity maturation and diversity preservation are modified
and adapted to the classification context, resulting in a classifier that combines the advantages of
both incremental rule learning and fuzzy classifier systems. The algorithm is compared to a number
of state-of-the-art rule-based classifiers, as well as Support Vector Machines (SVM), producing very
satisfying results, particularly in problems with large number of attributes and classes.

Keywords: artificial immune systems; artificial immune networks; pattern classification; learning
classifier systems; evolutionary algorithms

1. Introduction

The immune system is a complex of cells, molecules and organs that aim at protecting the host
organism from invading pathogens. The system’s ability to recognize these pathogens is not innate,
but can be acquired through a complex learning process, which adapts antibodies to recognizing
specific types of antigens. However, the invading agents also evolve rapidly, and to combat them
effectively the system must be able to generalize its recognition ability to similar, incomplete or
corrupt forms of the antigen. In addition to this antigen-specific response, the system must regulate
the diversity of its antibody population so that they are able, as a whole, to recognize a wide array
of pathogens while, at the same time, not recognize each other, in order to be able to discriminate
the pathogens from the organism’s own healthy tissues. These abilities of learning, generalization,
noise-tolerance and diversity regulation have made the immune system a suitable source of inspiration
for a corresponding bio-inspired model, artificial immune networks.

The response of the immune system is primarily explained by two mechanisms. According to
the Clonal Selection [1] principle, when an antigen is encountered antibodies are born to confront it.
These antibodies have receptors that adapt their shape through a process similar to natural selection,
except on a much faster time scale, in order to better match the corresponding antigen. This evolution

Computation 2017, 5, 31; doi:10.3390/computation5020031 www.mdpi.com/journal/computation

http://www.mdpi.com/journal/computation
http://www.mdpi.com
http://dx.doi.org/10.3390/computation5020031
http://www.mdpi.com/journal/computation

Computation 2017, 5, 31 2 of 24

is based of a repeated cycle of cloning, mutation and survival of the fittest antibodies, gradually
resulting in a population of antibodies of increased ability to match the pathogens, a process known
as affinity maturation. The best of these antibodies are stored as memory cells, to be recalled if the
antigen is encountered again in the future. Additionally, according to the Immune Network Theory [2],
the distinction between antibodies and antigens in not innate to the system. Instead the receptors
of antibodies bind to any molecule of matching shape, forming a network of molecules that can
recognize, as well as be recognized by, other molecules. To avoid mistaking its own antibodies for
pathogens, which results in auto-immune disease, the immune system must ensure that antibodies
not only match antigens, but do not match other antibodies. In combination, these two principles
mean that the network must evolve in a manner that guarantees both the quality and the diversity of
its population. These principles have been successfully applied to the development of engineering
approaches, dealing with a variety of classification problems [3], multimodal function optimization [4,5],
gene expression tree optimization [6], cascade airfoil optimization [7], breast cancer detection [8] and
sensor drift mitigation [9].

We propose in this paper an algorithm applied to one of the central problems of machine learning,
that of pattern classification. The proposed classifier encodes the patterns to be recognized as antigens,
and evolves a set of antibodies encoding pattern recognition rules of ellipsoidal shape, which are
efficient in covering oblique areas of the problem space, in contrast to most rule-based classifiers which
are based on rectangular rules. We adapt the innate characteristics of the immune network diversity to
ensure the cooperation between those rules, and employ fuzzy membership functions to avoid the
exhaustive coverage of the space, which usually results in a large number of rules covering very few
patterns, having negative impact on the generalization ability of the classifier. Finally, we modify the
computational paradigm, so that the aim of the system is not the recognition, but the elimination of the
antigens. This not only brings it closer to the biological model, but also enables us to adapt the fuzzy
rules to the approach of Incremental Rule Learning, which combines some of the benefits of traditional
Pittsburg and Michigan rule-based classifiers.

A preliminary version of the classifier has been presented in [10]. The current version constitutes
a major extension of the former work, including several improvements with respect to both the
technical content and the presentation. Among others, a new rule initialization method has been
introduced, which, in synergy with the evaluation metric, leads the search to uncovered areas of the
problem space, thus improving the performance and convergence of the algorithm. Additionally,
the criteria of unfit antibody removal have been extended to include both recognition ability and
space coverage. Also, the mutation probability has been adapted to the dimensionality of the problem.
Finally, the algorithm has been extensively tested on a number of established benchmark problems,
and compared to other state-of-the-art algorithms, using multiple statistical metrics.

The paper continues by giving an overview of learning classifier systems in Section 2. Section 3
provides a description of the modifications made to the immune paradigm and an outline of the
proposed method. Individual aspects of the algorithm are discussed in the following sections.
In particular, Section 4 describes the form of the classification rule encoded by the antibodies of
the network, Section 5 discusses the mutation operator used to evolve it, and Section 6 proposes
a fuzzy evaluation metric for selecting the best rules. A suitable rule initialization process is described
in Sections 7 and 8 discusses the preservation of the network quality and diversity by removing unfit
antibodies. Section 9 sums up the previous sections in a formal description of the algorithm, and the
paper concludes with Section 10, which tests the proposed algorithm on a set of benchmark problems,
compares it against state-of-the-art algorithms, and applies a number of significance tests to assess
the results.

2. Overview of Learning Classifier Systems

Pattern classification aims at finding a function that maps a vector describing the features of
a pattern to a category among a given set. The problem is approached in various ways, with some

Computation 2017, 5, 31 3 of 24

algorithms assigning the pattern to the class having the most similar patterns (a typical example
being k-nearest neighbors algorithm), while others classify it based on some statistical attributes of
the patterns in each class (the most well-known example being Naive Bayes Classifier). However,
most algorithms approach the problem in a geometric manner, searching the vector space for
hyper-surfaces that separate patterns of different classes. Typical examples of this approach are
Support Vector Machines (SVM) and Neural Networks.

Another popular type of geometric classifiers are decision trees, which partition recursively each
attribute’s range of values into subranges, until a stopping criterion is met. In this manner, decision
trees separate the problem space into subspaces, each described by a rule of the form if xi ∈ [li, ui] and
xj ∈ [lj, uj] then class. Although all geometric classifiers form a set of rules mapping a pattern to a
subset of the problem space, rules of this particular form are easily interpretable, and for this reason,
decision trees are often called rule-based classifiers.

However, finding the optimal set of such rules is an NP-complete problem [11], regardless of
the optimality criterion used. As as result, most rule-based classifiers rely on greedy algorithms that
partition the space iteratively, with the aim of maximizing some separation criterion, with information
gain being the most common. The use of evolutionary algorithms was proposed by Holland [12] as
an alternative, leading to learning classifier systems. To implement a such system, two important
decisions have to be made, namely, how the chromosomes represent classification rules, and how the
evolutionary algorithm is used to evolve them. Traditionally, there have been two main approaches
(see [13] for details).

According to the Pittsburg approach [14], a chromosome encodes a set of rules forming a complete
classifier. The genetic algorithm applies crossover and mutation to the best of these rules. Since each
chromosome represents a complete classifier, evaluation is straight-forward. However, chromosomes
tend to be long, making the search space too large. Morever, either the number of rules has to be
decided in advance, or some variable-length mechanisms have to be employed, making optimization
even harder. According to the alternative Michigan approach [15], each chromosome represents an
invidividual rule, resulting in much smaller search space, and easier optimization. However, evalution
of the rules becomes much more complicated, since they have to be evaluted both individually, as well
as in terms of their ability to co-operate, to form a complete classifier.

As a compromise between the two approaches, Incremental Rule Learning [16] algorithms
were proposed. According to this approach, each chromosome encodes a single rule, as in
Michigan classifiers. However, instead of evolving the complete set of chromosomes simultaneously,
the algorithm begins with an empty set and adds a new rule at each iteration. Each rule evolves
individually, while patterns that are covered by existing rules are removed from the dataset, to avoid
overlap and ensure that newly-created rules search uncovered areas of the problem space. To a
large extent, this approach combines the smaller search space of Michigan and cooperation of
Pittsburg classifiers.

Regardless of which of the above approaches is followed, there is a number of additional
implementation choices which have an important effect on the resulting algorithm.

• If the classifier rules are ordered, they form an if-elseif-else chain, and the pattern can be assigned
to the first rule whose condition is satisfied. However, with unordered rules of if-else form, further
actions are needed to ensure their co-operation, minimize the overlap, and assign the pattern to
a class.

• The most common form of condition combines clauses of the form xi ∈ [li, ui] for each
dimension of the problem. These rules form a hyper-rectangle, whose faces are parallel to
the axes. However, by using a linear combination of the pattern attributes, oblique areas of the
problem space can be covered. These linear rules can be combined to form surfaces of arbitrary
shape. Alternatively, inherently non-linear rules can be used, such as spheres, quadratic or
ellipsoidal surfaces.

