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Abstract: Atomistic simulations can complement the scarce experimental data on free energies of
molecules at bio-inorganic interfaces. In molecular simulations, adsorption free energy landscapes
are efficiently explored with advanced sampling methods, but classical dynamics is unable to capture
charge transfer and polarization at the solid–liquid interface. Ab initio simulations do not suffer
from this flaw, but only at the expense of an overwhelming computational cost. Here, we introduce a
protocol for adsorption free energy calculations that improves sampling on the timescales relevant to
ab initio simulations. As a case study, we calculate adsorption free energies of the charged amino
acids Lysine and Aspartate on the fully hydrated anatase (101) TiO2 surface using tight-binding forces.
We find that the first-principle description of the system significantly contributes to the adsorption
free energies, which is overlooked by calculations with previous methods.
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1. Introduction

Engineered inorganic materials are important in many technological applications [1–3] such
as biomimetics [4], optics [5], biosensors [6,7], and smart surfaces [8]. The key to harness the true
potentials of these and other nanobio applications lies in a microscopic understanding of biomolecular
adsorption on inorganic materials. Nanotoxicity is another area where molecular interactions
determine the effects of nanoparticles on biological organisms, and controls the outcome in terms
of nanomaterial safety [9,10]. The bionano region, the nanometer-thick boundary near the surfaces
of nanoparticles and engineered nanomaterials, is believed to regulate adsorption behavior [9,11].
This region can be probed with modern atomistic simulations, but is difficult to access in experiments
due to the weak signal generated by its comparatively small volume.

Titanium dioxide (TiO2) is a biocompatible semiconductor used in implants and biomedical
applications [12–14] with a low bandgap that is ideal for water-splitting applications [15]. TiO2 has
become the standard surface model for water interactions with metal oxides in theoretical chemistry
due its perceived simplicity, with reactive sites at undercoordinated titanium atoms (Tinc) and bridging
oxygen atoms (Obr) [16,17]. However, on this “simple” surface, the adsorption behavior is modified
by surface hydroxyl groups from spontaneous water splitting [18–20], and adsorbate interactions are
indirectly mediated via strongly adsorbed water layers [21–23]. Charge transfer and polarization at
the surface are other important factors to consider [24].
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The binding free energy of a biomolecule on nano-TiO2, ∆Fads, dictates the adsorption behavior
in equilibrium. This quantity can be measured experimentally [25] and calculated from simulations,
but the latter demands careful evaluation of all energy and entropy contributions at the solid–liquid
interface. The Lennard–Jones models with fixed partial Coulomb charges employed in classical
molecular dynamics (CMD) simulations may not be sensitive to subtle differences in adsorption
behavior between similar biomolecules on, e.g., TiO2. Certainly, much effort has been devoted with
such force fields to compute trends for amino acids on various TiO2 surfaces [26–29], amorphous
nanoparticles [30], and other inorganic materials [31]. The overall assessment is that amino acids bind
strongly if they can penetrate the first water layer at the solid–liquid TiO2 interface [32], but many
questions remain unanswered. For example, the force fields used to model TiO2–adsorbate interactions
are parameterized on small and neutral molecules, where polarization and charge transfer take a small
role. Further, there are significant differences in the water density profiles near TiO2 obtained with
density functional theory (DFT) [32] and CMD, respectively.

Overestimated surface/water interactions lead to artificial order at the interface, which prevents
direct molecular adsorption [29]. Underestimation, on the other hand, smooths out the
distinctive adsorption behavior of individual biomolecules [26–28]. These differences in force field
parameterizations sometimes result in different adsorption behavior for the same molecules [26–29].
In the absence of experimental evidence, ab initio simulations that account for reactivity and
polarization at the solid–liquid interface can resolve these differences. Ab initio molecular dynamics
simulations (AIMD), however, are limited to tens of ps of simulation time, which renders proper
sampling impossible.

Here, we validate a simulation protocol that substantially improves sampling in free energy
calculations with ab initio dynamics. This method can be used to calculate accurate adsorption
free energies of small (even charged) molecules on inorganic (and other) surfaces. This approach
is based on semi-empirical Tight-Binding (TB) forces, which captures reactivity, polarization, and
charge transfer [33], and can be used for orders-of-magnitude longer simulations compared to DFT
with the Generalized-Gradient Approximation (GGA) for the forces [34,35]. We use multi-walker
metadynamics [36] with an augmented collective variable (CV) that significantly improves sampling
of the target CV compared to standard metadynamics. Furthermore, we reconstruct free energies using
a “mean force estimator”, which is superior to the traditional way of cumulatively summing the bias
potentials [37].

