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Abstract: In this paper, an open-source toolbox that can be used to accurately predict the distribution
of the major physical quantities that are transported within a proton exchange membrane (PEM)
fuel cell is presented. The toolbox has been developed using the Open Source Field Operation
and Manipulation (OpenFOAM) platform, which is an open-source computational fluid dynamics
(CFD) code. The base case results for the distribution of velocity, pressure, chemical species,
Nernst potential, current density, and temperature are as expected. The plotted polarization curve
was compared to the results from a numerical model and experimental data taken from the literature.
The conducted simulations have generated a significant amount of data and information about the
transport processes that are involved in the operation of a PEM fuel cell. The key role played by the
concentration constant in shaping the cell polarization curve has been explored. The development of
the present toolbox is in line with the objectives outlined in the International Energy Agency (IEA,
Paris, France) Advanced Fuel Cell Annex 37 that is devoted to developing open-source computational
tools to facilitate fuel cell technologies. The work therefore serves as a basis for devising additional
features that are not always feasible with a commercial code.

Keywords: computational fluid dynamics; modelling; numerical; open-source code; proton exchange
membrane fuel cell; simulation

1. Introduction

A proton exchange membrane (PEM) fuel cell is an electrochemical device used to convert the
chemical energy of hydrogen into electrical energy, releasing heat in the process while producing water
as the only by-product of the electrochemical reactions. It is thus a clean energy technology that has
become an attractive option for replacing some of the carbon-based fuel energy systems since fossil
fuel resources are increasingly scarce and they produce a significant amount of pollutants [1].

PEM fuel cells have many other advantages apart from being environmentally friendly energy
conversion devices. They can directly convert the chemical energy of hydrogen into useful work
without undergoing any thermodynamic cycle, resulting in higher efficiencies in direct electrical
energy conversion. In addition, they have higher power densities and operate at lower temperatures,
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making them a suitable choice for automotive power systems, as well as power generation devices for
portable electronics and stationary units [1].

Nonetheless, the high manufacturing and performance test costs associated with PEM fuel cell
systems constitute a major hurdle for their rapid development in terms of experimental studies.
Therefore, many researches on PEM fuel cells have focused on improving the cell performance by
maximizing its efficiency while minimizing manufacturing and test costs through CFD techniques [1–5].
Most of the current state of the art work is concerned with the effects of modelling parameters on cell
polarization [6–17].

As for open-source modelling of PEM fuel cells using OpenFOAM, this paragraph is intended to
examine most of the literature’s models, though it is likely that it may not include all the published
models. Therefore, only the most pertinent issues that are relevant in the context of the present work
are examined. Barreras et al. [18] and Lozano et al. [19] developed two dimensional (2-D) OpenFOAM
CFD models for investigating the performance of bipolar plates in PEM fuel cells. Besides being 2-D,
these models only consider a single fuel cell component (e.g., bipolar plate). It has been shown that
transport in PEM fuel cells is three dimensional (3-D) in nature and requires the coupling of multiple
regions in the fuel cell. Mustata et al. [20], Valino et al. [21] and Imbrioscia and Fasoli [22] subsequently
presented 3-D OpenFOAM CFD models of bipolar plates. Although their models are 3-D, they are also
limited to the bipolar plates, and they do not consider the coupling of transport phenomena in the
multiple regions of the fuel cell. Valino et al. [23] introduced a 3-D OpenFOAM model for a complete
cell. However, this model assumes an isothermal condition, meaning that the transport of thermal
energy is not solved. This can produce results that are not physically representative. It has been
shown that the impact of temperature distribution is very significant. In addition, the source codes
of these models are not readily available to the public, and thus, like commercial software, they offer
no flexibility.

In this work, a 3-D, non-isothermal and single-phase flow OpenFOAM model of a complete cell
(including all fuel cell components) is developed. The Nernst equation is used for computing the
open-circuit potential as opposed to solving the charge conservation equation for determining the
open-circuit potential in the literature models. The work aims to fill the research knowledge gap in
comprehensive open-source computational models for PEM fuel cells that are numerically tractable.
The model developed partially adapts the open-source computational model of a solid oxide fuel cell
(SOFC) presented by [24], to a PEM fuel cell. It varies from the model of [24] because: it is a different
type of fuel cell (in a PEM fuel cell, hydrogen protons cross the membrane to the cathode, as opposed
to oxygen ions crossing to the anode in SOFC); the geometry is different; the boundary conditions
are different; and the electrochemistry is different. Furthermore, this model has been developed
using OpenFOAM version 4.0, which has a superior design and far newer functionalities compared to
version 2.1.x adopted in [24].