Computation 2017, 5, 31 4 of 24

• If the patterns are presented to the classifier one at a time, the fitness of the rules that recognize
the pattern increases, while for the others it decreases. If no rule matches the pattern, a new one is
created. When the patterns are presented in batch, the algorithm can focus of the total coverage of
the dataset by the existing set of rules.

• The rules must be evaluated both individually and as a whole. The individual evaluation can
be based on either the rule’s ability to accumulate high reward values (strength-based) or its
ability to predict its reward, regardless of its value (accuracy-based). To evaluate the rule-set
as a whole, various criteria can be used, regarding the total coverage of patterns, minization of
overlap, fitness sharing, etc.

• Most of the rule-based classifiers rely on crisp memberhip functions. To cover all the patterns of
the dataset, they often have to create rules covering very few patterns, with low generalization
ability. The employment of fuzzy membership functions resolves this problem to some extent,
but is not consistent with most existing evaluation criteria.

3. Outline of the Immune Network Classifier

Based on the biological principles of affinity maturation and immune network theory mentioned
in Section 1, a multitude of computational models have been developed (we refer the reader to [17–19]
for an extended overview). While each model differentiates from the others in specific aspects, all of
them have in common the fact that they address the problem by maintaining a population of antibodies.
These antibodies construct a network in the sense that they perform a task in collaboration (while
each single member of the network is incapable of producing results), and that the evolution of each
antibody depends on specific qualities of other antibodies present in the network. The evolution of
each individual antibody is based on criteria concerning its quality, while the evolution of the network
as a whole is based on the preservation of diversity, by removing antibodies that are too similar and
replacing them by new ones.

Throughout the evolution of the network, antibodies are born, evolve and die. In particular,
new antibodies are born when the size of the population is insufficient to confront the antigens.
On the contrary, when the population size increases beyond the desired size, the antibodies that do not
considerably contribute to the diversity of the network die, leaving space for the fittest and most diverse
antibodies to evolve. Antibodies that both exhibit sufficient quality and contribute to the diversity
remain in the network. The evolution of these antibodies is based on the clonal selection principle.
That is, for each antibody a number of clones (exact copies of the antibody) are created, and the clones
go through a mutation process, producing variants of the original antibody. Among these variants,
the best ones survive and are inserted to the network.

However, contrary to the computational models, the aim of the biological immune system is not
the recognition, but the elimination of the antigens. The recognition ability acquired is a by-product of
this process. The suggested algorithm follows this approach which, not only brings it closer to the
biological model, but also yields practical benefits, as shown in the following sections. To incorporate
that into the algorithm, we introduce a health factor for each antigen, described by a variable
h ∈ [0, hmax]. The use of the term health does not imply that the antigen is beneficial to the organism,
but quantifies the degree to which it can withstand the damage inflicted by the antibodies before it is
dead. This factor is also an indicator of the strengh of the antigen, and consequently the importance
assigned to it by the network.

Each of the antibodies composing the network is dedicated to a particular class of antigens.
The antibody weakens the antigens of that class to a degree proportional to its affinity to them, having
no effect on antigens of other classes. Consequently, the throughout the individual evolution of a rule,
the antibody aims at maximizing its affinity to antigens of the same class. The overall evolution of
the network is based on the creation and addition of such rules. If the addition of new antibodies
results in large degree of similarity or some antibodies presenting lower-than-average recognition
ability, these antibodies die and are removed from the network. At each point, the overall effect of the

Computation 2017, 5, 31 5 of 24

network to an antigen is proportionate to its total affinity to all the antibodies of the same category
in the network. The process continues with the addition of new rules, until all antigens are dead or
sufficiently weakened.

For the purpose of pattern classification, each antigen encodes a pattern to be recognized,
along with its class, and antibodies encode recognition rules. The following chapters explain in
detail the form of these rules, the mutation and evaluation process, and the preservation of network
quality and diversity by removing unfit antibodies. The combination of these elements results in the
proposed system being a strengh-based, fuzzy incremental rule learning classifier.

4. Rule Encoding

In constrast to most rule-based classifiers, which encode rules having an if xi ∈ [li, ui] and
xj ∈ [lj, uj] then class form, producing hyper-rectangles in the problem space, the proposed method
employs rules of ellipsoidal form. Such rules have been used in some cases in learning rule
systems [20–23]. However, ellipsoidal surfaces are computationally complex, and all of the above
algorithms rely on some clustering method to decide the number and center of the ellipsoids in
advance, while the evolutionary algorithm is used for micro-tuning of the parameters.

On the contrary, the proposed method is a complete algorithm of producing a set of fuzzy rules
based on ellipsoidal surfaces. The system evolves such rules dynamically, defining their number so
that they cover all of the dataset, while at the same time, not being too similar or having too much
deviation in terms of their quality. To simplify the computations, an alternative form of the ellipsoid is
used, which, although not completely equivalent, retains its basic characteristics.

4.1. Ellipsoid Definition

An ellipse is the locus of the points on a plane for which the sum of distances to two constant
points focal points f1, f2 is constant, that is, the set of all x for which{

x ∈ R2 : ‖x− f1‖+ ‖x− f2‖ = r
}

(1)

The above locus can also be generated by the linear transform of a circle. As a result, an ellipse
can be equivalently defined as

{Ax + b : x ∈ C(0)} (2)

where A is a matrix representing a linear transform (scaling and rotation), b is the translation from the
origin of the axes, and C(0) is the unit circle centered at the origin, producing the equivalent definition{

z : (z− b)TC(z− b) = 1, z ∈ R2
}

(3)

where C = (AAT)−1 is a symmetric, positive-definite matrix.
If Equation (3) is used to create a set of points in a 3-dimensional space, the resulting locus has the

property that its intersection with every plane that passes through point b forms an ellipse. In this sense,
it can be regarded as a 3-dimensional equivalent of the ellipse, which is called ellipsoid. Althrough this
definition concerns only the 3-dimensional space, similar sets of points in higher dimensions are often
also called ellipsoids.

The set of points produced using Equation (1) in 3 dimensions does not have this property, which
characterises an ellipsoid in the strict sense. Still, it produces a quadratic surface whose points have the
same total distance to two other constant points in that space. In this sense it forms a 3-dimensional
generalization of the ellipse, and is used in the current algorithm as the basis for recognition rules.
This form constitutes a broad-sense formulation of the ellipsoid, which retains the essential geometric
characteristics of the ellipse, while also being significantly simpler computationally than the form
described by Equation (3).

Computation 2017, 5, 31 6 of 24

4.2. Fuzzy Pseudo-Ellipsoidal Rules

To produce the classification rule, we first re-write Equation (1) as

d(x) =
‖x− f1‖+ ‖x− f2‖

r
(4)

which re-defines the ellipsoid as the set of points x for which d(x) = 1, regardless of the size of
the ellipsoid.

However, all of the above equations describe an (n− 1)-dimensional closed surface in the
n-dimensional vector space. Given that this surface is intended to be used as a classification rule,
we are concerned not only with the points on the surface, but also with the ones inside the enclosed
volume. This set of points consists of the points for which d(x) ≤ 1. Equivalently, we could define the
volume enclosed by the ellipsoid, as a membership function given by

µ(x) =

{
1, d(x) ∈ [0, 1]

0, d(x) > 1
(5)

where d(x) is the normalized distance of a point x from the two focal points, as defined by Equation (4).
This crisp membership function partitions the space into points inside or outside the space

enclosed by the rule. To create a fuzzy rule, this membership function must be transformed to a fuzzy
one, so that every point belongs to the rule to some degree. For this purpose, we use the function

µ(x) = exp
(
−d(x) f

)
(6)

where f ∈ [0,+∞] is a parameter defining the steepness of the membership function. It can be seen
that for f → +∞ the above equation reduces to (5). In practice, a typical range for the values of f is
f ∈ [2, 8], since for lower values the function becomes almost uniform, while for larger ones it closely
resembles the crisp membership function.

5. Mutation Operator

Given the critical role of mutation on the evolution of the network, this section provides a detailed
description. We first describe the operator used, specifically the non-uniform mutation operator for
real-valued features, defined in [24]. After that, we adapt the mutation range of each feature to the
particular characteristics of the proposed rule form, and the mutation probability to achieve its most
efficient performance.