We show that this combination of advanced simulation techniques enables the calculation of ab
initio-based, converged, free energy profiles for small molecules on inorganic surfaces. As a case study,
we calculate the adsorption free energies of the charged amino acids Lysine (Lys) and Aspartate (Asp)
on fully hydrated TiO2 anatase (101) surfaces. These molecules have been shown to interact strongly
with TiO2 surfaces in previous single-point DFT calculations, with adsorption energies that failed to be
explained with classical models [23,33,38] .

2. Methods

2.1. System Preparations

The ab initio molecular dynamics (AIMD) simulations using self-consistent density functional
tight-binding (DFTB) approach [39] were done with Cp2K [40] with the same setup as in [32]. Briefly,
we used PACKMOL [41] to prepare anatase (101) simulation boxes with sizes 10.35× 11.4× 43 Å.
The TiO2 slabs were built by repeating the unit cell four times along the z-direction (same as in
our previous simulations [32]), and the rest of the boxes were filled with one amino acid and water
amounts that correspond to 1 atm and 310 K [32]. These simulation boxes are large enough to avoid
self-interactions. We used analog molecules for Aspartate and Lysine, i.e., side chains of the amino
acids with the backbone replaced with a CH3-group. The removal of the backbone mimics the state of
the amino acid in a protein, where the backbone is buried and prevented to contribute to the adsorption
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except at the terminal groups. We kept the systems neutral with a counterion (OH– or OH3
+) initially

placed on the opposite surface slab to the amino acid.
Tight-binding (TB) calculations with amino acids have been reported on dry TiO2 surfaces [33]

but, to the best of the authors’ knowledge, not at full hydration. We therefore first tested the Matsci [34]
and Mio-Tiorg [35] TB parameterizations for lysine and aspartate at TiO2–water interfaces. In both
cases, we found that the amino acid C − H- and N − H-groups deprotonated on the TiO2 anatase
(101) surface. There is no physical basis for such behavior, which implies that the overlap integrals of
the underlying interactions are underestimated. We added harmonic constraints on the C− H- and
N − H-groups as a simple remedy in the rest of the simulations. Further, the test simulations revealed
geometrical distortions at the solid–liquid interface with Mio-Tiorg parameters, but structures were in
good agreement to DFT-derived geometries with the Matsci parameters [32]. Based on these results,
we used the Matsci parameterization, without long-range dispersions, for all free energy calculations
in this work. Furthermore, the final adsorbing modes of Lys and Asp were fully optimized both with
TB and DFT approaches [32] to check the consistency using two different levels of theory. For the DFT
calculations, we used the BLYP functional [42,43] augmented with the Grimme DFT-D3 dispersion
corrections [44], whereas the GTH normconserving pseudopotentials [45,46] and a double-ζ Gaussian
basis set with polarization functions (DZVP) [47] were used to describe the core and valence electrons
respectively. The energy cut-off for the electron density expansion in the GPW method was 400 Ry and
the minimization was stopped when the total forces were lower than 10−3 Hartree/Bohr.

2.2. Metadynamics Setup

Metadynamics simulations were carried out with the PLUMED [48] module in CP2K. Specifically,
we used well-tempered metadynamics with adaptive Gaussians (AWTMetaD) [49–51] and a bias
factor of 15. We started with Gaussian heights of 3.5 kJ mol−1, added new bias potentials every 25 fs,
and adjusted the widths of the Gaussian every 75 fs. This parameter combination is a reasonable
compromise of accuracy vs. speed for ab initio dynamics with limited time sampling [52].

We used the surface separation distance (SSD) as the target collective variable (CV) in the free
energy calculations. The SSD is the distance between the outermost layer of Ti surface atoms and the
center of mass of a group of concern in the amino acid, NH3

+- and COO−-groups respectively for Lys
and Asp. In addition, we augmented the calculations with a second collective variable with the aim of
boosting the exploration of the adsorption landscape along another important degree of freedom—the
adsorbent orientation—thus improving the sampling of the target CV [53]. As augmenting variable,
we used the angle between the vector of the surface normal and N−Cfn (in Lys) or COO−−Cfn (in Asp),
where Cfn is the first carbon neighbor to the atom in question . The augmented variable is integrated
out during the calculation of the free energy (see Equation 2). We restricted the phase space with a
wall potential 1 nm away from the outermost Ti atoms, and launched multi-walker [36] AWTMetaD
with eight replicas starting at different CV values. The walkers communicated every 25 fs and we
simulated 240–300 ps for each walker.

