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Abstract: The adjoint approach in gradient-based optimization combined with computational fluid
dynamics is commonly applied in various engineering fields. In this work, the gradients are used for
the design of a two-dimensional airfoil shape, where the aim is a change in lift and drag coefficient,
respectively, to a given target value. The optimizations use the unconstrained quasi-Newton method
with an approximation of the Hessian. The flow field is computed with a finite-volume solver where
the continuous adjoint approach is implemented. A common assumption in this approach is the use
of the same turbulent viscosity in the adjoint diffusion term as for the primal flow field. The effect
of this so-called “frozen turbulence” assumption is compared to the results using adjoints to the
Spalart–Allmaras turbulence model. The comparison is done at a Reynolds number of Re = 2× 106

for two different airfoils at different angles of attack.

Keywords: airfoil optimization; gradient-based; adjoint approach; frozen turbulence; adjoint
turbulence; OpenFOAM

1. Introduction

The design of aerodynamic shapes is increasingly based on Computational Fluid Dynamics (CFD).
Since CFD is computationally more expensive than the coupling of potential flow theory with boundary
layer corrections, a computationally inexpensive optimization technique is preferable. Stochastic
search optimization methods require a large number of function evaluations [1], but gradient-based
optimizations can be used in order to have fewer function calls. Gradients can be computed via finite
differencing, however, the computational cost scales linearly with the number of design parameters [2].
In the adjoint approach, the influence of the primal flow field is decoupled from the gradients
depending on the design parameters. This results in another set of Partial Differential Equations (PDEs),
the adjoint equations, in which each adjoint variable refers to a variable of the flow field. Solving the
adjoint equations has a comparable cost to solving the primal state equations [3] and the gradients
can be computed from primal and adjoint fields with minor additional calculations compared to the
CFD iterations. Practically, the gradient evaluation cost does not scale with the number of design
parameters, in contrast to traditional finite differencing. Thus, the adjoint approach is often combined
when using gradient-based optimization with many design parameters and CFD.

Two types of adjoint methods are known from the literature: the discrete method and the
continuous method [4–6]. In the discrete approach, the adjoint equations are generated from the
discretized flow equations, often via an automatic differentiation tool. This method is strongly
connected to the selected flow solver and the discretization schemes of the primal state equations. If no
approximations are used, the discrete approach leads to the exact gradients of the original discretized
flow equations, but tend to have higher memory requirements [5].
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In the continuous approach, the adjoint equations are derived analytically from the flow equations
and are subsequently discretized. The discretization schemes can be different than the schemes of the
primal flow equations and the continuous adjoints may need less memory as well as less computational
effort [4,7]. The “physical significance of the adjoint variables is much clearer” [4] than in the discrete
approach. It can be seen from the analytical adjoint equations that the adjoint field develops backwards
in time and upstream to the primal flow. A known disadvantage of the continuous adjoint approach is
that it can produce inaccurate gradients in turbulent flows [8], because the adjoints to the turbulence
parameters are often neglected. This is the so-called “frozen turbulence” assumption [9]: The same
turbulent viscosity from the primal Navier–Stokes equations is used in the adjoint equations.

In the first publications, discrete adjoints with “differentiated” turbulence models were
implemented without an investigation of the effect on the optimization compared to frozen
turbulence [10,11]. Lyu et al. [12] used discrete adjoints and the Spalart–Allmaras turbulence model for
compressible flows. For the flow over a bump as simple verification case, they found clear differences
between the gradients by frozen and adjoint turbulence. The main focus of their work was on the
optimization of the ONERA M6 wing and the results of the optimizations were slightly better with
adjoint turbulence, but there were also 70% higher computational costs. Osusky et al. [13] used
discrete adjoints for drag reduction of wings in compressible flows. They compared the results by
optimizations based on Euler and Reynolds-averaged Navier–Stokes (RANS) equations using the
Spalart–Allmaras model and obtained inferior designs by the inviscid flow analysis. Besides other
approximations, Dwight and Brezillon [14] investigated the effect of frozen turbulence, there called the
“constant eddy-viscosity assumption”. They used discrete adjoints in compressible flows and optimized
airfoils at small angles of attack without any separation. In an optimization of a transonic airfoil, the
frozen turbulence led to poorer optimization behavior compared to the exact adjoint gradients. In an
optimization of a subsonic high-lift configuration, the gradients via frozen turbulence were as good as
the exact gradients, but it is not clear if these results also hold for continuous adjoints in incompressible
flows.

Zymaris et al. [15] derived a continuous adjoint approach to the Spalart–Allmaras turbulence
model [16] in incompressible flows. They focused on the verification of the adjoint gradients for duct
flows and investigated the effect of different terms in the adjoint turbulence model as well as in its
boundary conditions. The resulting effect of frozen turbulence in external flows was not described.
Bueno-Orovio et al. [17] derived a continuous adjoint approach to the Spalart–Allmaras model in
compressible flows. For a transonic airfoil as well as a transonic wing at a small angle of attack,
they showed that the frozen turbulence assumption leads to poorer optimization results compared to
the shapes resulting from the inclusion of the adjoint turbulent viscosity. Papoutsis-Kiachagias and
Giannakoglou [5] provided a good survey of the adjoints for turbulent flows, where they derived
and extended various theoretical aspects. They also verified gradients at two-dimensional airfoils
and computed sensitivities for different aerodynamic shapes. Several industrial examples are shown,
but an airfoil optimization using the presented approaches is not discussed. Kavvadias et al. [18]
derived the continuous adjoints approach to the k-ω-SST turbulence model and verified the resulting
gradients. Optimization results of ducts using frozen and adjoint turbulence are shown. Also, an
optimization of an airfoil with thickness constraint is presented, where the gradients of both approaches
are compared as well. However, a detailed comparison of the optimization results using frozen and
adjoint turbulence for airfoil shapes is missing.

Since the effect of adjoint turbulence in the continuous approach on the resulting shapes in
incompressible, subsonic flows around airfoils have been rarely investigated, it is the aim of our
work to compare these results to frozen turbulence in airfoil optimization. Besides, a complete
procedure for shape optimization is presented, which may inspire interested readers to develop
their own frameworks. The continuous adjoints are used and the adjoints to the turbulence
model are implemented following the derivation by Zymaris et al. [15]. The incompressible,
steady-state Reynolds-averaged Navier–Stokes equations (RANS) are closed by the Spalart–Allmaras



Computation 2018, 6, 5 3 of 23

turbulence model [16] without transition. The flow is computed with the open-source code
OpenFOAM-2.3.0 [19] based on the Finite Volume Method (FVM). The code is written in C++ and
strongly uses the capabilities of object-oriented programming. Although Towara and Naumann [20]
use discrete adjoints with OpenFOAM, more often the continuous approach is followed when using
this flow solver [21,22]. As this code is very suitable for the implementation of analytical equations, as
well as the expected lower memory costs, continuous adjoints are used in our work. The basic equations
of this approach have already been implemented by Othmer et al. [23], but their implementation has
been made for ducted flows. There, the flow is optimized via a change of the cell porosity, modeling
“walls” by obstacles with high porosity blocking. In our work, the shape of the airfoil is changed by the
motion of the mesh and the solver is extended to external aerodynamics. The comparison is done for
two airfoils and at different angles of attack in order to change the flow complexity.