5.1. Non-Uniform Mutation Operator

Given a vector x = {x1, . . . , xn} to be mutated, the non-uniform mutation operator acts on each of
its attributes with probability pm. Assuming an attribute xi ∈ [li, ui] selected for mutation, the operator
produces a new value

x′i =

{
xi + ∆(t, ui − xi) , u1 ≤ 0.5

xi − ∆(t, xi − li) , u1 > 0.5
(7)

where
∆(t, y) = y(1− ur(t)

2) (8)

In the above equations, u1 and u2 are random values drawn from the standard normal distribution
u1, u2 ∼ N (0, 1). The quantity r(t) defines the range of the mutation, which is a function of the current
generation t. For the operator to function properly, the value r(t) must be confined in [0, 1] and its
value must decrease as t increases. Given a such r(t), the function ∆(t, y) returns a value in [0, y] such
that the probability that ∆(t, y) → 0 increases as t increases. As a result, as the training progresses,

Computation 2017, 5, 31 7 of 24

the produced value x′i will be closer to the initial value xi. This property allows the operator to search
the problem space globally at first and more locally in later stages of the training.

The originally proposed form of r(t), which is also used here, is

r(t) =
(

1− t
T

)b
(9)

where t is the current generation of the training, T is the total number of generations, and b a parameter
defining the decay of r(t) with t. This form has been widely employed in the literature, with typical
values of b lying in b ∈ [2, 20].

5.2. Mutation Range

For the non-uniform mutation to function properly, each attribute x must be confined in a range
[xmin, xmax]. To simplify the procedure, all the patterns of the dataset are normalized so that all
the values of their attributes lie in [−1, 1]. After the normalization, all the attributes of the vectors
describing the focal points of the ellipse also lie in [−1, 1], and can take any value in that range.

On the contrary, the distance r of the surface of the ellipsoid from the focal points can not take
any value. Its minimum value must be at least equal to the distance between the focal points, that is

rmin = ‖ f1 − f2‖ (10)

Regarding its maximum value, there is no constraint. However, is should be large enough so that
it can cover the whole problem space. As such value, we choose the largest possible distance in that
space, that is

rmax =
√
‖[1]n − [−1]n‖ = 2 ·

√
n (11)

where n the number of dimensions.
However, the interval [rmin, rmax] cannot be use directly as mutation range for the attribute r, since

the value of rmin changes every time the focal points f1, f2 are mutated. For this reason we define
a factor α ∈ [0, 1], which is used for linear mapping from [0, 1] to the current value of [rmin, rmax].
The mutation operator is applied to this quantity, and after the mutation of f1, f2 and the evaluation of
the resulting rmin, the value of r is calculated by

r = rmin + α · (rmax − rmin) (12)

Finally, the shape of the membership function relies on f . For f → 0 the function becomes almost
uniform, while for f → +∞ the function resembles the crisp membership. To avoid these extremes,
it is confined in f ∈ [fmin, fmax], where the values fmin, fmax are selected experimentally (with a typical
value range being f ∈ [2, 8]) .

5.3. Mutation Probability

A central characteristic of genetic algorithms is that they rely mostly on crossover to evolve
the population of candidate solutions [12,25]. Very few members of the population are selected for
mutation and, when this happens, it is usually to introduce diversity in the population. For this reason,
the algorithms employing mutation usually mutate all the attributes of the solutions. The resulting
solution is usually far from optimal, but that is not a concern, because it will be improved with the
crossover operator. On the contrary however, immune systems rely solely on mutation to evolve the
population, and consequently a different strategy must be used.

The mutation of an attribute of a candidate solution is a random procedure and, as such, it can
be beneficial or detrimental to the quality of the individual. When the number of attributes selected
for mutation is small, the probability that all, or most or the mutations are beneficial is significant.

Computation 2017, 5, 31 8 of 24

However, as the number of selected attributes increases, this probability decreases dramatically,
and reduces to random search for a large number of mutated attributes.

For this reason, we select a number nm of attributes to be mutated at each generation, and, if n is
the total number of attributes composing each solution, the mutation probability of each attribute is
set to

pm =
nm

n
(13)

It is noted that this probability concerns only the focal points f1, f2 of the pseudo-ellipsoid.
The quantities α and f are scalar quantities, and are mutated in every generation of the training.

6. Evaluation Metrics

In this section we give a brief description of some commonly used rule evaluation metrics (we refer
the reader to [26–28] for more details), and provide a modified evaluation metric for the proposed
fuzzy classifier.

6.1. Common Evaluation Metrics

With the exception of Pittsburg classifiers, all learning systems rely on a criterion that evaluates
rules individually. Most criteria are based on the common precision and accuracy metrics.
Assuming that P, N is the total number of positive and negative patterns in the dataset, and p, n
the number of positive and negative patterns covered by a rule, accuracy is defined as

hacc =
p + (N − n)

P + N
(14)

This equation can be reduced to hacc = c1 · (p − n) + c2, where c1, c2 are two constants.
Consequently, the main characteristic of this rule is that it assigns equal importance to covering
a positive and not covering a negative pattern. As a result, rules covering many patterns can receive
a high accuracy score, even if they include a large number of negative patterns, reducing the percentage
of correct classifications.

Precision is defined as
hpr =

p
p + n

(15)

This quantity evaluates the percentage of correct classifications, but completely ignores the
size of the rule, often producing too many rules covering a small number of patterns. Such rules,
despite covering only positive patterns, have little or no generalization ability.

As a compromise between the two criteria, the m-estimate has been proposed

hm =
p + m · P

P+N
p + n + m

(16)

This quantity is a modification of precision, requiring that each rules covers at least m patterns.
The value of m decides the trade-off between classification percentage and size of the rules, as it is
obvious that for m→ 0 it converges to precision, while it can be shown that for m→ +∞ it converges
to accuracy.

6.2. Fuzzy m-Estimate

The evaluation metric defined by Equation (16) relies on the number p, n of patterns covered by
a rule. However, the proposed method uses fuzzy rules, and so every pattern in the dataset is covered
by every rule to some degree. As this degree is quantified by the value of the membership function,
we can regard the fuzzy equivalent of p, n as

Computation 2017, 5, 31 9 of 24

p = ∑
i∈P

µi, n = ∑
i∈N

µi (17)

where µi is the membership of the i-th antigen to the rule.
Moreover, the algorithm assigns to each pattern importance proportional to the strengh of the

antigen that encodes it. Given that this value is given by hi for the i-th pattern, the above quantities
have to be further modified by weighting the patterns by that quantity, resulting in

p = ∑
i∈P

hi · µi, n = ∑
i∈N

hi · µi (18)

This modification ensures that the network assigns maximum importance to stronger antigens
(h → hmax), while weak or dead (h → 0) antigens have little or no effect to the evolution of the rule.
From an algorithmic point of view, this weight factor leads the search of the space to areas that have
not yet been covered sufficiently by existing rules, since in already covered areas hi → 0 and the value
of the evaluation metric will be small, while in uncovered areas hi → hmax and the metric receives
larger values.

By replacing these terms in the original equation, the evaluation metric becomes

e =
∑i∈P hi · µi + M |P|

|P∪N|
∑i∈P∪N hi · µi + M

(19)

This modified criterion combines the original m-estimate with the fuzzy membership function,
and makes the proposed method a fuzzy generalization of the Incremental Rule Learning strategy.
In particular, as the steepness of the membership function increases to f → +∞, the value of the
membership function converges to µi → 1, and the health of antigens covered by the rule to hj → 0.
Since the contribution of these patterns to Equation (19) reduces to 0, these patterns can be regarded as
effectively removed from the dataset, and the behavior of the algorithm converges to that of a standard
Incremental Rule Learning system.

7. Rule Initialization

In traditional learning classifier systems, the rules are randomly initialized [12,14,15], and it is
left to the evolution process to lead them to the appropriate areas of the problem space. The same
approach can be followed in the proposed system. However, given that the purpose of the training is
to cover the problem space to the largest possible extent, it is preferable that the new rules are created
in areas that have not been already covered. In our case, these areas are the ones where health h of the
antigens has high values.

To detect such areas, each time a new rule is to be created, all the patterns of the dataset are
examined as candidate centers of the rule. For each pattern, its nearest neighbors are detected, and the
sum of their values is calculated. We note that in this calculation, only the patterns belonging to the
same class as the candidate center are included. The value of the sum is given by

Hi = ∑
i∈knn(P)

hi (20)

The area where Hi has the maximum value is the one that has been covered to the least degree up
to that point, and the most suitable for a new rule. However, it is not guaranteed that this rule will have
a sufficient fitness value. In this case, the produced rule will be removed, and the system will create
a new one. Since the removed rule has no effect on the antigens, if the selection was deterministic,
the same rule would be created again, resulting in an endless loop.