Traditionally, the potential of mean force (PMFs) is reconstructed from the accumulated bias
potentials [29,49,51]

W2(z, θ) = − lim
t→∞

(V(z, θ, t) + kBT ln (n(z, θ, t)) + const) (1)

where V(z, θ, t) is the accumulated bias potential, θ is the augmenting CV, and n(z, θ, t) is the
accumulated histogram of the target collective variable. This correction term from the histogram
is needed when the widths of the Gaussians bias are adjusted dynamically [51]. Integrating out
the augmenting collective variable θ yields to the potential of mean force along the main collective
variable [53]:

PMF(z) = −kBT ln
∫

e−W2(z,θ)/kBTdθ + const (2)
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Forces can be used directly in the calculations to improve convergence in free energy profiles
from metadynamics [37]. With this in mind, we also calculated free energy profiles by thermodynamic
integration of F(z), the mean force on the NH3

+- and COO−-groups in the metadynamics simulations
(more exactly, from the derivative of the energy over the SSD collective variable, not including the bias
energy). In this formulation the PMF is calculated as

PMFTI(z) = −
∫ z

rc
〈F(z′)〉dz′ + const , (3)

where z spans the SSD-values from rc (the onset of the solid surface) to 1 nm, where the potential
wall is set. Canonical averaging of the average force is evaluated from all sampled configurations “i”
having the main collective variable z in the range z− ∆z/2 < zi < z + ∆z/2:

〈F(z)〉 = ∑i F(i)exp (−V(z; θi, t)/kBT)
∑i exp (−V(z; θi, t)/kBT)

(4)

In our computations, bin size for force integration was set to ∆z = 0.005 Å. We will refer to this
method as MetaDF (metadynamics with force integration) in the rest of this text. Note that MetaDF is
not bound to a specific implementation of the metadynamics. It can use well-tempered metadynamics,
or constant Gaussian height metadynamics, as it follows from Equations (3) and (4).

The binding free energy is computed from the PMF as [29]

∆Fads = −kBT ln
(

1
δ

∫ rc+δ

rc
e−PMF(z)/kBTdz

)
, (5)

where kBT is the product of the Boltzmann constant and the absolute temperature, δ = 8 Å is
the thickness of the adsorption layer and rc + δ is the start of the liquid bulk. Equation (5) is the
thermodynamically correct route to ∆Fads, but earlier work has also quantified the adsorbate’s binding
strength by the difference of the minimum and bulk values of its PMF [26–28]

∆Fdiff = PMF(rc + δ)− PMF(rc) (6)

This difference is always larger than ∆Fads. Note that although ∆Fdiff depends on the specific
choice of the CV (e.g., determined by the molecular center of mass or by a specific atomic group on a
sorbent molecule), ∆Fads does not depend on such choice.

3. Results and Discussion

3.1. Method Validation

To validate the new protocol described so far and the parameters chosen for ab initio
Metadynamics, we run extended classical molecular dynamics (CMD) simulations for the
lysine–anatase (101) system. The force field describing the interactions was taken from reference [29].
We run classical simulations with the same system size and the same MetaD parameters as we used
in ab initio TB computations, but we extended classical simulations up to 200 ns using only the SSD
variable for sampling the free energy and comparing the effect of having a single or eight walkers.
We tested the effect of the Gaussian height and insertion rate on the PMF convergence. Eight different
Metadynamics simulations were run for the single walker simulations with different combinations
of these parameters. Gaussians heights and insertion rate were spanning 1 to 3.5 kJ/mol and 25 to
500 fs respectively. In each case for 200 ns of classical simulations no significant difference in the PMF
profiles obtained at different Gaussian heights and insertion rates were noticed.