2. Mathematical Model

2.1. Cell Geometry and Transport Processes

A 3D description of the cell geometry along with a mesh can be seen in Figure 1. The geometric
dimensions of the components are given in Table 1. The anode and cathode electrodes, which are
made up of gas diffusion layers (GDL) and catalyst layers (CL), are separated by a membrane forming
the membrane electrode assembly (MEA). The MEA is inserted between two bipolar plates (BP) that
accommodate the gas flow channels (GFC). The electrochemical reactions occur on the surface of the
CLs where hydrogen fed into the anode GFCs reacts with oxygen that is supplied into the cathode
GFCs to undergo chemical-electrical energy conversion.
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Figure 1. Geometry and mesh of a single cell proton exchange membrane (PEM) fuel cell.

Table 1. The cell geometric dimensions [25].

BP GFC GDL CL Membrane

x-width (mm) 3 1.5 0.41 0.0037 0.127
y-height (mm) 22 2 22 22 22
z-length (mm) 22 22 22 22 22

As illustrated in Figure 2, the computational domain consists of both solid and fluid regions.
The solid region is comprised of the membrane and the BPs, whereas the fluid region contains the
GFCs, the GDLs, and the CLs. The reactant gases and the product water are transported within the
fluid region. The porous electrodes carry the heat released by the electrochemical reactions to the
cooling system through the BPs. Therefore, the field variables that need to be solved in these regions
are different. The solid is governed by the conservation of energy, whereas the fluid is governed by the
conservations of mass, momentum, chemical species, and energy.

Figure 2. Transport processes in a PEM fuel cell.
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In the numerical model presented in this work, the conservation equations are coupled with the
solution of the Nernst equation. In other words, the transport of mass, momentum, and chemical
species are coupled with electrochemical reactions to create a more tractable numerical model.
The energy equation solved in the solid region is coupled with the energy solutions in the fluid region.

2.2. Assumptions

Steady-state operating condition is assumed, with the gas flow considered to be laminar and
incompressible due to low velocities. The individual gases and the gas mixture are considered as ideal
gases. The fuel cell components are assumed to be isotropic and homogeneous. The membrane is
assumed to be fully humidified and impermeable to reactant gases [26]. The electrochemical reactions
are assumed to occur at the cathode electrode-membrane interface [24]. The anode’s activation and
mass transport overpotentials are taken as negligible [26]. Ohmic heating in the bipolar plates is
neglected due to high heat conductivity and the electrical potential distribution is taken as constant
within the bipolar plates due to high electrical conductivity of the bipolar plate material [27,28].
The outer walls of the entire cell are taken as impassable to heat [24].

2.3. Governing Equations

Mass conservation:
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where the mass fraction of the inert species is calculated using the sum of the other species (1 −
∑ ௜௡ିଵݕ
௜ୀଵ ). 

Energy conservation: 

ߘ ∙ ௣ܿߩ) ሬܷሬ⃗ ܶ) = ߘ ∙ (ܶߘ݇) + ܵா (5) 

where the energy source term SE, is essentially due to the heat released by the electrochemical reaction 
determined by: 

ܵா =
ூ

ఋಾಶಲ
ቀߟ − ்∆ௌ

௡೔ி
ቁ  (6) 

The cell voltage: 

௖ܸ௘௟௟ = ே௘௥௡௦௧ܧ − ௔௖௧ߟ − ௢௛௠ߟ −  ௖௢௡  (7)ߟ

Additional constitutive relations for linking the various physical quantities are given in Table 2. 

Table 2. Constitutive equations. 

Description Symbol Expression Source 
Gas density ρ 

௣
ோ் ∑௬೔ ெ೔⁄   - 

Mole fraction xi 
௬೔

ெ೔∑௬ೕ ெೕ⁄   - 

Specific heat capacity cp 
௖೛೘೚೗

ଵ଴షయ∑௬೔∗ெ೔
  - 

·(ρ
→
U) = 0 (1)

Momentum conservation:
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where the mass fraction of the inert species is calculated using the sum of the other species (1−∑n−1
i=1 yi).