As an outline for this work, firstly the implementation of a precise and stable mesh motion,
which is essential for the later processes, is described in Section 2. Then, a short description of the
general adjoint approach follows in Section 3 with the details and simplifications made in the presented
implementation. The gradients by the adjoint method are verified and the projection of the gradients to
a spline parametrization is described. Finally in Section 4, the effects of frozen and adjoint turbulence
on shape optimization of airfoils in incompressible flows are compared.

2. Mesh Motion

During the optimization process, the flow around the changed shape has to be re-computed,
which means that the mesh has either to be “re-meshed” completely or the mesh points have to
be moved from their previous or initial position. The former approach is more suitable for large
geometry changes, but requires more time. The latter method is more suitable for small changes in the
shape and requires less time. In any case, it is essential for the optimization that the generated mesh
delivers smooth results of the objective function in order to have low noise in the gradients. The flow
simulations have to be independent from the mesh deformation.

Since the expected changes in the airfoil shapes are small, the mesh is moved during the
optimization in this work. The mesh motion techniques in OpenFOAM are made for general purposes
and are not necessarily suitable for airfoil design. Internal tests led to deformed or even overlapping
cells, which are obstructive for the computation of the flow around airfoils, in particular in the boundary
layer. In order to accurately resolve the boundary layer flow, the meshes at high Reynolds numbers (Re)
have a small off-wall distance. Any inaccuracies in mesh deformation such as overlapping cells,
increased skewness, or higher non-orthogonality can disrupt the whole optimization process. This
is why a robust mesh motion technique is implemented based on the principle from Jameson and
Reuther [24]. In a hexahedral mesh, the points in the near and far field are moved according to the
movement of the surface points xS. For this purpose, each surface point is considered as the starting
point of a spline reaching from the airfoil to the end of the domain. This is shown in an example in
Figure 1 for a single spline.

Figure 1. Example spline from the airfoil to the far field with interpolation factor γ.
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In order to keep the far-field borders of the domain constant, the motion is linearly interpolated
with a factor γ = 0, ..., 1 (γ = 1 at the airfoil and γ = 0 at the far field):

xnew = xold + γ(xnew
S − xold

S ) , (1)

where x represents the point positions of the numerical grid and the index S stands for the airfoil
surface. In order to show the capabilities of this mesh motion, an example is shown in Figure 2 as a
close-up view of the suction side of an airfoil.

Figure 2. Mesh deformation of the suction side of an airfoil.

The initial mesh is deformed via different spline coordinates of the airfoil and the produced bump
on the airfoil is smoothly transferred into the internal mesh with a linear relaxation as in Equation (1).
The deformations of the following sections are much smaller and this example is only used in order to
show the capabilities of this technique.

As implemented here, the motion technique works only for hexahedral meshes, but for small and
smooth shape changes it ensures the same quality of the boundary layer close to the geometry, which
is an essential requirement for a successful optimization.

3. The Adjoint Approach

3.1. The General Principle

The derivation of the adjoint approach can be found in the literature [3,4,9,10,15,25,26] and
for the sake of brevity only the basic principles are described here according to the notation of
Soto and Löhner [27]. Let I be the objective function, which shall be optimized with respect to the
design parameters β, and R be the steady-state incompressible Navier–Stokes equations. Then, the
optimization problem can be written as:

minimize I(u, p, β) with respect to β (2)

subject to R(u, p, β) = 0 in Ω ,

where (u, p) are flow variables in the flow domain Ω. Objective function and equality constraints can
be combined via a Lagrange function L:

L = I +
∫

Ω
ΨT · R dΩ , (3)

where Ψ are the Lagrangian multipliers or as they are often called, the adjoint variables. A variation of
the Lagrangian leads to:
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δL =

(
∂I
∂β

+
∫

Ω
(Ψu

T , Ψp) ·
∂R
∂β

dΩ
)

δβ

+

(
∂I
∂u

+
∫

Ω
Ψu

T · ∂Ru

∂u
dΩ
)

δu (4)

+

(
∂I
∂p

+
∫

Ω
Ψp ·

∂Rp

∂p
dΩ
)

δp ,

where ΨT = (Ψu
T , Ψp) denote the adjoints to velocity and pressure.

The adjoint variables Ψ can now be defined in such a way that the last two brackets become
zero, which leads to a new set of PDEs for the adjoint variables, making δL independent of any
variation (δu, δp) of the flow field. Equation (4) then simplifies to the following gradient expression:

δL
δβ

=
∂I
∂β

+
∫

Ω
(Ψu

T , Ψp) ·
∂R
∂β

dΩ . (5)

Since the flow field does not have to be computed for each design variable again as with finite
differences, this basically means that the gradient computation becomes independent from the amount
of design parameters. As a matter of fact, some extra computations have to be done, which scale with
the number of design parameters, but these are insignificant compared with the effort of the remaining
CFD iterations. Finally, the geometry can be parametrized by every surface grid point without an
increase in the computational costs, which is the strength of the adjoint approach.

3.2. Adjoint Equations and Gradient Calculation

The general adjoint equations are derived via integration by parts from the Navier–Stokes
equations. Further details can be found in common literature [15,23,25,27], where the following
form is often found for steady-state and incompressible flows:

−∇Ψu · u− (u · ∇)Ψu = ∇Ψp +∇ ·
[
ν
(
∇Ψu + (∇Ψu)

T
)]

, (6)

−∇ ·Ψu = 0 , (7)

with the kinematic viscosity ν. The first term on the left-hand side of Equation (6), the so-called “adjoint
transpose convection”, can lead to diverging simulations. Following the suggestions from Önder [21]
and Choi et al. [28], the integration by parts is not necessary in the derivation of the adjoint transpose
convection. This leads to the following more stable adjoint momentum equation, which is used in
this work:

(∇u)T ·Ψu − (u · ∇)Ψu = ∇Ψp +∇ ·
[
ν
(
∇Ψu + (∇Ψu)

T
)]

. (8)

Soto and Löhner [27] derived the gradients for the optimization of total forces (pressure-based
and viscous) leading to the following expression:

δL
δβ

=
∂I
∂β
−
∫

S
(∇p · n) (Ψu · n) dS

−
∫

S
Ψp n (n · ∇u) dS

−
∫

S
ν n
[
∇Ψu + (∇Ψu)

T
]
· (n · ∇u) dS

+
∫

S
ν
[
∇ (n · ∇u) + (∇ (n · ∇u))T

]
· n dS , (9)
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where S is the domain boundary at the airfoil. Due to a zero Neumann boundary condition of the
pressure at the geometry, the first integral vanishes and omitting the second order term leads to an
expression similar to the one of other authors [9,15,25,29]. Castro et al. [25] showed that the so-called
“geometric term” ∂I

∂β in Equation (9) vanishes in the case of force optimization (for fully converged
solutions of the incompressible or compressible Navier–Stokes equations). This was also shown by
others [29,30] in different ways and thus, Equation (9) is further simplified to the final expression used
in this work:

δL
δβ

= −
∫

S
Ψp n (n · ∇u) dS

−
∫

S
ν n
(
∇Ψu + (∇Ψu)

T
)
· (n · ∇u) dS , (10)

where from the authors’ experience the last term is the most dominant one, independent of the
Reynolds number.