In Figure 1, the convergence test is shown for MetaDF compared to AWTMetaD for Gaussians
height = 3.5 kJ/mol and insertion rate = 50 fs. Two adsorption modes can be distinguished: one Mmed
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where the Lysine-TiO2 interaction is mediated by water at (SSD = 5 Å), and a second one Mdir where
a direct surface contact occurs on the Obr at SSD = 3.2 Å. Both MetaDF and AWTMetaD converge to
the same PMF profile after 200 ns as expected. The main difference is that although MetaDF needs
barely 1 ns to reach the final profile on the Mmed mode, AWTMetaD requires 30 ns. This effect is even
more pronounced for the second adsorption mode Mdir where the AWTMetaD convergence is strongly
hindered by the long time sampling of the transition between direct-mediated adsorption modes and
the cumulative behavior of the bias potential which changes strongly if the CV falls in a previously
poorly sampled region. On the contrary, MetaDF converges once the main regions of the free energy
landscape have been scanned due to the fact that the average force acting on the CV does not change
significantly with long sampling. When eight walkers are implemented (Figure 1b, bottom) the final
PMF profile for the Mmed adsorption mode is reached after barely 300 ps with MetaDF due to the fact
that each walker push the remaining walkers to explore other CV values, thus the whole range of CV
is sampled simultaneously. The second mode Mdir is also sampled faster than with a single walker
and results, after 300 ps, in a profile rather close to that obtained in 200 ns calculations. This set-up
shows that the convergence can be obtained at least 100 times faster than using a single walker with
AWTMetaD. Finally, we note that the adsorption free energy value of Lysine arising uniquely from the
Mmed mode is Fads = −2.7 kJ mol−1, indicating that in the classical description Lysine adsorbs very
weakly on the anatase (101) surface.
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Figure 1. (a) Potentials of mean force (PMF) from CMD along the surface separation distance (SSD)
for Lysine on anatase (101) calculated with AWTMetaD and MetaDF at different intervals of time.
(b) Single (up) and 8 walkers (down) dynamics used to test the convergence. The two minima in the
PMF correspond to a water mediated adsorption mode Mmed (SSD = 5 Å) and a direct surface contact
mode Mdir on the Obr at SSD = 3.2 Å. AWTMetaD and MetaDF converge using a single walker in the
long time range (200 ns) to the same PMF profile. The mode Mmed converges within 1 ns with an error
of 0.6 kJ mol−1 with MetaDF while AWTMetaD converges after 30 ns within the same error. Adopting
8 walkers permits to have the same convergence in only 300 ps with MetaDF and to sample the Mdir
mode about 100 time faster compared to AWTMetaD.

3.2. Tight-Binding Results

Charged amino acids are driving adsorption at bio-inorganic interfaces [23,38,54,55], and
are the most challenging to model since they can induce strong polarization at interfaces and
change the surface’s protonation state. In this work, we used Lysine and Aspartate (+1 and
−1 charge, respectively) to investigate how charged amino acids impact the adsorption free energy in
bionano systems.

Figure 2c shows the eight walkers exploring the SSD during the Lysine TB simulation.
By analyzing contact configurations, we identified two adsorption modes, corresponding to double (LI)
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and single (LI I) adsorption on oxygen bridges (Obr) on the TiO2 surface) (Figure 2a,b). The real strength
of the multi-walker method is not in the brute force sampling itself, but how walkers in different
regions of the free energy landscape communicate so that, although an individual walker may sample
a limited area of the configurational space, all walkers together sample the whole relevant region. This
effect is extremely important if combined with the force estimator for the calculation of the PMF, as
explained in the validation section for CMD. Multi-walker metadynamics also yields linear scaling to
reconstruct the free energy landscape with required precision, whereas single-walker metadynamics
is limited by slow diffusion [36]. In the case of adsorption at the TiO2–water interface, individual
walkers penetrate into the elusive adsorbed water layer adjacent to the surface. This region is extremely
difficult to sample under normal circumstances [56] (which is also illustrated by our CMD simulations
described in the previous section), but multiple walkers solve this problem. Figure 2c shows that
several adsorption/desorption events are sampled by different walkers during the calculation, as
necessary to obtain proper equilibrium statistics. Figure 2d shows the cumulative SSD distribution from
all walkers. The peak in the SSD histogram associated to adsorption modes LI and LI I is significantly
pronounced after 300 ps of simulation per walker, and is still accentuated when calculated on the last
50 ps of the simulation trajectory. A flat profile in the CV histogram is the signature of a converged free
energy profile when calculated with the standard estimator (Equation (2)). This emphasizes how slow
PMF convergence can be in standard metadynamics compared to integrating forces (Equation (3)),
which does not depend on the accumulated histogram.
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Figure 2. (a,b) Snapshots of adsorption modes LI at SSD = 2.5 Å and LI I at SSD = 3.3 Å for Lysine on
anatase (101). The freely diffusive water layers begin at SSD = 4 Å. (c) The surface separation distance
(SSD) for the eight walkers used in the free energy calculations of Lysine, showing that the target
collective variable is adequately sampled in 50 ps per walker. (d) The cumulative SSD distribution from
all walkers at different times. No significant difference in the histogram is found after 50 ps per walker.
The last 50 ps indicates that convergence is not reached with AWTMetaD after the full simulation time.