Computation 2017, 5, 31 10 of 24

To avoid this, the pattern that will be the center of the new rule is not chosen deterministically
according to the value Hi, but instead, by using tournament selection. Each pattern can be selected
with probability

pi = c · Hi (21)

where c is such that

∑
i

c · Hi = ∑
i

pi = 1⇒ c =
1

∑i Hi
(22)

Consequently, the selection probability of the i-th pattern is

pi =
Hi

∑i Hi
(23)

The above procedure selects the center of a new rule to be created. We note that, since the network
is based on ellipsoid rules, each rule has two focal points. Consequently, during the initialization,
the two points coincide, since they are given the same initial value. However, this has no effect
on the evolution of the rule, since they will be differentiated when the training begins, due to the
mutation operator.

The suggested initialization method has a significant impact on the performance of the algorithm.
Figure 1 gives an illustrative example, comparing the decay of the average antigen health h̄ during
the incremental addition of 50 rules, for 3 executions of the algorithm, for both initialization methods.
The results shown regard the libra dataset (which will be presented in the experimental section),
however the effect was similar for all the problems examined.

0 10 20 30 40 50
training generation (t)

0

20

40

60

80

100

av
er

ag
e

an
tig

en
 h

ea
lth

 (h
)

random
health-proportional

Figure 1. Comparison between the random and health-proportional initialization. The figure displays
the decrease of average antigen health h̄ with the number of training generations t. As evident from
the figure, the proposed method results in faster convergence and smaller deviation between runs.

As shown by the figure, the proposed initialization method has the following advantages in
comparison to random initialization:

• The convergence is much faster. Using random initialization, the center of the new rule might be
situated in an area that is already covered by other rules, and the mutation operation might fail
to lead it to a suitable area. In this case, the rule will be rejected by the network, providing no
improvement for that iteration. On the contrary, with the proposed method, it is guaranteed that
the new rule will be initialized in an appropriate area.

Computation 2017, 5, 31 11 of 24

• To deviation between different runs significantly reduces. As a result, the algorithm achieves
more robust behavior.

• The coverage of the dataset, and consequently the final performance of the system, improves.
As time progresses and the uncovered areas decrease, it becomes very difficult for the algorithm
to detect them, especially in spaces with large number of dimensions. On the contrary, with the
proposed initialization, the detection of uncovered areas is almost guaranteed.

8. Antibody Death

An essential property of the immune network is that it regulates its antibody population,
by creating new antibodies and removing existing ones. The birth of new antibodies is aimed at
fighting antigens than have not been recognized by the existing ones, while the death of existing
antibodies aims at maintaining its population fitness and diversity. In particular, antibodies die when
they have significantly inferior fitness or large similarity to other antibodies. At this section we define
the two corresponding criteria.

8.1. Death Due to Low Fitness

As the network evolves and new antibodies are added, the average fitness of the antibodies that
comprise it changes. In most cases, after the training has progressed for a long time and the largest
portion of the problem space has been covered by existing rules, it is likely that the new rules will have
inferior fitness to the existing ones. In other cases, rules of higher fitness may appear in later stages of
the training, increasing the average fitness of the network and rendering some of the existing rules
inadequate. In either case, it is desirable that the rules with significantly smaller fitness are removed
from the network, so as not to undermine its overall performance. To achieve this, each time a new
rule is added, all rules in the network are re-evaluated, and those will significantly smaller fitness
are removed.

The evaluation of the fitness of an antibody is indicated by the value of the evaluation metric
described in Section 6. To remove the inferior rules, we must look into the distribution of this value
among the network antibodies and remove the significantly inferior ones, with some outlier detection
criterion. However, the problem is that the fitness values lie in most cases in a small subset of the [0, 1]
interval. In such a small interval the value differences are not large enough to consider some points
as outliers.

As explained, the evaluation metric evaluates at the same time two features of the rule, namely the
number of patterns it covers and the percentage of these belonging to the correct class. Combining these
two values in one is suitable choice during the training, because, for a rule to be selected, it must score
satisfying values in both these features. On the contrary however, to reject a rule, it suffices that it is
inferior in only one of them. Consequently, at this stage we examine each component of the fitness
separately for each rule. The advantage of this approach is that these two values have large range of
values, and so it is much easier to detect outliers. An illustrative example is given in Figure 2.

The coverage of a rule is given by
c = ∑

i∈P∪N
µi (24)

This quantity presents large deviations between rules, being close to zero for some rules and
reaching hundrends of patterns for others, making the outlier detection easier. In a similar manner,
the precision of a rule can be described as

p =
∑i∈P µi

∑i∈P∪N µi
(25)

In contrast to the coverage, this value is confined in [0, 1]. However, for most rules p→ 1, so the
inferior ones are easy to detect.

Computation 2017, 5, 31 12 of 24

To rule out the outliers, we use the common Tukey’s range test [29], based on the interquantile
distance. In particular, assuming that the values of the distribution lie in the range [α, β], we split it in
4 quantiles, [α, Q1, Q2, Q3, β], such that, Q2 is the median value of [α, β] and Q1, Q3, are the medians of
[α, Q2], [Q2, β] respectively.

The outliers are assumed to be the values for which

x /∈ [Q1 − k · IQ, Q3 + k · IQ] (26)

where IQ = Q3 −Q1 is the interquantile distance (range containing 50% of the values of the distribution),
and k is a parameter with a non-negative value, with common values in the interval [1.5, 2.5].

(a)

0.0 0.2 0.4 0.6 0.8 1.0
evaluation

1
2

fre
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0
precision

1
2

fre
qu

en
cy

0 20 40 60 80 100 120 140
coverage

1
2

fre
qu

en
cy

(b)

Figure 2. Removing rules of lower quality. The two rules in the center of (a) are inferior to the rest, one
of them because it covers many patterns of the wrong class and the other because of its small coverage.
Although the value of their evaluation metric, shown in (b), is indeed lower, they cannot be easily
detected based on that value. However, by breaking the metric down to its coverage and precision
components, the differences become much clearer, and the two rules can be rejected as outliers.

8.2. Death Due to High Similarity

In a similar manner, the network retains its diversity by removing rules that are too similar to
each other. To a large extend this has been assisted by the incorporation of the health factor h in
the evaluation metric, as well as the initialization method described in Section 7. Using these two
mechanisms, the network assists the coverage of new areas of the problems space, by initializing rules
in uncovered areas, and by giving small rewards to mutated clones moving towards the covered ones.

However, given that the evolution is based on random operators, it is still possible that some rule
results in some covered area. This becomes more likely as the training progresses, and the problem
space is left with large areas with small values, and small areas with large values, which can yield
comparable fitness values. To avoid this phenomenon, during the addition of a rule to the network,
it is compared to all existing rules. If the new rule presents high similarity to one of the existing rules,
only one of them remains in the network, based on the fitness value.

To apply the above, we must define a similarity metric between two rules. The patterns covered
by a rule are reflected by the vector containing the value of its membership function for all patterns in
the dataset. If for the i-th rule the membership of the k-th pattern is µik, then the vector containing all
the values of all the membership of all patterns to the rule is

µi = [µi1, . . . , µin] (27)

Computation 2017, 5, 31 13 of 24

Two rules can be regarded as similar if they cover the same patterns, that is, if the vectors of
their membership values are similar. We use as similarity metric the inner product of the two vectors,
normalized in [0, 1], giving a similarity of

sij =
µi · µj

‖µi‖ · ‖µj‖
(28)

between rules i and j.
After the training of the i-th rule has been completed, and before it is added to the network,

its similarity to all the rules in the network is calculated

S =
{

sij|j ∈ [1, |B|]
}

(29)

and the rule with the maximum similarity is selected

j = arg max
j∈[1,|B|]

sij (30)

If the similarity sij surpasses a threshold Smax (which is a parameter of the training) then, only the
rule with the higher fitness value remains in the network, that is

B =

{
B∪ {bi} \ {bj} ei > ej

B ei ≤ ej
(31)

We note that it is sufficient to compare the new rule with the one given by Equation (30).
The similarity cannot surpass the threshold for two or more rules, since two such rules would be
similar to each other and one of them would have been rejected in a previous stage of the training.

9. Formal Description

Having described in detail the elements that make up the proposed algorithm, we provide in this
section a formal description. Let A = {a1, . . . , am} be the set of antigens, with each antigen representing
a pattern which is to be classified. The attributes of the antigens are normalized to the interval [−1, 1]n,
where n is the number of attributes of each antigen. let CA = {ca1, . . . , cam} be the classes of the
corresponding antigens. Regarding the initial health of the antigens, it is set to hmax = 1 for all antigens.
In principle, this value can differ among antigens, since it represents the relative importance the
network assigns to each pattern. However, for a classification system with no a priori knowledge of
the problem, all patterns are supposed to be of equal importance.