Since there is no effect of the objective function in Equation (10), the boundary conditions (BCs)
have to include a connection to the objectives of the optimization. Zymaris et al. [15] derive the
mathematically correct boundary conditions for the far field and walls. From the authors’ experience
at small, laminar Reynolds numbers, the correct boundary conditions at the far field do not affect the
gradient at the airfoil (unless the domain is too small), but can easily lead to unstable convergence
behavior. This is why here, standard Dirichlet and Neumann boundary conditions are used at the far
field, where the adjoint BCs are opposite to the primal BCs, as was also done by Soto and Löhner [27].
The condition for the adjoint pressure Ψp at the wall is a zero Neumann condition, and the condition
for the adjoint velocity is the negative force direction [27]:

Ψu = −d at S , (11)

where d is the direction vector of the force to be optimized, here the direction of lift or drag, respectively.

3.3. Details of the Present Implementation

OpenFOAM-2.3.0 comes with a solver using the adjoint approach for the optimization of ducted
flows [23], which are optimized by inserting cells with high porosity blocking in the domain. This
solver is extended to external aerodynamics by the authors, so the approach of porous cells is replaced
by walls and the complete gradient calculation is redefined according to Equation (10). Note, the
objective function for airfoil optimization is different than in most duct optimizations, which has to be
considered in the gradient calculation.

Besides the use of the stable adjoint transpose convection in Equation (8), it is reasonable to use
a finer mesh and a better convergence than for standard airfoil simulations with RANS, because the
adjoints are based on the flow variables and any error of the primal field is amplified in the adjoint
variables. A high convergence of the RANS equations improves the accuracy of the gradients and thus
the convergence and the results of the optimization.

Instead of using the SIMPLE algorithm (Semi-Implicit Method for Pressure Linked Equations [31]),
which is implemented in the standard adjoint solver of OpenFOAM, the SIMPLEC algorithm
(SIMPLE-consistent [32]) is used in this work for the solution of primal and adjoint fields. The
algorithm needs nearly no under-relaxation and thus, it is faster than the initial implementation.
Internal tests showed that the time for convergence is reduced by half, which is particularly beneficial
for the adjoint approach, since two sets of PDEs have to be solved.

The “adjoint turbulence model”, i.e., the adjoints to the Spalart–Allmaras turbulence model [16],
is implemented based on the derivation by Zymaris et al. [15]. For the sake of brevity, the final equations
are shown in Appendix C only. A simplification in our implementation is the use of standard Neumann
and Dirichlet boundary conditions for the adjoint eddy-viscosity at the far field. Zymaris showed
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an insignificant effect of the exact far-field BCs on the gradient and Bueno-Orovio et al. [17] used
“characteristic” boundary conditions. The authors’ experience with far-field BCs on airfoils at low
Reynolds numbers showed that Neumann and Dirichlet conditions do not negatively affect the gradient
computation on the airfoil (unless the domain is clearly too small). As a matter of fact, standard BCs
increase the stability when solving the adjoint equations.

The inclusion of the adjoint turbulence model can be beneficial for the solution and optimization
process, which will be shown later. However, the solution of an additional PDE, the adjoint
Spalart–Allmaras model, requires extra computing time: In the presented cases, the solution with
adjoint turbulence took roughly twice the time of frozen turbulence. Note, the flow and adjoint
solutions were pre-converged with the same level of convergence, which influences the following
solution process with frozen and adjoint turbulence differently. Because the numerous optimizations
were done in parallel on the same computer, which would bias a fair comparison, the following
comparisons use the number of function evaluations and not the computing time as measure.

3.4. Projection of the Gradients of the Objective Function

Using each airfoil coordinate as an individual design parameter can easily lead to kinks or
unwanted bumps in the shape due to limited spatial discretization. In order to overcome such
problems, additional smoothing approaches can be used, e.g., use of regularization methods [33–35].
The airfoil shape in this work is defined via a set of Catmull–Rom splines [36], which are connected to
each other leading to a smooth airfoil representation. The splines are already available in OpenFOAM
and a single spline is described by the following equation:

X(m) = C−1

(
−1

2
m3 + m2 − 1

2
m
)

+C0

(
3
2

m3 − 5
2

m2 + 1
)

+C1

(
−3

2
m3 + 2m2 +

1
2

m
)

+C2

(
1
2

m3 − 1
2

m2
)

, (12)

where m is the spline index, Ci are the control points, and X(m) is the resulting airfoil point. The adjoint
approach, as it is implemented here, cannot handle discontinuities, which occur at the trailing edge
corners [37,38]. Thus, the trailing edge is fixed and only the points of the suction and pressure side are
allowed to move.

Since the use of splines is not a direct parametrization, the gradients of the objective function
at the airfoil points have to be projected into a lower-dimensional space to the control points Ci of
each spline. This smooths the initial gradient information and thus avoids kinks. For a given objective
function I = I

(
Xj(Ci)

)
the projection can be written as:

∂I
∂Ci

=
∂

∂Ci
I
(
Xj(Ci)

)
=

n

∑
j=1

∂I
∂Xj

∂Xj

∂Ci
, (13)

where n is the number of airfoil points represented by each spline. ∂I
∂Xj

are the computed gradients

on each airfoil grid point and
∂Xj
∂Ci

are the terms within the brackets of Equation (12). In the following
section, different numbers of spline points are used in order to investigate their effects on the
optimization result, but it must be noted that too few spline points cannot properly represent the initial
airfoil shape. Hence, a minimum of 20 control points is used in this work.
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3.5. Verification of Gradients

Before using the gradients from the adjoint approach in an optimization, it is a common procedure
in the literature to verify the correct implementation of the gradients. Verification in laminar flow at a
small Reynolds number was done by the authors [39], where an excellent agreement of the adjoint
gradients against gradients by finite differences was presented. The reference in this work is also
computed via forward finite differences (FDs). Another possibility to compute reference gradients
is the complex step method [40], but this is out of the scope of this work and may be considered in
future work.

Figure 3 shows a NACA 0012 and the 26 control points of the spline defining the airfoil shape,
where 13 points are on the suction and pressure side, each.

Figure 3. Control points of the verification case and close-up view of the mesh near the airfoil.

The Reynolds number of the verification case is Re = 2× 106, where the flow is fully turbulent.
The angle of attack (AoA) is at 2◦ and the mesh consists of 208, 000 cells in total, with 800 faces
on the airfoil. A hexahedral O-mesh is used and the domain has a radius of 45 chord lengths.
The dimensionless wall distance is at y+ ≈ 0.1 in order to fully resolve the flow in the boundary layer
and Figure 3 shows a close-up view of the mesh near the airfoil.