Energy conservation:
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where the energy source term SE, is essentially due to the heat released by the electrochemical reaction
determined by:

SE =
I

δMEA
(η − T∆S

niF
) (6)

The cell voltage:
Vcell = ENernst − ηact − ηohm − ηcon (7)

Additional constitutive relations for linking the various physical quantities are given in Table 2.
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Table 2. Constitutive equations.

Description Symbol Expression Source

Gas density ρ
p

RT ∑ yi/Mi
-

Mole fraction xi
yi

Mi ∑ yj/Mj
-

Specific heat capacity cp
cp mol

10−3 ∑ yi∗Mi
-

Thermal conductivity k
n
∑

i=1

xiki
∑n

j=1 xi Aij
[29]

Diffusivity of gas species i Di-mix
1−xi

∑j 6=i
xj

Dji
[30]

Effective global diffusivity De f f
i

1
De f f

i−mix

+ 1
De f f

i−Knud
[31]

Effective species diffusivity De f f
i−mix

ε
τ Di−mix [31]

Effective Knudsen diffusivity De f f
i−Knud

ε
τ Di−Knud [31]

Knudsen diffusion coefficient Di-Knud 97× dp
2 ( T

Mi
)

1/2 [32]

Nernst potential ENernst E0 +
RT
zF ln Q -

Area specific resistance RΩ
∫ δMEM

0
dx

σi [λ(x)] +
2δ
σe

+ RBP + RC [33]

Membrane ionic conductivity σi (0.5139λ− 0.326)exp(1268× ( 1
303 −

1
T )) [33]

Membrane water content λ

{
0.043 + 17.18a− 39.85a2 + 36a3 (0 < a < 1)
14 + 1.4(a− 1) (1 ≤ a ≤ 3)

[33]

Water vapor activity a xWV×p
psat

[33]

Saturation pressure log psat
−2.1794 + 0.02953(T − 273.15)− 9.1837×

10−5(T − 273.15)2 + 1.4454× 10−7(T − 273.15)3 [33]

Activation overpotential ηact
RT
αF ln ( I

I0
) [26]

Ohmic overpotential ηohm RΩ I [26]

Concentration overpotential ηcon c ln ( IL
IL−I ) [34]

Concentration constant c RT
nF (1 +

1
α ) [34]

Limiting current density IL
nFDC

δ
[26]

Cathode exchange current density I0,C Ire f
0 exp

[
−Eact

R ( 1
T −

1
353.15 )

]
[35]

Species mass flux
.

m′′
i = ± IMi

ni F [26]

2.4. Boundary Conditions

The boundary and initial values are given in Table 3. The inlet values for velocity, temperature,
and mass fractions are given at the fluid inlets. Air and fuel inlet velocities are calculated according
to [36]

U|inlet = ξ
I

nF
AMEA

1
xi

RT
p

1
Ach

(8)

The outlet pressure value is prescribed at the outlet of both the anode and the cathode gas flow
channels. For all other variables, Neumann boundary conditions are applied at the fluid outlets.
Impermeability conditions are specified for mass and species flow at the membrane-fluid interfaces.
Impermeability, no-slip, and no-flux boundary conditions are applied at all the internal surfaces within
the modelling domain. A temperature of zero-gradient is applied at all the external surfaces.

Table 3. Boundary and initial values.

Equations Anode Inlet Anode Outlet Cathode Inlet Cathode Outlet Walls

Momentum Ufuel = 1.1055 m s−1 pfuel = 101,325 Pa Uair = 3.082 m s−1 pair = 101,325 Pa U = 0

Species transport yH2 = 0.2
yH2O = 0.8
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yO2 = 0.2
yH2O = 0.15
yN2 = 0.65
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where the mass fraction of the inert species is calculated using the sum of the other species (1 −
∑ ௜௡ିଵݕ
௜ୀଵ ). 

Energy conservation: 

ߘ ∙ ௣ܿߩ) ሬܷሬ⃗ ܶ) = ߘ ∙ (ܶߘ݇) + ܵா (5) 

where the energy source term SE, is essentially due to the heat released by the electrochemical reaction 
determined by: 

ܵா =
ூ

ఋಾಶಲ
ቀߟ − ்∆ௌ

௡೔ி
ቁ  (6) 

The cell voltage: 

௖ܸ௘௟௟ = ே௘௥௡௦௧ܧ − ௔௖௧ߟ − ௢௛௠ߟ −  ௖௢௡  (7)ߟ

Additional constitutive relations for linking the various physical quantities are given in Table 2. 