The set of antibodies is initialized to B = ∅. For the evolution of the network, the following steps
are repeated while min

i∈A
hi ≥ hmin.

1. A new antibody is created. Its focal points are set to f1 = f2 = aj, where aj is an antigen selected
by the rule initialization procedure described in Section 7. The steepness f of the membership
function and radius α receive random values from a uniform distribution in [fmin, fmax] and [0, 1]
respectively. The class of the antigen cbi receives a random value from the set CA.

2. For a number of T generations, where t is the current generation, the following steps are repeated

(a) NC clones (exact copies) of the antibody are created.
(b) The mutation range is set to r = t

T .
(c) Each attribute of f1, f2 is mutated with probability pm.
(d) f and α are mutated with probability p = 1.

3. Among the mutated clones, the one that maximizes the fuzzy m-estimate, given by Equation (16),
is selected and added to the network, producing the candidate set of antibodies B∗.

Computation 2017, 5, 31 14 of 24

4. For each antibody, the coverage, precision and maximum pairwise similarity is calculated,
as defined by Equations (24), (25) and (29) respectively. Outliers, in terms of any of these
values, are removed as described in Section 8, producing the current set of antibodies B.

5. The health of each antigen is reduced by a quantity equal to its membership to each antibody of
the same class, until its health drops to zero, giving

hj = max

(
0, 1−

‖B‖

∑
i=1

µij · I(i, j)

)
(32)

where

I(i, j) =

{
1, cbi = cai

0, cbi 6= cai
(33)

The loop is repeated until min hi < hmin. At this stage, each pattern is assigned to the class of the
rule to which it exhibits the largest membership value. Specifically, the pattern encoded by an antigen
aj will be assigned to the class cbk of the k-th antibody, where the value of k is given by

k = arg max
i∈[1,‖B‖]

µij (34)

10. Experiments

In this section, we present an experimental evaluation of the proposed method by testing it on
a number of benchmarks datasets from two well-known sources, LIBSVM [30] and UCI Repository [31].
The datasets are presented in Table 1 where, for each problem, the number of attributes, classes and
instances are listed, after removing patterns with missing values. In problems where a separate
test set is provided, it is used for the evaluation, while for the rest of the problems we used 5-fold
cross-validation.

Table 1. Datasets used for the evaluation of the algorithms. The datasets are ordered in increasing
number of attributes, and for each one the number of classes and instances are listed. On problems
where a test set is not provided, 5-fold cross-validation was used.

Dataset Attributes Classes Training Test

iris 4 3 150
pima 8 2 768
wisconsin 9 2 683
wine 13 3 178
vehicle 18 4 846
steelplates 27 7 1941
ionosphere 34 2 351
satellite 36 6 2000 4435
optdigits 64 10 3823 1797
libra 90 15 360
musk 166 2 476
dna 180 3 1400 1186
semeion 256 10 1593
usps 256 10 7291 2007
protein 357 3 17,766 6621
madelon 500 2 2000 600
isolet 617 26 6238 1559
mfeat 649 10 2000

Computation 2017, 5, 31 15 of 24

The performance of the proposed method is compared against a number of state-of-the-art
rule-based classifiers. We have selected one representative algorithm from each major type of learning
classifier systems, in particular RIPPER [32] (Incremental Rule Learning), GASSIST [33] (Pittsburg-style
classifier), SLAVE [34] (fuzzy rules) and UCS [35] (Michigan-style classifier). These algorithms have
been shown to produce the best results in a wide range of comparisons (we refer to reader to [36] for
an extended survey).

To test the statistical significance of the results, we employ two groups of tests: The Friedman [37]
significance test, as well as its two variations, Aligned ranks [38] and Quade test [39], assume that all
the compared classifiers have equal performance, and employ post-hoc tests when the null hypothesis
is rejected. On the other hand, the two versions of the Wilcoxon test [40], namely the ranked-sum test
and the signed ranks test, provide pairwise comparisons of the algorithms. These tests have been
shown [41–43] to be more appropriate for comparing classifiers that the widely-used Student t-test
and sign-test.

Regarding the training, we used a Matlab implementation of the proposed method. For the
training of the classifier, NC = 100 clones where created for each antibody, while the number of
generations was set to T = 20. The membership function steepness was confined to f ∈ [2, 8],
the mutation range decay was set to b = 5 and the number of features mutated to nm = 10, resulting
in a mutation probability of pm = 10

n , where n is the number of features of each particular problem.
Based on this value of n, we set of the m-estimate parameter and number of neighbors for rule
initialization to

√
n. The outlier threshold parameter was set to k = 1.5, and the maximum allowed

similarity to smax = 0.9. Finally, the termination criterion was set to hmin = 1
e .

To evaluate RIPPER, GASSIST, UCS and SLAVE we used the well-known Keel framework [44,45],
which provides Java implementations of a large number of rule based classifiers. The classifiers were
trained using the default parameters set by the framework, which co-incide with the ones proposed by
the authors of each algorithm, and the most widely used in the literature.

Finally, in addition to the above, we compare the algorithm to Support Vector Machines. We used
the well-known library svmlight [46], and evaluated SVM by training a binary classifier for each of
the (n

2) class pairs and combining the results by voting, an approach which has been show to produce
the best results. We used radial basis functions as kernels, while for the values of C and γ we tried all
powers of two in the ranges C ∈ [2−5, 215] and γ ∈ [2−15, 23], resulting in 21 × 19 = 399 experiments,
one for each (C, γ) value pair. We refer the reader to [47,48] for more details.

The remaining of the section provides details of the experimental evaluation. We note that for
the most of the text, the comments, comparisons and significance tests concern only the rule-based
classifiers. The comparison with SVM is given in a separate subsection.

10.1. Overall Performance

To test the algorithms, we calculated the percentage of correct classifications of each algorithm
on each problem. The results are listed in Table 2. As evident by the table, AICELL has the best
performance in the majority of the problems. In particular, it surpasses GASSIST and RIPPER in 17 out
of 18 problems, SLAVE and UCS in 14 out of 18, while it has the best perfomance among all algorithms
in 13 out of 18 problems. Moreover, in the problems where is has the best performance, its difference
to the second best algorithm is quite noticeable (with the difference having 6.53 mean and 6.16 median
value), while on the rest its difference to the best algorithm is significantly smaller (2.82 mean and
1.49 median difference).

Computation 2017, 5, 31 16 of 24

Table 2. Precision of the algorithms on the test dataset.

Dataset RIPPER GASSIST UCS SLAVE AICELL SVM

iris 94.67 94.00 91.33 96.67 96.67 97.99
pima 69.78 73.17 74.22 75.12 73.63 76.13
wisconsin 95.73 96.04 96.48 96.03 96.63 96.68
wine 90.49 91.03 92.14 91.59 96.09 96.75
vehicle 67.73 64.77 71.27 63.35 70.36 80.08
steelplates 69.14 61.66 72.43 68.76 68.84 74.79
ionosphere 89.18 92.04 88.61 91.46 92.66 93.37
satellite 84.44 80.11 86.36 80.88 89.72 88.47
optdigits 86.87 53.31 54.98 83.62 97.38 95.26
libra 54.17 26.39 60.28 64.72 75.83 75.27
musk 70.16 79.83 82.56 82.77 74.73 76.67
dna 88.53 87.61 53.79 89.63 89.55 94.26
semeion 73.63 40.87 44.00 75.85 93.38 91.71
usps 84.65 48.38 33.13 77.83 91.13 92.18
protein 58.39 47.00 46.97 52.54 64.33 69.05
madelon 60.17 50.00 60.17 60.83 62.33 61.16
isolet 72.80 3.85 5.26 78.82 89.74 96.21
mfeat 90.80 10.00 63.55 91.11 97.50 98.15

It is also worth pointing out that the performance of the algorithms changes as the number
of attributes of the problems increases, practically partitioning the experiments in two groups.
The first group consists of datasets with less than 50 features (the first 7 problems examined).
These datasets are some of the most well known benchmarks, and have been widely used in algorithms
comparisons. In these problems AICELL has the best performance in iris, wisconsin, wine and
ionosphere. It is surpassed by two algorithms in pima, and steelplates, and by UCS on vehicle.
However, the overall differences between all algorithms are quite small, and none of them appears to be
significantly superior.

On the contrary, however, in the rest of the problems, having a larger number of features,
the differences between algorithms are much larger. In these problems AICELL has the best
performance in all problems, with the exception of musk, where it lacks severely, and dna, where it is
marginally surpassed by SLAVE . However, in the rest of the problems it surpasses all other algorithms,
and, what’s more, with large difference from the second best algorithm, which surpasses 10% in 4 of
the problems.