For the sake of brevity, a mesh independency study for this angle of attack and at AoA = 12◦, as
well as a validation with experimental results by Ladson [41], is presented in Appendix A.

The resulting gradients via the adjoint approach as in Equation (10) and by finite differences are
shown in Figure 4 along the indices of the control points (labeled as in Figure 3). The objectives are the
lift coefficient cl and, respectively, the drag coefficient cd. A step size study was done by using different
step sizes for the computation of finite differences, which is presented in Appendix B. The step sizes
with nearly no change in the gradients, representing optimal sizes in order to avoid round-off and
truncation errors, were found to be between 5× 10−8 and 1× 10−7. The gradients are computed with
respect to the point motion in a normal direction. Using the adjoint approach, they are computed by
the frozen turbulence assumption and by using the adjoint turbulence model, respectively.

The gradients are scaled in order to enable a better comparison, which is done for both the adjoint
gradients and the gradients by finite differences (Kim et al. [42] showed that the step size can influence
the size of the gradients, which could result from the non-linear nature of the Navier–Stokes equations).
In general, it can be seen that the gradients using adjoint turbulence follow the trend of the finite
differences better than the frozen turbulence approach, where some gradients even have a wrong sign.
Still, a deviation is visible between the reference gradients by finite differences (FDs) and the adjoint
gradients, which could possibly result from the complex flow due to high turbulence near the trailing
edge.

However, it can be concluded that the implementation of the adjoint turbulence model leads to a
better representation of the reference gradients than the frozen turbulence assumption. Further, it is
not clear how the differences between these two approaches affect the optimization processes, which is
the focus of this work and will be shown in the following section.
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Figure 4. Comparisons of gradients obtained by finite differences (FsD) and gradients via the adjoint
approach for lift objective (“gradient cl”) and drag objective (“gradient cd”). Different step sizes (StSz)
are used for finite differencing. Adjoint and frozen turbulence are used for gradients via the adjoint
approach (labeled as “adj. turb” and “frz. turb”, respectively).

3.6. Inverse Design

The optimizations in this work are gradient-based without any stochastic elements and can
only find local optima [1,2,6]. This means that very different initial shapes converge to different
optima, whereas more similar shapes converge to the same, but local, optimum (unless only one
single optimum, the global one, exists). The adjoint approach is used for the gradient computation as
previously discussed, and in order to increase the speed of the optimization process a quasi-Newton
method is used, which approximates second-order derivatives. Here, the BFGS algorithm by Broyden,
Fletcher, Goldfarb and Shanno [2] is used for updating the Hessian and the described set-up for
the gradient computation is combined with the optimization module from SciPy [43], based on the
programming language Python. This module offers a high flexibility for various applications and
makes it easy to switch between different optimization algorithms or procedures.

All optimizations are unconstrained single-point optimizations for the lift and drag coefficients,
respectively. In order to reach a certain lift coefficient cl,aim or drag coefficient cd,aim, the objective
functions are formulated in a quadratic form:

Il/d =
1
2

(
1− cl/d

cl/d,aim

)2
, (14)

where the index l/d is used as a place holder for either the lift or the drag coefficient.
This formulation allows a clear convergence criterion of the objective function due to its convexity.

In contrast, a pure maximization of lift or pure minimization of drag without any constraints or
bounds is less suitable, since it would strongly depend on the number of control points and the mesh
deformation would probably limit the process at some point, leading to wrong solutions of the primal
flow field. Thus, the quadratic form of Equation (14) is used.

Although the posed optimization problem is unconstrained, it already gives insight into the effect
of frozen and adjoint turbulence, as will be shown in the following section. Depending on the number
of design parameters, the problem in Equation (14) may result in many possible solutions. However,
for a gradient-based optimization with small shape deformations it is expected that the possible optima
are close to each other. Furthermore, the resulting shapes indicate the distribution of the gradients,
and thus give valuable information about the optimization process.

In order to provide a proof of concept of the optimization framework, a simple inverse study is
conducted, where a known optimal geometry is reproduced.

The same mesh and geometry as in the previous gradient verification are used, again at
Re = 2× 106 and AoA = 2◦. Adjoint turbulence is used, and the airfoil is represented by a spline
with 30 control points. First, the lift of the NACA 0012 is increased by 20%. Then, this geometry is
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optimized such that the aim is the lift coefficient of the initial NACA airfoil. The same procedure is
followed for a drag optimization, where the initial NACA 0012 is optimized for a drag decrease of 3%.

The history of function values of forward and inverse design are shown in Figure 5 for the lift
and drag objectives, respectively. Also in the same plot, the supremum norm of the gradient is shown
and it can be seen that all optimizations converge well. During the optimization, the flow and adjoint
equations are converged to residuals of at least 10−10 and 10−7, respectively. First, the RANS equations
are converged, then the adjoints are computed based on the solved RANS field, and afterwards the
gradient information or function value is transferred to the optimizer. With this information, the mesh
is moved accordingly, but not during the solution process of the primal or adjoint fields. This procedure
is also used in the following optimizations.

Figure 5. Objective functions as in Equation (14) and norm of the gradient for the lift objective and
drag objective along the number of function evaluations.

Figure 6 shows the initial and corresponding optimized shapes of forward and inverse design.
It can be seen that the initial NACA 0012 can be reproduced by the inverse design and thus,
the optimization procedure works as expected.

Figure 6. Shapes of inverse design study for the lift objective and drag objective. For a better
visualization of the inverse design, only every third point is plotted.

4. Optimization of Airfoils

In the following optimizations, the design parameters are the coordinates of the spline control
points, which are equally distributed along the airfoil. The trailing edge is fixed and the splines are
parametrized by 20, 30, and 50 control points (abbreviated by “cp”) in order to investigate their effect
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on the optimization process. As in the previous inverse design study, the optimizations aim at certain
lift or drag coefficients, respectively, and the objective functions are formulated as in Equation (14).
The flow solutions in the optimizations are pre-converged and the compared cases have the same level
of pre-convergence.

4.1. NACA 0012 at AoA = 2◦

The initial airfoil for the first comparisons is the NACA 0012 at a Reynolds number of Re = 2× 106

and an angle of attack of AoA = 2◦. The mesh and general set-up are the same as for the verification
of the adjoint gradients and the inverse design of the previous section. Different numbers of spline
control points are used.

Figure 7 shows the convergence of the lift and drag optimizations. The objective for the lift
is an increase of the lift coefficient by 20%. The lift optimizations all lead to a convergent solution.
More control points (labeled as “XXcp”) require more function evaluations.

Figure 7. Objective functions for lift and drag as in Equation (14) along the number of function
evaluations for the NACA 0012 at AoA = 2◦. Frozen as well as adjoint turbulence are used. The
number of control points is labeled as “XXcp”.