Table 2. Constitutive equations. 

Description Symbol Expression Source 
Gas density ρ 

௣
ோ் ∑௬೔ ெ೔⁄   - 

Mole fraction xi 
௬೔

ெ೔∑௬ೕ ெೕ⁄   - 

Specific heat capacity cp 
௖೛೘೚೗

ଵ଴షయ∑௬೔∗ெ೔
  - 

yO2 = 0
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3. Numerical Implementation

3.1. Computational Procedure

The flow diagram of the solution procedure is shown in Figure 3. The initialization phase is
followed by an iteration loop where several calculations are repeated until convergence. For the
potentiostatic (i.e., current density calculation) run, the cell voltage is fixed whereas for the galvanostatic
(i.e., voltage calculation) run, it is adjusted until the computed mean current density is equal or very
close to its initial value.

Figure 3. Flow diagram of the solution procedure.
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The physical constants and properties at cell operating temperature are given in Table 4.
The electrochemical parameters and properties used are given in Table 5. The case study operating
conditions for the simulation campaign are summarized in Table 6.

Table 4. Physical constants and properties at 353 K.

Parameter or Property Symbol Value Unit Source

Density of air ρair 0.914 kg m−3 Calculated [37]
Density of fuel ρfuel 0.2404 kg m−3 Calculated [37]

Density of membrane ρMEM 1980 kg m−3 [38]
Density of BP ρBP 1880 kg m−3 [38]

Isobaric heat capacity of air cp,air 1108.85 J kg−1 K−1 Calculated [39]
Isobaric heat capacity of fuel cp,fuel 2062.74 J kg−1 K−1 Calculated [39]
Isobaric heat capacity of GDL cp,GDL 710 J kg−1 K−1 [38]
Isobaric heat capacity of CL cp,CL 710 J kg−1 K−1 [38]

Isobaric heat capacity of membrane cp,MEM 2000 J kg−1 K−1 [38]
Isobaric heat capacity of BP cp,BP 875 J kg−1 K−1 [38]
Thermal conductivity of air kair 0.02867 W m−1 K−1 Calculated [29,39]

Thermal conductivity of fuel kfuel 0.08396 W m−1 K−1 Calculated [29,39]
Thermal conductivity of GDL kGDL 1.6 W m−1 K−1 [38]
Thermal conductivity of CL kCL 8 W m−1 K−1 [38]

Thermal conductivity of membrane kMEM 0.67 W m−1 K−1 [38]
Thermal conductivity of BP kBP 10.7 W m−1 K−1 [38]

Electronic conductivity of GDL σe,GDL 5000 S m−1 [38]
Electronic conductivity of CL σe,CL 1000 S m−1 [38]
Electronic conductivity of BP σe,BP 8.3 × 104 S m−1 [38]

Dynamic viscosity of air µair 1.5158 × 10−5 Pa s Calculated [29,39,40]
Dynamic viscosity of fuel µfuel 1.5 × 10−5 Pa s Calculated [29,39,40]

Table 5. Electrochemical parameters and properties.

Parameter or Property Symbol Value Unit Source

Cathode charge transfer coefficient αc 1.0 - -
Cathode activation energy Eact,c 73,220.0 J mol−1 [41]

Reference exchange current density Ire f
0

0.0139 A m−2 [41]
Enthalpy of formation of water vapor ∆HH2O −241.826 × 103 J mol−1 [42]

Standard entropy of hydrogen SH2 130.68 J mol−1 K−1 [42]
Standard entropy of oxygen SO2 205.152 J mol−1 K−1 [42]

Standard entropy of nitrogen SN2 191.609 J mol−1 K−1 [42]
Standard entropy of water vapor SH2O 188.835 J mol−1 K−1 [42]

Table 6. Case study operating conditions.