Figure 3 shows potentials of mean force (PMFs) along the SSD for Lysine on anatase (101)
calculated with MetaDF and AWTMetaD. θ is also completely sampled (see Figure S1 in the Supporting
Information for the 2D map), and it shows a single global minima at the adsorption site. The PMFs
are plotted at different times up to 300 ps per walker and show the convergence behaviors of the two
methods. The PMFs calculated with the standard estimator (Equation (2)) fluctuate strongly, which is
a manifestation of slow convergence after 300 ps of simulated time (Figures 2d and 3d). The PMFs
calculated by integrating forces on the NH3

+-group converges to a smooth profile with an error of
3 kJ mol−1 (as estimated from the force variance [57]) after 250 ps per walker. This is visible also from
Figure 3d, where ∆Fads is plotted as a function of time for MetaDF and AWTMetaD. Via Equation (5),
we calculate that the binding free energy for Lysine on anatase (101) is ∆Fads = −58.2 kJ mol−1
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(or ∆Fdiff = −65.4 kJ mol−1 from Equation (6)). This is substantially larger (3–10 times) than values
reported from different CMD simulations [26–29], where both direct and indirect adsorption modes
were found. This difference suggests that electronic degrees of freedom, in particular polarization and
charge transfer effects at the interface, cannot be neglected in the free energy calculations.

To further validate the TB parametrization used in our calculations, we performed optimization
computations for the LI mode bound state using TB and DFT-GGA theory. The optimized bond length
between the hydrogen of the amino group and the bridging oxygen ( NH – Obr, Figure 2a) was found to
be dNH−Obr = 1.7 Å for DFT-GGA and dNH−Obr = 1.6 Å for TB. No further discrepancies or adjustment
in the final adsorption configuration were noticed.
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Figure 3. Potentials of mean force (PMFs) for Lysine on anatase (101) along the surface separation
distance (SSD), calculated with (a) MetaDF and (b) AWTMetaD. The PMF converges to an error of
3 kJ mol−1 (as estimated from the force variance [57] and the convergence profile (d)) within 250 ps of
MetaDF, but fails to converge after 300 ps of AWTMetaD. The reported times are per walker, with eight
walkers per calculation. (c) A representation of the two CVs used to sample the free energy landscape. θ

is the angle between the normal vector to the TiO2 surface and the vector N−Cfn. (d) ∆Fads as function
of time. MetaDF converges asymptotically after 250 ps but AWTMetaD does not converge within
300 ps.

For Aspartate on anatase (101), we also found two adsorption modes: AI , which is not in direct
contact with the surface but mediated via the first water layer, and AI I , which is in direct contact with
the TiO2 surface (Figure 4a,b). Figure 5 shows the difference in PMFs calculated with MetaDF compared
to the standard free energy estimator. Mode AI is well-sampled in 180 ps with MetaDF (within an
error of 3 kJ mol−1 as estimated from the force variance [57] and inspecting Fads as a function of time
as shown in Figure 5d), while AWTMetaD (Equation (2)) fails to converge after 300 ps of simulation
time (Figures 4d and 5d). The AI I-mode (direct contact) appears when a single walker penetrates the



Computation 2020, 8, 12 8 of 13

first surface water layer after 60 ps. The AI I-mode is separated from the AI-mode by a free energy
barrier of ∼ 20 kJ mol−1, and thus much more challenging to sample. The high barrier and narrow
region available to AI I implies that the main contribution to the binding free energy is coming from AI .
The binding free energy is ∆Fads = 12.1 kJ mol−1 from Equation (5) (or 17.2 kJ mol−1 via Equation (6)).
CMD simulations have reported similar values of the binding free energy when the COO−-group is in
direct contact to the surface [58] and via surface hydroxyls [59]. A water-mediated adsorption mode
has not been found due to the weak nature of this interaction in classical models. The optimized bond
length CO – H2O (Figure 4a) for the AI-mode is dCO−H2O = 1.8 Å and it coincides if calculated with TB
and DFT-GGA. The present work emphasizes the importance of an atomistic model of the solid–liquid
interface that simultaneously reproduces the interfacial water structure/reactivity and the underlying
quantum nature of semiconductor materials with electronic correlation effects such as polarization and
charge transfer.
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Figure 4. (a,b) Snapshots of adsorption modes AI at SSD = 4.5 Å and AI I at SSD = 2 Å for Aspartate on
anatase (101). The freely diffusive water layers begin at SSD = 6 Å. (c) The surface separation distance
(SSD) for the eight walkers used in the free energy calculations of aspartate. The SSD is sufficiently
sampled to distinguish adsorption mode AI after 40 ps. (d) The cumulative SSD distribution from
all walkers at different times shows that the system is still not converged after all walkers have been
simulated for 300 ps.