The objective of the drag optimizations is a decrease of the drag coefficient by 3%. Most cases
lead to a convergent solution and only the case with frozen turbulence and 20 control points does
not converge well. In order to investigate this, the gradients of the first optimization steps are
plotted in Figure 8. In order to be able to compare the gradients with a different amount of control
points, the gradients by 20 and 50 control points are scaled in the x-direction to match the gradients
by 30 control points.

Different conclusions can be drawn from the graph. Firstly, the size of the gradients depends on
the number of control points. This follows from the summation during the projection from higher to
lower-dimensional space (see Equation (13)) and fewer control points need to include more information
of the gradients. Secondly, the gradients obtained by frozen turbulence are smaller than the ones by
adjoint turbulence. Thirdly, compared to the highest values by 20 control points and adjoint turbulence,
the use of frozen turbulence leads to slightly stronger gradients near the trailing edge (at low and high
numbering of control points, respectively). This results into a different shape at the trailing edge, as
shown in Figure 9 (see the shape with 20 cp and frozen turbulence), where the solution of the flow as
well as the adjoints may be wrong and the optimizer is not able to generate a clearly better shape from
this point.
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Figure 8. Gradients of the first optimization step for a decrease in drag by 3% at AoA = 2◦. Frozen as
well as adjoint turbulence are used. The number of control points is labeled as “XXcp”. The control
points start from the trailing edge on the suction side, pass the leading edge, and end at the trailing
edge on the pressure side.

Figure 9. Airfoil shapes using adjoint and frozen turbulence for the NACA 0012 at AoA = 2◦. The
objective is a decrease in drag by 3%. Frozen as well as adjoint turbulence are used. The number of
control points is labeled as “XXcp”.

4.2. NACA 0012 at AoA = 12◦

As a next step, the angle of attack is increased to AoA = 12◦, which is closer to the stall, and flow
separation becomes more dominant. The mesh and general set-up are the same as before. Since the
initial lift and drag coefficients at this angle are much higher than in the previous case, an increase in
lift by only 2% and a decrease in drag by only 1% is aimed for.

Figure 10 shows the convergence of the lift and drag optimization using the same nomenclature
as before. For the lift objective, it can be seen that the cases using adjoint turbulence converge well,
but the cases with frozen turbulence do not converge at all.
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Figure 10. Objective functions for lift and drag as in Equation (14) along the number of function
evaluations for the NACA 0012 at AoA = 12◦. Frozen as well as adjoint turbulence are used. The
number of control points is labeled as “XXcp”.

The reason for this poorer behavior using frozen turbulence can be found in the gradients shown
in Figure 11, where the gradients of the first optimization step are plotted. Again, in order to be able to
compare the gradients with a different number of control points, the gradients by 20 and 50 control
points are scaled in the x-direction to match the gradients by 30 control points.

Figure 11. Gradients of the first optimization step for an increase in lift by 2% at AoA = 12◦. Frozen
as well as adjoint turbulence are used. The number of control points is labeled as “XXcp”. The control
points start from the trailing edge on the suction side, pass the leading edge, and end at the trailing
edge on the pressure side.

As before, due to the summation during the projection of gradients (see Equation (13)),
the gradients with more design variables are smaller than the ones with fewer design variables.
Besides, it can be seen that the gradients obtained by frozen turbulence are clearly bigger than the ones
computed by adjoint turbulence, and show a deviating trend. These stronger gradients appear near
the leading edge on the suction side and lead to a larger deformation at this part of the airfoil, which is
shown in Figure 12 for an intermediate step with 30 control points and frozen turbulence.
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Figure 12. Intermediate airfoil shape during an optimization of lift at AoA = 12◦ using frozen
turbulence compared to the initial airfoil and the final shape using adjoint turbulence (all with
30 control points).

The intermediate shape shows a stronger deformation of the leading edge on the suction side
and with this shape, the adjoint equations do not properly converge, which leads to even worse
gradient information afterwards. The optimization cannot recover from this and it explains the poor
convergence of the optimization processes using frozen turbulence in Figure 10.

Figure 10 also shows the convergence of the drag optimization and it can be seen that the cases
using adjoint turbulence converge better than the cases using frozen turbulence, where some do not
converge at all. Still, the distinction is not as clear as for the lift optimization. There is a stronger
dependence on the number of design variables, which may result from a higher sensitivity of the drag
coefficient on the mesh motion and a higher influence of friction forces. Also, this comparison shows
that a drag optimization at this angle of attack with early beginning of flow separation seems to be
more challenging than the previous cases. The deviation of gradients obtained by the adjoint approach
from gradients by finite differences, presented in Section 3.5, leads to this problem, which can follow
from the simplifications discussed in Section 3.3. However, these are required for stable convergence
of the adjoint system, which cannot be simply solved by using finer meshes.

Figure 13 shows the final shapes from the lift and drag optimization at AoA = 12◦. For the lift,
it can be seen that the shapes using adjoint turbulence are similar, whereas the shapes using frozen
turbulence all differ from each other, which is a result of the wrong initial and following gradients.
For the drag optimization, the shapes are all a little different from each other. Since the drag has
a higher sensitivity to the shape, even small differences lead to a relatively strong impact on the
objective function.

It can be concluded that in more complex cases (an increased angle of attack is more complex
because of the beginning of separation) the use of adjoint turbulence is beneficial and leads to a better
convergence behavior than in cases when frozen turbulence is used. The negative influence of the
frozen turbulence assumption could become even worse when constraints are used in multi-objective
optimization or more precise approximations of the Hessians are needed.
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Figure 13. Airfoil shapes using adjoint and frozen turbulence for the lift and drag objective with
NACA 0012 at AoA = 12◦. Frozen as well as adjoint turbulence are used. The number of control points
is labeled as “XXcp”.

4.3. DU 93-W-210 at AoA = 2◦

The following comparison uses a wind turbine airfoil DU 93-W-210 developed at TU Delft by
Timmer and van Rooij [44]. It is specially designed for the use on wind turbines and has a stronger
camber as well as a higher thickness (21%) than the previous shape. It is aerodynamically optimized
for a high lift-to-drag ratio, which makes the airfoil an interesting object for optimization. The general
set-up of the simulations is as before, the mesh has the same size and quality, and the Reynolds number
is again Re = 2× 106. The angle of attack is at AoA = 2◦, where this airfoil has a higher lift and drag
than the previous NACA airfoil. Thus, the objective is to increase the lift coefficient by only 7% and to
decrease the drag by 3%.

Figure 14 shows the convergence of the lift and drag optimization, where the convergence of
frozen and adjoint turbulence is very similar. Only in the case of 50 control points is a clearly higher
number of function evaluations required, which may result from more steps in order to compute the
approximated Hessian, and this case does not scale linearly.

Figure 14. Objective functions for lift and drag as in Equation (14) along the number of function
evaluations for the DU 93-W-210 at AoA = 2◦. Frozen as well as adjoint turbulence is used. The
number of control points is labeled as “XXcp”.