Variable Symbol Value Unit Source

Cell voltage V 0.6 V -
Cell temperature Tcell 353 K -

Air pressure pair 101,325 Pa -
Fuel pressure pfuel 101,325 Pa -
Air velocity Uair 3.082 m s−1 Calculated [36]
Fuel velocity Ufuel 1.1055 m s−1 Calculated [36]

Permeability of porous electrodes K 1.0 × 10−11 m2 -
O2 fixed diffusivity in air mixture DO2,air 2.939 × 10−5 m2 s−1 Calculated [30,43,44]

Effective O2 fixed diffusivity in air in GDL De f f
O2, GDL 9.732 × 10−6 m2 s−1 Calculated [30–32,43,44]

Effective O2 fixed diffusivity in air in CL De f f
O2, CL 7.785 × 10−6 m2 s−1 Calculated [30–32,43,44]

H2 fixed diffusivity in fuel mixture DH2, f uel 0.122 × 10−3 m2 s−1 Calculated [30,43,44]
Effective H2 fixed diffusivity in fuel in GDL De f f

H2, GDL 4.031 × 10−5 m2 s−1 Calculated [30–32,43,44]

Effective H2 fixed diffusivity in fuel in CL De f f
H2, CL 1.252 × 10−5 m2 s−1 Calculated [30–32,43,44]

Mass fraction of O2 yO2 0.2 - -
Mass fraction of air H2O yH2O 0.15 - -

Mass fraction of N2 yN2 0.65 - -
Mass fraction of H2 yH2 0.2 - -

Mass fraction of fuel H2O yH2O 0.8 - -
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3.2. Toolbox Structure

The present toolbox follows the same structure and organization as OpenFOAM, as depicted in
Figure 4. OpenFOAM is essentially a C++ library with its components falling into two main categories:
solvers and utilities. Users can customize any existing components to suit their needs although this
requires a good understanding of the software structure, as well as the programming techniques
involved. One shortcoming of the OpenFOAM software package is that it has no PEM fuel cell module.
Thus, the toolbox developed here provides remediation for this situation. It has two major components:
pemfcSinglephaseNonIsothermalSolver and run.

Figure 4. File structure of the toolbox.

3.2.1. PemfcSinglephaseNonIsothermalSolver

The pemfcSinglephaseNonIsothermalSolver folder contains the source code for the solver and
libraries. A pemfcSinglephaseNonIsothermalSolver.c file that contains the main loop of the program
is stored in the applications sub-folder. The lib sub-folder is where all necessary libraries are stored
and compiled. These include, amongst other things, classes for multicomponent gas diffusivities,
geometry, and mesh manipulation. The src sub-folder stores various program files containing specific
instructions for the initialization phase and algorithms for solving field variables in the main loop.
The individual solvers and other algorithmic controls and tolerances for these field variables are
defined in the fvSolution files present in the system sub-folder of the run folder.

3.2.2. Run

The run folder contains the constructed simulation case. An OpenFOAM case folder usually
contains three main sub-folders that store several files necessary to running OpenFOAM applications.
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The 0 sub-folder is a time sub-folder that stores the initial field data. In OpenFOAM, the time sub-folders
store all the field data at various times; the name of each sub-folder corresponds to the time at which
the simulation data were written. The data for the geometry construction and mesh creation are stored
in the config sub-folder. The constant sub-folder contains a sub-sub-folder called polyMesh in which
the mesh information and boundary condition files are stored, along with the physical property file.
The files for the solution control, scheme and solvers are stored in the system sub-folder.

4. Model Verification

4.1. Mesh Independence Study

To prove that the solution is independent from the mesh, a mesh independence study was
conducted. This required refining the case study mesh twice by adding an extra 20% and 40% of the
cells in every direction. Simulations at the case study conditions were then run with these refined
meshes in order to compare the solutions for the temperature field. The numerical results, shown in
Table 7, showed that the maximum change of temperature solution is 0.03% for the compared meshes.
This is evidence of the independence of the solution from the grid.

Table 7. Mesh independence.