This fact becomes more obvious in the radar plots shown in Figure 3, in which the datasets
are listed with the number of attributes increasing clockwise. As obvious, on the right semicircle,
where the number of features is relatively small, all algorithms have comparable performances.
However, as we move to the left semicircle, the performances of GASSIST and UCS significantly
decrease. RIPPER and SLAVE have a more robust performance, but still are significantly behind
AICELL in most of the problems.

Finally, the distribution of the classifier accuracy on each problem is shown in the box plots of
Figure 4. The distribution of AICELL has the best median value. SLAVE and RIPPER follow, with
SLAVE being marginally better. Similarly, the worst-case performance of AICELL is better than the
worst performances of SLAVE and RIPPER. On the other hand, GASSIST and UCS have significantly
inferior overall performances, in terms of both median and worse-case values, with GASSIST being
the worst of the two.

Computation 2017, 5, 31 17 of 24

iris

pima

wisconsin

wine

vehicle

steelplates

ionosphere

satellite

optdigits

libra

musk

dna

semeion

usps

protein

madelon

isolet

mfeat

GASSIST UCS AICELL

iris

pima

wisconsin

wine

vehicle

steelplates

ionosphere

satellite

optdigits

libra

musk

dna

semeion

usps

protein

madelon

isolet

mfeat

RIPPER SLAVE AICELL

Figure 3. Performance of all classifiers on all problems, ordered clockwise in increasing number of
features. As obvious, the performances of GASSIST and UCS significantly decrease as the number
of features increases. For RIPPER and SLAVE the differences are significantly smaller, however their
overall performance is inferior to that of AICELL.

RIPPER GASSIST UCS SLAVE AICELL SVM
0

10

20

30

40

50

60

70

80

90

100

Figure 4. Boxplot of the precision of the algorithms tested on the problems mentioned. GASSIST and
UCS fall behind in terms of both mean and median value. RIPPER has comparable distribution
to SLAVE, despite not having the best performance in any problem. AICELL has the best overall
performance, coming very close to SVM.

10.2. Friedman, Aligned Ranks and Quade Significance Tests.

The values of the significance tests for the Friedman, Aligned ranks and Quade criteria are shown
in Table 3. As shown, for the Friedman test, the value of p is in the order of 10−6, while for Quade even
smaller. For the aligned ranks metric, the value of p is quite larger, however it remains an order of
magnitude below the usual threshold of 0.05. The results of all tests converge to the conclusion that
the differences between the algorithms are statistically significant, and a post-hoc analysis of the results
to find the pairwise differences is required.

Computation 2017, 5, 31 18 of 24

Table 3. Results of the Friedman, Aligned ranks and Quade Significance tests. For each test we list the
rank of each algorithm, the corresponding z-value, the distributions, and the p-value.

Algorithm Friedman Aligned Ranks Quade

RIPPER 3.3611 41.1944 3.0672
GASSIST 4.2222 67.3888 4.5029

UCS 3.3055 57.9722 3.5964
SLAVE 2.5833 35.25 2.4078

AICELL 1.5277 25.6944 1.4254
value 29.2223 14.8654 12.2959

distribution χ2(4) χ2(4) F(4, 68)
p-value 7.0454 × 10−6 4.98852 × 10−3 1.4048 × 10−7

The results of the post-hoc analysis are shown in Table 4. According to the Friedman criterion,
AICELL is better than all algorithms tested. For the comparison to SLAVE, the value of p is marginal,
while for the comparisons to the rest of the algorithms the p-value is quite smaller, the differences
can safely be regarded as significant. UCS slightly overcomes RIPPER, because of having the best
performance of all algorithms in two problems (vehicle and steelplates), while GASSIST has the worst
performance among all algorithms.

Table 4. Post-hoc analysis for the Friedman, Aligned ranks and Quade significance tests.

Criterion Algorithm Rank z-Value p-Value

Friedman

RIPPER 3 3.4785 5.0421 × 10−4

GASSIST 4 5.1123 3.1817 × 10−7

UCS 2 3.3730 7.4327 × 10−4

SLAVE 1 2.0027 4.5201 × 10−2

Aligned ranks

RIPPER 2 1.7799 7.5088 × 10−2

GASSIST 4 4.7879 1.6851 × 10−6

UCS 3 3.7065 2.1075 × 10−4

SLAVE 1 1.0973 2.7251 × 10−1

Quade

RIPPER 2 1.9332 5.3208 × 10−2

GASSIST 4 3.6237 2.9040 × 10−4

UCS 3 2.5563 1.0576 × 10−2

SLAVE 1 1.1568 2.4734 × 10−1

On the contrary, according to Aligned ranks, SLAVE and RIPPER have somewhat better
performances, and their differences from AICELL are not statistically significant. On the contrary
UCS and GASSIST have much worse performances. The particular criterion, in contrast to the
Friedman test, evaluates the overall distribution of the solutions proposed by each algorithm, and not
the per-problem relative performances, and for this reason, the overall conclusions are similar to those
acquired by the box plots.

Finally, the Quade test combines the characteristics of the two previous tests, correcting the rank
of each algorithm on each problem with the performances of the rest of the algorithms on the same
problem. As a result, its outcome lies between the conclusions of the two previous tests. With this
criterion too, AICELL seems better than all algorithms, but the difference is significant only for the
comparisons to UCS and GASSIST.

10.3. Wilcoxon Rank-Sum and Signed-Rank Significance Tests

The values of the significance tests for the rank-sum and signed-rank criteria are given in Table 5.
The rank sum test compares the overall distribution of the algorithms’ performance. According to this
criterion, AICELL has the best performance, followed by SLAVE and RIPPER. UCS and GASSIST

Computation 2017, 5, 31 19 of 24

have significantly worse performances, with similar results. The difference of AICELL to GASSIST
and UCS is statistically significant, being an order of magnitute smaller than the required threshold.
The difference to RIPPER is not significant (although it comes close to the threshold), while for the
comparison to SLAVE the value of p is quite larger, and the performance of the two algorithms can be
regarded as comparable. The overall conclusions of this criterion are similar to those of the boxplots.

Table 5. Wilcoxon rank-sum and signed-rank tests.

Criterion Algorithm R+ R− z-Value p-Value h

rank sum

RIPPER 394.5 271.5 1.9301 0.0536 0
GASSIST 421 245 2.7684 0.0056 1

UCS 424 242 2.8633 0.0042 1
SLAVE 373.5 292.5 1.2656 0.2056 0

signed rank

RIPPER 170 1 3.68 2.332 × 10−4 1
GASSIST 164 7 3.4187 6.292 × 10−4 1

UCS 150 21 2.809 0.005 1
SLAVE 136.5 16.5 2.8407 0.0045 1

On the contrary, according to the signed rank test, the ordering of the algorithms is quite different.
RIPPER has the worst performance, overtaking AICELL only on the steelplates, and even there with
small difference. GASSIST has the second worst performance, being better only in musk, but with
bigger difference than RIPPER, while UCS has better performance in 4 problems. However, event
with this criterion SLAVE has the second best performance, while AICELL has better performance
that all algorithms. Moreover, according to this criterion, the differences are statistically significant for
all pairwise comparisons.

10.4. Number of Rules

In Table 6 we list the number of rules of each classifier on each dataset. We omit UCS for
which, in contrast to the rest of the classifiers, multiple rules trigger for each pattern, and the class is
assigned by voting. However, even if we map its function to that of the other classifiers to render the
comparison possible, the number of rules is in general too large, reaching thousands for most of the
problems examined.

Table 6. Number of rules of the classifiers on each of the problems examined.

Dataset RIPPER GASSIST SLAVE AICELL

iris 6.2 4.2 3 6.4
pima 25.6 6.6 15.8 9.4
wisconsin 8.2 4.4 4.6 4.2
wine 6 4.2 3.6 6.2
vehicle 39.4 6.4 29.8 47.2
steelplates 80.4 6.2 50.6 58.2
ionosphere 12.2 4.6 3.2 11.2
satellite 65 9 46 51
optdigits 86 12 62 87
libra 51 10.4 46.4 60.8
musk 15.4 4.8 16.8 20.5
dna 31 5 32 34
semeion 80.2 11.4 71.8 46.4
usps 129 16 96 66
protein 172 2 1390 14
madelon 37 2 47 74
isolet 211 2 138 45
mfeat 37.6 2 41.4 21.8
mean 56.6 8.7 116.9 35.5
median 37.3 4.9 43.7 34

Computation 2017, 5, 31 20 of 24

As shown by the table, GASSIST produces, by far, the smallest number of rules. However,
this is the greatest problem of the algorithm, since this number of rules is insufficient for larger
problems, and consequently the algorithm performs badly on them. The small number of rules is an
inherent characteristic of the algorithm, regardless of the training parameters. Among the remaining
algorithms, AICELL produces the smallest number of rules, in terms of both mean and median value.
The difference is small in terms and median value, and slightly larger in terms of mean, due to the
large number of rules produced by SLAVE and RIPPER in some particular problems, however the
overall differences are quite small and cannot be considered important.