The final shapes of the lift and drag optimizations are shown in Figure 15. The higher lift is gained
by an increase in camber and thickness. The differences between shapes generated by adjoint and
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frozen turbulence are small. The lower drag is gained by a decrease in camber and thickness. Again,
the differences between shapes generated by adjoint and frozen turbulence are small.

Figure 15. Airfoil shapes using adjoint and frozen turbulence for the lift and drag objective for
DU 93-W-210 at AoA = 2◦. Frozen as well as adjoint turbulence are used. The number of control points
is labeled as “XXcp”.

4.4. DU 93-W-210 at AoA = 6◦

Due to a different curvature and thickness, the DU 93-W-210 has different aerodynamic
characteristics than the symmetric NACA airfoil. The lift of the DU airfoil drops less strongly in
the stall, but the airfoil stalls a few degrees earlier. That is why the following optimizations are
conducted at AoA = 6◦, which is little before the stall in fully-turbulent flow. The objectives are an
increase in lift by 3% and a decrease in drag by 2%.

Figure 16 shows the convergence of the lift and drag optimization, where the convergence of
frozen and adjoint turbulence is similar.

Figure 16. Objective functions for lift and drag as in Equation (14) along the number of function
evaluations for the DU 93-W-210 at AoA = 6◦. Frozen as well as adjoint turbulence are used. The
number of control points is labeled as “XXcp”.

As in the previous case, at a lower angle of attack, the use of 50 control points requires a higher
number of CFD iterations. This may result from more steps in order to compute the approximated
Hessian and does not scale linearly.

The final shapes of the lift and drag optimizations are shown in Figure 17. The higher lift is gained
through an increase in camber and thickness. The lower drag is gained by a decrease in camber and
thickness. As for the lower angle of attack, the differences between shapes generated by using adjoint
and frozen turbulence are small.
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Figure 17. Airfoil shapes using adjoint and frozen turbulence for the lift and drag objective for
DU 93-W-210 at AoA = 6◦. Frozen as well as adjoint turbulence are used. The number of control points
is labeled as “XXcp”.

In order to investigate why the differences between frozen and adjoint turbulence are small in
terms of convergence and shape, Figure 18 shows the gradients of the first optimization step for lift
and drag objective, respectively. For the sake of a better comparison of the gradients using different
numbers of control points, the abscissa is scaled to match 30 control points. Beside minor differences,
it can be seen that the gradients are of similar size and show a similar trend. Although the gradients
by frozen turbulence are a little larger than the ones by adjoint turbulence, the optimization processes
are not influenced much. This is very different to the previous optimizations of the symmetric NACA
airfoil and results from the different airfoil shapes. The shape of the DU airfoil leads to gradients
which are the strongest on the central suction side. Thus, mainly thickness and camber are changed
during the optimization, which has a positive effect on the convergence of the optimization. In contrast,
the symmetric NACA airfoil has stronger gradients near the leading edge (especially at AoA = 12◦)
and subsequently, the leading edge is more strongly deformed and the use of adjoint turbulence is
more important.

Figure 18. Gradients of the first optimization step for lift and drag objective of the DU 93-W-210 at
AoA = 6◦. Frozen as well as adjoint turbulence are used. The number of control points is labeled as
“XXcp”. The control points start from the trailing edge on the suction side, pass the leading edge and
end at the trailing edge on the pressure side.
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5. Summary and Conclusions

Airfoil shape optimization based on CFD and the adjoint approach is already an established
method used by several authors. In this study, the effect of the so-called “frozen turbulence”
assumption in incompressible flows is compared with the adjoints to a turbulence model, here the
Spalart–Allmaras model. The simulations were conducted with the open-source CFD code
OpenFOAM-2.3.0, which was extended by the authors for the presented purposes, i.e., external
aerodynamics and the corresponding gradient computations as well as a robust, but precise mesh
deformation. The implemented mesh motion technique is particularly suitable for shape deformations
of airfoils, preserving the high mesh quality in the boundary layer. The solution procedure of the
adjoint equations was improved in terms of stability and speed. The convergence time was reduced
by half using the SIMPLEC algorithm. The objective functions of the single-point optimizations
were quadratic functions in order to reach a certain target lift or drag coefficient, respectively. The
function and gradient evaluations were coupled with the optimization module SciPy, written in the
programming language Python. Unconstrained quasi-Newton optimizations were used, where the
Hessian was approximated by a BFGS update.

The airfoils in the optimizations were represented by splines using different numbers of control
points. In some cases, the convergence of the optimization and the resulting shapes depended on the
number of control points, and it is recommended that at least 30 spline control points are used.

The presented cases showed that the adjoint turbulence is not always necessary, since some
optimizations converged well with gradients obtained by the frozen turbulence approach. This strongly
depends on the case itself and for some cases (which may be considered relatively simple), the
significant effort for implementing or deriving an adjoint turbulence model can be saved. Besides, the
additional PDE from the adjoint turbulence model leads to a higher computational time, which was
roughly twice the time needed with frozen turbulence. The reader may evaluate this individually for
his or her problem his- or herself, but in general, it is recommended that adjoints to the turbulence
model be used, if available. In many cases it is useful, and in some even inevitable, as some airfoil
shapes in complex flows may not be optimized without adjoint turbulence. This necessity may increase
when a different optimizer is selected in order to use constraints and when the approximation of the
Hessian has to be more precise. Noise in the gradients will be amplified using second-order derivatives,
which leads to poorer convergence or even complete failure of the optimization.

Since unconstrained optimizations were conducted, other aerodynamic measures or thickness
were not included in the optimization objectives, but thickness was clearly changed in the presented
cases. Fulfilling the objective function, the shapes are mathematically correct, but for many engineering
purposes they may not be useful. This can be considered as a negative side-effect of the presented
single-objective optimization. Thickness or other aerodynamic constraints are important for many
airfoil applications, e.g., in wind turbines, and hence, they shall be included in future work.
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Appendix A

A mesh study is conducted for a NACA 0012 at Re = 2× 106 and two angles of attack: AoA = 2◦

and AoA = 12◦. The Spalart–Allmaras turbulence model is used and in order to fully resolve the flow
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in the boundary layer the dimensionless wall distance is at y+ ≈ 0.1. The domains have a radius of
45 chord lengths and are spatially discretized as shown in Table A1. Hexahedral O-meshes are used
and in order to be able to use these meshes for the computation of adjoint equations, they are finer
than necessary for standard flow solutions with RANS.

Table A1. Number of cells used in the mesh study.

Cells Around Airfoil Cells in Radial Direction Cells in Total

coarse mesh 400 130 52,000
medium mesh 800 260 208,000

fine mesh 1,600 520 832,000

The resulting changes in lift and drag coefficients are shown in the following Table A2, where the
relative differences are computed based on the results of the finest mesh.

Table A2. Relative differences ∆li f t, ∆drag in (%) of lift and drag coefficients compared to the coefficients
resulting from the finest mesh.