Mesh 1 Mesh 2 Mesh 3

Total number of cells 134,552 224,432 351,000

Global temperature (K)
Tmin = 353.01 Tmin = 353.01 Tmin = 353.01
Tave = 356.05 Tave = 356.1 Tave = 356.1
Tmax = 357.4 Tmax = 357.5 Tmax = 357.5

4.2. Comparison with Literature Model Results and Experimental Data

The cell voltage drop per current density, also known as polarization curve, is plotted in Figure 5.
Since the present single-phase flow model has been run with some of the parameters and properties
taken from the multiphase flow model introduced by Yuan et al. [38] (as given in Table 8), the results
are therefore compared to the numerical model results and experimental data from Yuan et al. [38].
This also required adjusting other parameters such as the charge transfer coefficient and the reference
exchange current density to achieve a good agreement between the models (see Table 8). A direct
comparison is problematic given some differences in the modelling approaches, as well as cell
geometric dimensions and operating condition parameters and properties (see Table 8). But the
polarization curves nonetheless follow similar trends as seen in Figure 5, which confirms the trend
in cell voltage drop obtained with the developed OpenFOAM model. However, this work does not
account for liquid water effects in the fuel cell, which would have resulted in further potential drop,
as accounted for in the multiphase flow model in [38]. Furthermore, the difference between the three
curves at high current densities is due to, in addition to other factors, the complex conjunction of the
effects of the inlet flow rates, the cell design details and properties (e.g., number of gas flow channels
in each electrode, electrode porosity, material properties, etc., see Table 8), and the concentration
overpotential. In fact, the result indicates that the impact of the chosen concentration constant on the
concentration overpotential is very significant. Hence, optimization of this value would play a key
role in shaping the cell I-V curve since the curvature in the high current densities zone is determined
by the changes in the concentration overpotential.
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Table 8. Comparison of geometry and properties of present model with Yuan et al. [38] work.

Parameter or Property This Work Yuan et al. [38]

Cell geometry
Number of channels in each electrode 7 1

Channel width (mm) 1.5 1
Channel height (mm) 2 1
Channel length (mm) 22 30
GDL thickness (mm) 0.41 0.2
CL thickness (mm) 0.0037 0.02

Membrane thickness (mm) 0.127 0.05
BP thickness (mm) 3 2

GDL porosity 0.5 0.55
CL porosity 0.4 0.475

Properties

Density of membrane (kg m−3) 1980 1980
Density of BP (kg m−3) 1880 1880

Heat capacity of GDL (J kg−1 K−1) 710 710
Heat capacity of CL (J kg−1 K−1) 710 710

Heat capacity of membrane (J kg−1 K−1) 2000 2000
Heat capacity BP (J kg−1 K−1) 875 875

Thermal conductivity of GDL (W m−1 K−1) 1.6 1.6
Thermal conductivity of CL (W m−1 K−1) 8 8

Thermal conductivity of membrane (W m−1 K−1) 0.67 0.67
Thermal conductivity of BP (W m−1 K−1) 10.7 10.7
Electronic conductivity of GDL (S m−1) 5000 5000
Electronic conductivity of CL (S m−1) 1000 1000

Electronic conductivity BP (S m−1) 8.3 × 104 8.3 × 104

Charge transfer coefficient 1.0 1.25

Operating conditions Temperature (K) 353 300
Pressure (Pa) 101,325 100,000

stoichiometric flow ration 1.5/2.0 1.5/2.0
Flow configuration co-flow co-flow

Phase single-phase multiphase

Figure 5. Cell polarization curve compared to the literature model and experimental data.

5. Case Study Results and Discussion

The results are post-processed and visualized using ParaView, which is an open source
visualization software used for postprocessing in OpenFOAM through the paraFoam utility,
supplied with OpenFOAM.

The velocity profiles along the gas flow channels for the fuel and air are displayed in Figure 6a,b,
respectively. These are consistent with those seen in fully-developed laminar flow. The highest velocity
appears at the center lines of the channels and the lowest velocity is seen at the walls.
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Figure 6. Velocity profiles along the gas flow channels: (a) Fuel; (b) Air.

The pressure in the fuel and air side gas flow channels are illustrated in Figure 7a,b, respectively.
A pressure drop occurs at the outlets of the channels as the velocity increases in these areas as shown
in Figures 8 and 9.

Figure 7. Pressure distribution in the gas flow channels: (a) Fuel; (b) Air.

Figure 8. Fuel velocity vs. fuel pressure.
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Figure 9. Air velocity vs. air pressure.

The distribution of hydrogen and oxygen mass fractions are shown in Figure 10a,b, respectively.
The consumption of the reactant gases by the electrochemical reaction leads to a decrease in their mass
fractions going from inlet to outlet and from the GFCs to the CLs. There is a direct proportionality
between the concentration of reactant gases in the electrodes and the pressure (see Figures 11 and 12).