The present work has showed that the force estimator, Equation (3), is superior to the traditional
Equation (2) for calculating PMFs with metadynamics. Although advantages of the force estimator have
been discussed previously [37], these becomes critically important in quantum–chemical simulations
with limited sampling time. The slow convergence of the PMFs with the accumulated bias potential as
an estimator of the free energy is due to that AWTMetaD is diffusion-limited. Standard thermodynamic
integration (including umbrella sampling), on the other hand, is inefficient when the important regions
are unknown prior to the simulation, as is usually the case. MetaDF improves sampling by combining
these techniques so that the bias potentials provide nearly uniform sampling along the collective
variable and create an optimal configuration set for the thermodynamic integration. The multiple
walkers boost the sampling of the relevant regions of the CV thus representing the optimal tool
for the force estimator. As well-tempered MetaD can suffer from poor sampling if the Gaussian
heights became too low before the bias potential reaches the optimal shape, using fixed bias for the
metadynamics could eventually speed up even more the convergence. Furthermore, the key point
of MetaDF is to collect the forces in the whole relevant region of the free energy landscape, but not
to provide the bias potential which exactly compensates the free energy profile. The augmenting
collective variable (orientation of the adsorbate molecule) and the multiple walkers further improve
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sampling of orthogonal (“slow” or “hidden”) degrees of freedom. The mean force as a function of the
CV is not affected by the bias, so the forces in a small region (bin) of the CV can be averaged in time.
Gaussian bias potentials are inserted every 25 fs, but forces are collected at each time step. Our case
study estimates that once the bias potential has explored all values of the CV in the range of interest,
force integration converges at least 100 times faster than AWTMetaD with the standard free energy
estimator. The MetaDF method can therefore be used in all situations where sampling is limited by
diffusion or by strongly bound states.
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Figure 5. Potentials of mean force (PMF) along the surface separation distance (SSD)for Aspartate
on anatase (101) calculated with (a) MetaDF and (b) AWTMetaD. The two minima correspond to
adsorption modes AI (indirect surface contact) and AI I (direct surface contact). Adsorption mode
AI converges within an error of 3.5 kJ mol−1 in 180 ps with MetaDF (as estimated from the force
variance [57] and the convergence profile (d)), but fails to converge after 300 ps with AWTMetaD.
(c) A representation of the two CVs used to sample the free energy landscape. θ is the angle between
the normal vector to the TiO2 surface and the vector COO−−Cfn. (d) ∆Fads as function of time. MetaDF
converges asymptotically after 180 ps but AWTMetaD has still not converged after 300 ps..

4. Conclusions

There is a pressing need for simulation protocols that target strongly adsorbing molecules, e.g.,
amino acids on TiO2 surfaces, so that adsorption free energies can be accurately determined for
such situations. MetaDF is a sampling method that combines metadynamics and thermodynamic
integration to accelerate the convergence of PMF calculations. Multiple walkers and augmented
collective variables further improves sampling to a point where free energies can be determined with
high accuracy, even in cases with strong adsorption. We tested two Tight-Binding parameterizations
for adsorption of the charged Lysine and Aspartate amino acids on the anatase (101) surface.
For both molecules, we found large adsorption free energies compared to previous CMD studies.
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We hypothesize that the quantum nature of these systems strongly influence the adsorption behavior
due to polarization and charge transfer at the interface. For the present case, the PMFs converge within
180 to 250 ps (per walker) in MetaDF simulations with eight walkers. This time scale is accessible to
large-scale ab initio molecular dynamics simulations with GGA-level density functional theory, which
opens the possibility to move beyond the simplifications of tight-binding DFT and calculate adsorption
PMFs at bio-inorganic interfaces with full electronic treatment. MetaDF is particularly useful in
situations with limited sampling, such as ab initio simulations, or when diffusion is hindered, e.g., by
bound states or barriers along hidden degrees of freedom. Hopefully, MetaDF will be extensively used
incoming systematic investigations of various kinds of bionano interfaces.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. 2D free energy
maps (Figure S1) and the variation of Gaussian insertion as function of time (Figure S2) can be found in
Supporting Information.
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