10.5. Comparison to SVM

Finally, compared to SVMs, AICELL is surpassed in 13 out of the 18 problems examined.
However, the difference in small in gereral, having a mean value of 0.88% and a median of 1.87%.
This difference is smaller than the difference of AICELL to the second best rule-based algorithm in
each problem (mean 2.43 and median 3.57), and even larger than its difference from the overall second
best SLAVE, for which the difference surpasses 5% in terms of both mean and median values.

Moreover, as shown by the significance tests listed in Table 7, the differences are statistically
significant only for the signed-rank test, and, even for that metric, the p-value is marginally smaller
than the critical threshold. The second largest difference appears in the Friedman test which, like the
signed-rank test, evaluates the number of problems in which each classifier has the best performance.
On the contrary, for all other metrics, which evaluate the overall solution distribution, the differences
are negligible, with the value of p being close to 0.5.

Table 7. Comparison to SVM. Although the performance of SVM is better than that of AICELL with
all metrics, the difference is statistically significant only for the Wilcoxon signed-rank test, and even for
that, with a marginal p-value, while for the rest of the metrics the p-value is an order of magnitude
above the critical threshold.

Criterion R+ R− z-Value p-Value

Friedman −1.2917 0.1964
Aligned ranks −0.6944 0.4874
Quade −0.5803 0.5616

Rank sum 310 356 −0.7119 0.4765
Signed rank 39 132 −2.2051 0.0429

However, it must be noted that the performance of SVM listed here is produced by a very
extensive cross-validation C, γ parameter values, and that for most value pairs, the performance is
much worse. On the contrary, AICELL exhibits much more robust behavior in terms of parameter
values, while the training duration is also much shorter, by orders of magnitude on some problems.
Additionally, the rules produced by AICELL are much simpler.

10.6. Discussion of Results

In this section, the proposed method has been compared with 4 other algorithms that have
been widely used in comparisons and are considered state-of-the-art. Among these algorithms,
GASSIST and UCS are generally regarded as slightly superior. However, these conclusions have been
drawn from experiments on much simpler datasets than the ones examined here, where the number
of attributes does not exceed 30, and the number of classes is 2 or 3 (we refer the reader to [36] for
detailed comparison). The problems examined here present significantly larger complexity, in terms of
both number of attributes and number of classes, the conclusions are considerably different to those
presented in the majority of the literature.

In more detail, according to all metrics, GASSIST has the worst performance. Although it
achieves satisfying results, while having small number of rules, on the simpler datasets, its performance

Computation 2017, 5, 31 21 of 24

deteriorates significantly as the number of features and classes increases. These problems have been
acknowledged by the creator of the algorithm himself [49]. RIPPER and UCS follow, with UCS having
the best performance in some of the problems and very bad in others, especially the more complex
ones, while RIPPER, despite not achieving the best performance in any of the problems examined,
has satisfactory performance on all of them. SLAVE achieves the best performance, with significant
difference, coming first in more problems than the other 3 algorithms, and second in some harder ones.
Moreover, the overall distribution of the proposed solutions is much better than that of GASSIST and
UCS, and slightly better than that of RIPPER.

According to all the metrics examined, the proposed method achieves the best performance.
The difference is statistically significant in all metrics compared to GASSIST, and in most of them
compared to UCS. The difference to RIPPER is close to the critical value for most of the tests, while the
difference to SLAVE statistically insignificant with most criteria. However, AICELL achieves the best
distribution, and has the best performance in larger number of problems than the rest of the algorithms.
Moreover, it has consistently good performance in problems with large number of features and classes,
achieving large difference from the second best in some of them. Finally, compared to SVM, AICELL
is surpassed in most problems, but the difference is marginal and statistically insignificant in most
cases, while the training duration and sensitivity to parameter values is much smaller.

11. Conclusions and Future Work

We have proposed in this paper a classification algorithm based on an Artificial Immune Network.
The proposed algorithm encodes the patterns to be recognized as antigens, and evolves antibodies
representing classification rules of ellipsoidal surface. The antibodies evolve individually, so as
to maximize the evaluation metric, resembling in this sense classic Michigan-style classifier rules.
Additionally, as happens in most immune networks, antibodies of high similarity or low quality are
removed from the network.

However, contrary to most immune algorithms, the aim of the proposed algorithm is not the
recognition, but the elimination of the antigens. Antigens that have already been confronted have
no further impact on the evolution of the network, which helps minimize the overlap between rules,
and guide the new rules towards uncovered areas of the problem space. This brings the algorithm
closer to Incremental Rule Learning classifier systems, which have been shown to combine advantages
of Pittsburg and Michigan classifiers.

In general, incremental classifiers are not compatible with fuzzy rules, due to the fact that they
have to remove patterns that are covered by each new rule, whereas, in fuzzy classifiers, all patterns
are covered by all rules. However, the modification employed here enables us to compromise the
two approaches, enabling the algorithm to take advantage of the lower number of rules and better
generalization ability of fuzzy classifiers. As shown, as the steepness of the membership function
increases, the proposed classifier becomes strictly equivalent to an incremental rule classifier.

Regarding more specific algorithm design choices, the recognition rules are based on a quadratic
surface, which closely resembles that of an ellipsoid, while being computationally simpler. For the
evaluation of the rules a fuzzy generalization of the common m-estimate has been employed. For the
removal of unsuitable antibodies from the network, a similarity metric based on the inner product
of membership function values has been employed, while antibodies are also removed if the have
either lower recognition ability or smaller coverage than the rest of the network population, based on
outlier detection criteria. Finally, a rule initialization method was proposed, which further helps the
algorithm locate uncovered areas of the problem space.

The proposed method was tested against one representative classifier of each type. On the
problems examined, the algorithm had better accuracy than both the Pittsburg and Michigan classifiers.
Additionally, it produced much fewer rules than the Michigan classifier, while also performing well
in more complex problems, contrary to the Pittsburg classifier, which is limited by its chromosome
encoding length. The differences are more obvious in problems with larger number of features and

Computation 2017, 5, 31 22 of 24

classes, where the proposed method significantly outperformed the competition, maintaining both the
robustness and small number of rules exhibited by the incremental rule classifier, and the generalization
ability of the fuzzy classifier. Finally, compared to Support Vector Machines, the algorithm was
surpassed in the majority of the problems, however the differences are marginal and statistically
insignificant, while the proposed method is much more robust to the change of training parameters,
and generates much simpler and more interpretable rules.

Regarding possible extensions of the present algorithm, the main area to experiment with is the
employment of different geometries of recognition rules and different shapes of membership functions.
Since different shapes of surfaces could be more appropriate for covering different areas of the problem
space, it would be beneficial to combine multiple forms of rules within the same classifier. Additionally
the evaluation metric could be extended so that, during the training of each rule, it also takes into
account the existing rules, further assisting cooperation.

Author Contributions: A.L., G.S. and A.S conceived the algorithm. A.L. developed and implemented the model.
A.L. and G.S. performed experiments. A.L., G.S. and A.S. analyzed the data. A.L., G.S. and A.S wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Burnet, F.M. The Clonal Selection Theory of Acquired Immunity; Vanderbilt University Press: Nashville, TN,
USA, 1959; p. 232.

2. Jerne, N. Towards a network theory of the immune system. Ann. Immunol. 1974, 125, 373–389.
3. De Castro, L.N.; Timmis, J. Artificial Immune Systems: A New Computational Intelligence Approach; Springer:

London, UK, 2002.
4. De Castro, L.N.; Von Zuben, F.J. Learning and Optimization Using the Clonal Selection Principle. IEEE Trans.

Evol. Comput. 2002, 6, 239–251.
5. De Castro, L.N.; Zuben, F.J.V. aiNet: An Artificial Immune Network for Data Analysis. In Data Mining:

A Heuristic Approach; Abbass, H.A., Sarker, R.A., Newton, C.S., Eds.; Idea Group Publishing: Hershey, PA,
USA, 2001; pp. 231–259.

6. Karakasis, V.K.; Stafylopatis, A. Efficient Evolution of Accurate Classification Rules Using a Combination of
Gene Expression Programming and Clonal Selection. IEEE Trans. Evol. Comput. 2008, 12, 662–678.

7. Lanaridis, A.; Stafylopatis, A. An Artificial Immune Network for Multiobjective Optimization Problems.
Eng. Optim. 2013, 46, 1008–1031.