The distribution of Nernst potential is illustrated in Figure 13a. The combined effects of hydrogen
depletion in the anode and water vapor production in the cathode cause the Nernst potential to
decline from inlet to outlet. Consequently, the observed local current density as shown in Figure 13b,
also decreases in the flow direction. The current density sharply decreases towards the corner edges of
the cell outlet where there is no active surface. The distribution of the local temperature is displayed in
Figure 13c. The non-uniform nature of the temperature field is due to thermal inactivity at the ribs.
This reduces the heat released by the electrochemical reaction in these areas, which in turn lowers the
current densities due to reduced mass transfer.

Figure 10. Species mass fraction distribution: (a) Hydrogen; (b) Oxygen.



Computation 2018, 6, 38 13 of 17

Figure 11. Hydrogen mass fraction vs. fuel pressure.

Figure 12. Oxygen mass fraction vs. air pressure.

Figure 13. Membrane cathode interface showing the distribution of: (a) Nernst potential; (b) Local
current density; (c) Temperature.
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6. Conclusions and Outlook

An open-source code toolbox capable of accurately predicting the distribution of the major
physical quantities that are transported within a PEM fuel cell has been created using OpenFOAM.
The toolbox can be used to rapidly gain important insights into the cell working processes that
are essential for design optimization. It consists of a main program, relevant library classes, and a
constructed simulation case for a co-flow galvanostatic run.

The base case results for the distribution of velocity, pressure, chemical species, Nernst potential,
current density, and temperature are as expected. The results of a mesh independence investigation
revealed that the solution is independent from the grid. The plotted cell polarization curve was
compared to the available experimental data and numerical model results taken from the literature,
though a direct comparison seems difficult because of the differences in the modelling approaches,
as well as cell geometric dimensions and operating condition parameters and properties. The obtained
simulation data can provide crucial information about the major transport processes that take place
within a PEM fuel cell.

The model that has been created can, by no means, be considered complete. There are still some
improvements that can be made in the context of the present study. Liquid water transport has not been
considered, and so far, the transport phenomena inside the membrane (e.g., dissolved water transport)
have been simplified. Also, for the sake of simplicity, and to facilitate the numerical implementation,
the electrochemical reaction has been assumed to take place at a single interface between the cathode
catalyst layer and the membrane.

The present tool can provide a foundation for further development that is not always feasible
with commercial code. The source code is available at http://dx.doi.org/10.17632/3gz7pxznzn.1.
Future work may include a multiphase flow extension, and or improved catalyst and membrane
models, as well as performing a detailed sensitivity analysis for a deeper understanding of the
modelling choices. Moreover, experimental test of the fuel cell used in the case study will be conducted
in the future to validate the results obtained here from CFD simulation.
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List of Symbols

A area, m2

C concentration, mol m−3

cp specific heat capacity, J kg−1 K−1

d diameter, m
D diffusivity, m2 s−1

E potential, V
F Faraday’s constant, 96,485 C mol−1 e−

∆G Gibbs free energy, kJ mol−1

H latent heat, J kg−1

http://dx.doi.org/10.17632/3gz7pxznzn.1
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∆H enthalpy of formation, J mol−1

I current density, A m−2

I0 exchange current density, A m−2

k thermal conductivity, W m−1 K−1

K permeability, m2

M molar mass, kg kmol−1

ni number of electron of species i
p pressure, Pa
R universal gas constant, 8.314 J mol−1 K−1

RΩ area specific resistance, Ω m2

∆S entropy of formation, J mol−1 K−1

T temperature, K
→
U velocity vector, m s−1

v diffusion volume, m3

V voltage, V
y mass fraction
x mole fraction
z number of electron transferred
Greek letters
α charge transfer coefficient
δ thickness, m
ε porosity
η overpotential, V
µ dynamic viscosity, Pa s
ξ stoichiometric ratio
ρ density, kg m−3

σe electrical conductivity, S m−1

σi ionic conductivity, S m−1

τ tortuosity
Subscripts and superscripts
act activation
c cathode
ch channel
con concentration
E energy
eff effective
H2 hydrogen
H2O water
i species i
j species j
knud Knudsen
L limiting
M momentum
MEA membrane electrode assembly
MEM membrane
mix mixture
N2 nitrogen
O2 oxygen
ohm ohmic
p pore
ref reference
sat saturation
WV water vapor
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