AoA = 2◦ AoA = 12◦

∆li f t ∆drag ∆li f t ∆drag

coarse mesh −0.1 1.5 −0.6 5.0
medium mesh 0.4 0.4 0.1 1.5

fine mesh 0.0 0.0 0.0 0.0

Comparing the medium and the fine mesh, the differences at AoA = 2◦ are below 1% and only
for the drag at AoA = 12◦, which is already near stall, the difference is above 1%. The medium mesh
represents a compromise between mesh independency and fast primal and adjoint solutions, and as
such is used within this work.

With this mesh for the NACA 0012, a validation is done at Re = 2× 106, comparing experimental
results from Ladson [41] with the numerical predictions. Again, the simulations were conducted
to be fully-turbulent with the Spalart–Allmaras model without transition. In the measurements,
different levels of roughness are used and beside a clean configuration, boundary layer tripping is also
used. The carborundum strips were placed at 5% of the chord on the suction and pressure side and
had different grit sizes: 60-W and 80-W.

The resulting validation of the lift and drag coefficients is shown in Figure A1. In general, the CFD
is able to reproduce the measurements, although the deep stall shows some deviations, which is a
common effect from 2D-RANS simulations, but 3D wind tunnel measurements. Since the focus of
this work is not a validation of OpenFOAM, but an investigation of frozen and adjoint turbulence,
these results are considered to be good enough.
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Figure A1. Validation of lift and drag coefficients of a NACA 0012 at Re = 2× 106 (experimental
results by Ladson [41]).

Appendix B

A step size study for computing finite differences is conducted for the NACA airfoil at
Re = 2× 106 and AoA = 2◦. The airfoil is represented by a spline with 26 control points and different
step sizes are used in order to search for an optimal range, where neither round-off errors nor truncation
errors appear.

The resulting gradients are plotted in Figure A2 along the indices of the control points (labeled as
in Figure 3) and it can be seen that the smallest changes in gradients are between 5× 10−8 and 1× 10−7.
Still, the gradients are not exactly the same and a promising approach to avoid the step size problem
of finite differences is the complex step method [40]. However, this is not in the scope of this work,
since the objectives in the optimizations are fulfilled when using adjoint turbulence. The complex step
method may be used in the future for a better verification of the adjoint implementation when more
complex objective functions are used, which require a higher accuracy of the gradients.

Figure A2. Gradients obtained by finite differences (FDs) for lift objective (“gradient cl”) and drag
objective (“gradient cd”). Different step sizes (StSz) are used for finite differencing.

Appendix C

The derivation of the adjoints to the Spalart–Allmaras turbulence model follows the description
of Zymaris et al. [15]. However, our own derivation led to minor differences and for the sake of brevity
only the finally resulting equations are shown here.
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The adjoint momentum equation including adjoint turbulent viscosity is:

(∇u)T ·Ψu − (u · ∇)Ψu −∇Ψp

−∇ ·
[
(ν + νt)

(
∇Ψu + (∇Ψu)

T)]− ν̃∇ν̃a

+
1
S
[
CD,S − CP,S

](
∇×

(
ν̃a(∇× u)

))
= 0 , (A1)

where the derivatives CD,S and CP,S directly result from the Spalart–Allmaras model:

CD,S =
∂

∂S

(
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ν̃2

d2

)
= cw1

ν̃2

d2
∂ fw

∂g
∂g
∂r

∂r
∂S̃

(A2)

CP,S =
∂

∂S
(
cb1 ν̃S̃

)
= cb1 ν̃ . (A3)

The adjoint continuity equation is:

−∇ ·Ψu = 0 . (A4)

The equation for the adjoint eddy-viscosity ν̃a is:

(u · ∇) ν̃a +

(
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σ

)
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2
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(
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)
+
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)
, (A5)

where again some derivatives CP,ν̃ and CD,ν̃ directly result from the Spalart–Allmaras model:

CP,ν̃ =
∂

∂ν̃

(
cb1 ν̃S̃

)
= cb1 S̃ + cb1 ν̃
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d2 + cw1
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∂g
∂g
∂r

dr
dν̃

. (A7)

Standard Dirichlet and zero Neumann boundary conditions are used for the far-field boundaries,
where the adjoint BCs are opposite to the primal BCs.

References

1. Arora, J.S. Introduction to Optimum Design, 2nd ed.; Elsevier Academic Press: Cambridge, MA, USA, 2004.
2. Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer Science+Business Media: Berlin, Germany,

2006.
3. Jameson, A.; Martinelli, L. Optimum Aerodynamic Design Using the Navier-Stokes Equations. Theor. Comput.

Fluid Dyn. 1998, 10, 213–237.
4. Giles, M.B.; Pierce, N.A. An Introduction to the Adjoint Approach to Design. In Flow, Turbulence and

Combustion; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2000; Volume 65, pp. 393–415.
5. Papoutsis-Kiachagias, E.M.; Giannakoglou, K.C. Continuous Ajoint Methods for Turbulent Flows, Applied

to Shape and Topology Optimization: Industrial Applications. Arch. Comput. Methods Eng. 2014, 23, 255–299.



Computation 2018, 6, 5 22 of 23

6. Thévenin, D.; Janiga, G. Optimization and Computational Fluid Dynamics; Springer: Berlin/Heidelberg,
Germany, 2008.

7. Nadarajah, S.K.; Jameson, A. A Comparison of the Continuous and Discrete Adjoint Approach to Automatic
Aerodynamic Optimization. Can. J. Earth Sci. 2000, 43, 1445–1466.

8. Carnarius, A.; Thiele, F.; Özkaya, E.; Nemili, A.; Gauger, N. Optimal Control of Unsteady Flows Using a
Discrete and a Continuous Adjoint Approach. In Proceedings of the 25th System Modeling and Optimization
(CSMO), Berlin, Germany, 12–16 September 2011.

9. Othmer, C. A continuous adjoint formulation for the computation of topological and surface sensitivities of
ducted flows. Int. J. Numer. Methods Fluids Wiley InterSci. 2008, doi:10.1002/fld.1770.

10. Anderson, W.K.; Bonhaus, D.L. Airfoil Design on Unstructured Grids for Turbulent Flows. AIAA J. 1999,
37, 185–191.

11. Nielsen, E.J.; Anderson, W.K. Aerodynamic Design Optimization on Unstructured Meshes Using the
Navier-Stokes Equations. AIAA J. 1999, 37, 1411–1419.

12. Lyu, Z.; Kenway, G.K.W.; Paige, C.; Martins, J.R.R.A. Automatic Differentiation Adjoint of the
Reynolds-Averaged Navier-Stokes Equations with a Turbulence Model. In Proceedings of the 21st AIAA
Computational Fluid Dynamics Conference, San Diego, CA, USA, 24–27 June 2013.

13. Osusky, L.; Buckley, H.; Reist, T.; Zingg, D.W. Drag Minimization Based on the Navier–Stokes Equations
Using a Newton-Krylov Approach. AIAA J. 2015, 53, 1555–1577.

14. Dwight, R.; Brezillon, J. Effect of various approximations of the discrete adjoint on gradient-based
optimization. AIAA J. 2006, 44, 3022–3031.