8. Magna, G.; Casti, P.; Jayaraman, S.V.; Salmeri, M.; Mencattini, A.; Martinelli, E.; Natale, C.D. Identification
of mammography anomalies for breast cancer detection by an ensemble of classification models based on
artificial immune system. Knowl. Based Syst. 2016, 101, 60–70.

9. Martinelli, E.; Magna, G.; Vito, S.D.; Fuccio, R.D.; Francia, G.D.; Vergara, A.; Natale, C.D. An adaptive
classification model based on the Artificial Immune System for chemical sensor drift mitigation.
Sens. Actuators B Chem. 2013, 177, 1017–1026.

10. Lanaridis, A.; Stafylopatis, A. An Artificial Immune Classifier Using Pseudo-Ellipsoid Rules.
In Proceedings of the 26th International Symposium on Computer and Information Sciences, London, UK,
26–28 September 2011; pp. 395–401.

11. Hyafil, L.; Rivest, R.L. Constructing optimal binary decision trees is NP-complete. Inf. Proc. Lett. 1976, 5, 15–17.
12. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology,

Control and Artificial Intelligence; University of Michigan Press: Ann Arbor, MI, USA, 1975.
13. Sigaud, O.; Wilson, S.W. Learning classifier systems: A survey. Soft Comput. 2007, 11, 1065–1078.
14. Smith, S.F. A Learning System Based on Genetic Adaptive Algorithms. Ph.D. Thesis, University of Pittsburg,

Pittsburgh, PA, USA, 1980.
15. Holland, J.; Reitman, J. Cognitive Systems Based on Adaptive Algorithms; Department of Computer and

Communication Science, University of Michigan: Ann Arbor, MI, USA, 1977.
16. Venturini, G. SIA: A Supervised Inductive Algorithm with Genetic Search for Learning Attributes Based

Concepts. In Machine Learning: ECML ’93, Lecture Notes on Computer Science; Springer: London, UK, 1993;
pp. 280–296.

Computation 2017, 5, 31 23 of 24

17. Garrett, S.M. How Do We Evaluate Artificial Immune Systems? Evol. Comput. 2005, 13, 145–177.
18. Hart, E.; Timmis, J. Application Areas of AIS: The Past, the Present and the Future. Appl. Soft Comput.

2008, 8, 191–201.
19. De Castro, L.N.; Timmis, J. Artificial Immune Systems: A New Computational Intelligence Paradigm;

Springer-Verlag New York, Inc.: Secaucus, NJ, USA, 2002.
20. Abe, S. Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions. IEEE Trans. Syst. Man

Cybern. Part B 1998, 28, 869–876.
21. Yao, L.; Lin, C.C. A fuzzy classifier with evolutionary design of ellipsoidal decision regions. Proc. World

Acad. Sci. Eng. Tech. 2005, 1, 38–44.
22. Abe, S.; Thawonmas, R. A fuzzy classifier with ellipsoidal regions. Fuzzy Syst. IEEE Trans. 1997, 5, 358–368.
23. Yao, L.; Weng, K.S.; Huang, C.D. Evolutionary design of fuzzy classifier with ellipsoidal decision regions.

In Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, HI,
USA, 12 October 2005; Volume 1, pp. 785–790.

24. Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: New York, NY, USA,
1996.

25. Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Boston,
MA, USA, 1989.

26. Nada Lavrac, P.A.F.; Zupan, B. Rule Evaluation Metrics: A unifying view. In Proceedings of the 9th
International Workshop on Inductive Logic Programming, Bled, Slovenia, 24–27 June 1999; pp. 173–185.

27. Furnkranz, J.; Flach, P.A. An Analysis of Rule Evaluation Metrics. In Proceedings of the 20th International
Conference on Machine Learning (ICML-2003), Washington, DC, USA, 21–24 August 2003; pp. 202–209.

28. Furnkranz, J.; Flach, P. An Analysis of Rule Learning Heuristics. 2007. Available online: http://citeseer.ist.
psu.edu/viewdoc/summary?doi=10.1.1.60.3804 (accessed on 15 June 2017).

29. Tukey, J. Comparing Individual Means in the Analysis of Variance. Biometrics 1949, 2, 99–114.
30. Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol.

2011, 2, doi:10.1145/1961189.1961199.
31. Bache, K.; Lichman, M. UCI Machine Learning Repository. 2013. Available online: http://archive.ics.uci.

edu/ml (accessed on 15 February 2017).
32. Cohen, W. Fast Effective Rule Induction. In Proceedings of the Twelfth International Conference on Machine

Learning, Tahoe City, CA, USA, 9–12 July 1995; pp. 1–10.
33. Bacardit, J.; Garrell, J. Evolving multiple discretizations with adaptive intervals for a pittsburgh rule-based

learning classifier system. In Proceedings of the GECCO 2003 Genetic and Evolutionary Computation
Conference, Chicago, IL, USA, 12–16 July 2003; pp. 1818–1831.

34. Gonzalez, A.; Perez, R. Selection of relevant features in a fuzzy genetic learning algorithm. IEEE Trans. Syst.
Man Cybern. Part B 2001, 31, 417–425.

35. Bernado-Mansilla, E.; Garrell, J. Accuracy-Based Learning Classifier Systems: Models and Analysis and
Applications to Classification Tasks. Evol. Comput. 2003, 11, 209–238.

36. Fernandez, A.; Garcia, S.; Luengo, J.; Bernando-Mansilla, E.; Herrera, F. Genetics-Based Machine Learning
for Rule Induction: State of the Art, Taxonomy, and Comparative Study. Evol. Comput. IEEE Trans.
2010, 14, 913–941.

37. Friedman, M. A Comparison of Alternative Tests of Significance for the Problem of m Rankings. Ann. Math. Stat.
1940, 11, 86–92.

38. Hodges, J.L.; Lehmann, E.L. Rank methods for combination of independent experiments in analysis of
variance. Ann. Math. Stat. 1960, 6, 403–418.

39. Quade, D. Using Weighted Rankings in the Analysis of Complete Blocks with Additive Block Effects. J. Am.
Stat. Assoc. 1979, 74, 680–683.

40. Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1, 80–83.
41. Derrac, J.; Garcia, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests

as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput.
2011, 1, 3–18.

42. Demvsar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30.
43. Garcia, S.; Herrera, F.; Shawe-Taylor, J. An extension on statistical comparisons of classifiers over multiple

data sets for all pairwise comparisons. J. Mach. Learn. Res. 2008, 9, 2677–2694.

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.3804
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.3804
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Computation 2017, 5, 31 24 of 24

44. Alcala-Fdez, J.; Sanchez, L.; Garcia, S.; del Jesus, M.; Ventura, S.; Garrell, J.; Otero, J.; Romero, C.; Bacardit, J.;
Rivas, V.; et al. KEEL: A software tool to assess evolutionary algorithms for data mining problems.
Soft Comput. 2009, 13, 307–318.

45. Alcala-Fdez, J.; Fernandez, A.; Luengo, J.; Derrac, J.; Garcia, S. KEEL Data-Mining Software Tool: Data Set
Repository, Integration of Algorithms and Experimental Analysis Framework. Mult. Valued Log. Soft Comput.
2011, 17, 255–287.

46. Joachims, T. Making large-Scale SVM Learning Practical. In Technical Report, SFB 475: Komplexitätsreduktion
in Multivariaten Datenstrukturen; Universität Dortmund: Dortmund, Germany, 1998.

47. Knerr, S.; Personnaz, L.; Dreyfus, G. Single-layer learning revisited: A stepwise procedure for building and
training a neural network. In Neurocomputing; Springer: Berlin, Germany, 1990; pp. 41–50.

48. Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F. An overview of ensemble methods
for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes.
Pattern Recognit. 2011, 44, 1761–1776.

49. Bacardit, J. Pittsburgh Genetics-Based Machine Learning in the Data Mining Era: Representations,
generalization, and run-time. Ph.D. Thesis, Ramon Llull University, Barcelona, Spain, 2004.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Overview of Learning Classifier Systems
	Outline of the Immune Network Classifier
	Rule Encoding
	Ellipsoid Definition
	Fuzzy Pseudo-Ellipsoidal Rules

	Mutation Operator
	Non-Uniform Mutation Operator
	Mutation Range
	Mutation Probability

	Evaluation Metrics
	Common Evaluation Metrics
	Fuzzy m-Estimate

	Rule Initialization
	Antibody Death
	Death Due to Low Fitness
	Death Due to High Similarity

	Formal Description
	Experiments
	Overall Performance
	Friedman significance tests
	Wilcoxon significance tests
	Number of Rules
	Comparison to SVM
	Discussion of Results

	Conclusions and Future Work