15. Zymaris, A.S.; Papadimitriou, D.I.; Giannakoglou, K.C.; Othmer, C. Continuous adjoint approach to the
Spalart-Allmaras turbulence model for incompressible flows. Comput. Fluids 2009, 38, 1528–1538.

16. Spalart, P.R.; Allmaras, S.R. A one-equation turbulence model for aerodynamic flows. In Proceedings of the
30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992.

17. Bueno-Orovio, A.; Castro, C.; Palacios, F.; Zuazua, E. Continuous Adjoint Approach for the Spalart-Allmaras
Model in Aerodynamic Optimization. AIAA J. 2012, 50, doi:10.2514/1.J051307.

18. Kavvadias, I.S.; Papoutsis-Kiachagias, E.M.; Dimitrakopoulos, G.; Giannakoglou, K.C. The continuous
adjoint approach to the k-ω SST turbulence model with applications in shape optimization. Eng. Optim.
Taylor Francis Group 2014, 47, doi:10.1080/0305215X.2014.979816.

19. OpenCFD. OpenFOAM R©—The Open Source Computational Fluid Dynamics (CFD) Toolbox. Available
online: www.OpenFOAM.org (accessed on 19 January 2018).

20. Towara, M.; Naumann, U. A Discrete Adjoint Model for OpenFOAM. Proced. Comput. Sci. 2013, 18, 429–438.
21. Önder, A. Active Control of Turbulent Axisymmetric Jets Using Zero-Net-Mass-Flux Actuation. Ph.D. Thesis,

Katholieke Universiteit Leuven, Leuven, Belgium, 2014.
22. Petropoulou, S. Industrial Optimisation Solutions based on OpenFOAM Technology. In Proceedings of the

5th European Conference on Computational Fluid Dynamics (ECCOMAS), Lisbon, Portugal, 14–17 June 2010.
23. Othmer, C.; de Villier, E.; Weller, H. Implementation of a continuous adjoint for topology optimization of

ducted flows. In Proceedings of the 18th AIAA Computational Fluid Dynamics Conference, Miami, FL, USA,
25–28 June 2007.

24. Jameson, A.; Reuther, J. Control Theory Based Airfoil Design using the Euler Equations. In Proceedings
of the 5th Symposium on Multidisciplinary Analysis and Optimization, Panama City Beach, FL, USA,
7–9 September 1994.

25. Castro, C.; Lozano, C.; Palacios, F.; Zuazua, E. Systematic Continuous Adjoint Approach to Viscous
Aerodynamic Design on Unstructured Grids. AIAA J. 2007, 45, 2125–2139.

26. Mohammadi, B.; Pironneau, O. Shape Optimization in Fluid Mechanics. Ann. Rev. Fluid Mech. 2004,
36, 255–279.

27. Soto, O.; Löhner, R. On the computation of flow sensitivities from boundary integrals. In Proceedings of the
42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 5–8 January 2004.

28. Choi, H.; Hinze, M.; Kunisch, K. Instantaneous control of backward-facing step flows. Appl. Numer. Math.
1999, 31, 133–158.

29. Stück, A. Adjoint Navier-Stokes Methods for Hydrodynamic Shape Optimisation. Ph.D. Thesis, Technische
Universität Hamburg-Harburg, Hamburg, Germany, 2012.

www.OpenFOAM.org


Computation 2018, 6, 5 23 of 23

30. Palacios, F.; Alonso, J.J.; Jameson, A. Design of free-surface interfaces using RANS equations. In Proceedings
of the 43rd Fluid Dynamics Conference, San Diego, CA, USA, 24–27 June 2013.

31. Patankar, S.V. Numerical Heat Transfer and Fluid Flow; Hemisphere Publishing Corporation: Washington, DC,
USA, 1980.

32. Van Doormaal, J.P.; Raithby, G.D. Enhancements of the SIMPLE method for predicting incompressible fluid
flows. Numer. Heat Transf. 1984, 7, 147–163.

33. Hojjat, M. Node-Based Parametrization for Shape Optimal Design. Ph.D. Thesis, Technische Universität
München, Munich, Germany, 2015.

34. Jameson, A.; Vassber, J.C. Studies of alternative numerical optimization methods applied to the
brachistochrone problem. Comput. Fluid Dyn. J. 2000, 9, 281–296.

35. Soto, O.; Löhner, R.; Yang, C. A stabilized pseudo-shell approach for surface parametrization in CFD design
problems. Commun. Numer. Methods Eng. 2002, 18, 251–258.

36. Kropatsch, W.; Kampel, M.; Hanbury, A. Computer Analysis of Images and Patterns—12th International
Conference, CAIP 2007, Proceedings; Springer: Berlin Heidelberg, 2007.

37. Anderson, W.K.; Venkatakrishnan, V. Aerodynamic design optimization on unstructured grids with a
continuous adjoint formulation. In Proceedings of the 35th Aerospace Sciences Meeting and Exhibit,
Reno, NV, USA, 6–9 January 1997.

38. Lozano, C. Discrete surprises in the computation of sensitivities from boundary integrals in the continuous
adjoint approach to inviscid aerodynamic shape optimization. Comput. Fluids 2012, 56, 118–127.

39. Schramm, M.; Stoevesandt, B.; Peinke, J. Simulation and Optimization of an Airfoil with Leading Edge Slat.
J. Phys. Conf. Ser. 2016, 753, 022052.

40. Martins, J.R.R.A.; Kroo, I.M.; Alonso, J.J. An Automated Method for Sensitivity Analysis using Complex
Variables. In Proceedings of the 38th AIAA Aerospace Sciences Meeting, Reno, NV, USA, 10–13 January 2000.

41. Ladson, C.L. Effects of Independent Variation of Mach and Reynolds Numbers on the Low-Speed Aerodynamic
Characteristics of the NACA 0012 Airfoil Section; NACA Technical Memorandum; NASA: Washington, DC,
USA, 1988; Volume 4074.

42. Kim, S.; Alonso, J.J.; Jameson, A. A Gradient Accuracy Study for the Adjoint-Based Navier-Stokes Design
Method. In Proceedings of the 37th AIAA Aerospace Sciences Meeting, Reno, NV, USA, 11–14 January 1999.

43. SciPy. Scientific Computing Tools for Python. Available online: www.SciPy.org (accessed on 19 January
2018).

44. Timmer, W.A.; van Rooij, R.P.J.O.M. Summary of the Delft University Wind Turbine Dedicated Airfoils.
In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

www.SciPy.org
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mesh Motion
	The Adjoint Approach
	The General Principle
	Adjoint Equations and Gradient Calculation
	Details of the Present Implementation
	Projection of the Gradients of the Objective Function
	Verification of Gradients
	Inverse Design

	Optimization of Airfoils
	NACA 0012 at AoA=2
	NACA 0012 at AoA=12
	DU 93-W-210 at AoA=2
	DU 93-W-210 at AoA=6

	Summary and Conclusions
	
	
	
	References

