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Abstract: In this work, Finite Element Method (FEM) is applied to obtain the condition at the
boundary of the interface between a channel and a porous medium. The boundary conditions that
should be applied to the inhomogeneous interface zone between the two homogeneous regions
of free fluid and porous medium are derived. The comparison has been performed for porous
material characterizations to provide the velocity at the inhomogeneous interface zone with variable
permeability between the two homogeneous regions of free fluid and porous medium. Also, the
dependence of the slip coefficient on the thickness of the transition zone is established and the values
of the thickness are so justified that the numerical results and the numerical results of our proposed
technique are found to be in good agreement with experimental results in the literature.
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1. Introduction

Several authors have discussed the boundary condition at the interface between a free fluid and a
porous medium [1], boundary conditions at a naturally permeable wall [2], boundary condition at
the interface of a porous medium [3], and numerical simulations of pressure jump interface law for
Stokes–Darcy coupling [4]. Also, the justification of pore level Navier stokes equations is noticed and
discussed in Reference [5] and Reference [6]. Czochra and Mikelic [7] studied the effective pressure
interface law for transport phenomena between an unconfined fluid and a porous medium using
homogenization. Jäger and Mikelic [8] discussed the interface boundary conditions by analyzing
beavers. Jäger et al. [9] studied the asymptotic analysis of the laminar viscous flow over a porous
bed. Upscale Navier–Stokes equations are rigorously derived in Reference [10]. The single phase
Poiseuille flow over a permeable block is studied in Reference [11] and the boundary conditions that
must be applied to the inhomogeneous interface zone between the free fluid and porous medium are
derived using the matched asymptotic expansions method, without specifying the porosity–dependent
function and permeability–dependent function at the interface zone. The outputs for nano-refrigerant
(R600a/oil/CuO) boiling heat transfer within flattened channels utilizing an experimental method are
presented in Reference [12]. The authors discussed the influence of a flattened percentage, flow rate,
and vapor quality as well as the mass fraction of CuO on boiling heat transfer (h). The Finite element
method has been employed in Reference [13] to show that variation of the energy storage efficiency of
Copper oxide nanoparticles and V shaped fins is involved in a storage unit to expedite the solidification.
In Reference [14], the finite element method is recalled to obtain the outputs, which are the roles of
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radiation parameter (Rd), Darcy number (Da), nanofluid volume fraction (Φ), Rayleigh number (Ra),
and supplied voltage (∆ϕ).

In this work the authors show the extent to which this condition can be applied. In other words,
the range of application of this condition is discussed. The materials suggested by Beavers and Joseph
are considered and the thickness of the interface that make the condition applicable is evaluated.
The condition deduced here using the technique of Finite Element Method (FEM) is compared with the
analytical solution and experimental results obtained by Beavers and Joseph [2], which emphasize the
range of validity of this condition.

In this work, the boundary condition at the interface between a free fluid and a porous medium is
derived using FEM, which is (

dv
dx3

)
x3=0

= Γ1v0 + Γ2v(0) (1)

where x3 is vertical axis perpendicular to the flow direction, v is the velocity in the channel, v0 is Darcy’s
velocity, and v(0) is the velocity at the upper boundary of the interface. Also Γ1 and Γ2 (obtained using
the Mathematica) depend on the permeability k0 and the thickness of the interface ε. Equation (1) is
compared with the Beavers and Joseph [2] condition, namely.(

du
dx3

)
x3=0

=
α
√

k0
(uB −Q) (2)

where u and uB are the velocity in the channel and at x3 = 0, respectively, and Q is the volume flow rate
per the unit cross sectional area. Also, α is a dimensional constant that distinguishes the geometry of
the interface region between the free incompressible fluid and the porous medium (see Reference [11]).

The problem which is described above starting from the up-scaled Navier- Stokes equation of
the porous medium. Then, the required condition (1) is obtained using the Galerkin finite element
scheme [15] and the velocity in the transition zone is deduced. Also, α is evaluated and the numerical
solution is compared to the experimental results of Beavers and Joseph [2].

2. Description of the Problem

In order to model the inhomogeneous interface zone between a channel and a porous medium,
we shall consider the Cartesian coordinates system x1, x2, x3 (as depicted in Figure 1) and unit vectors
e1, e2, e3 with Ox3 vertically up, where the flow is in the direction Ox2. The slab is taken to occupy the
region x3 ≤ 0 (x3 → −∞), the upper channel boundary is taken to be x3 = h which is assumed to be
impermeable, and a transition zone is set at (−ε ≤ x3 ≤ 0), where ε is the thickness of the transition zone.
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It proves convenient to treat the Navier-Stokes equation at a macroscopic scale, namely

d2v
dx2

3

−
1

k(x3)
v(x3) =

Π
µ

(3)

where Π is a constant pressure gradient in the flow direction, k(x3) is the permeability, and µ is the
fluid viscosity. Specifically, the flow is considered to be

d2v
dx2

3

−
1

k(x3)
v(x3) =

Π
µ

. (4)

2.1. Channel Flow

In the channel 1
k(x3)

= 0 and then Equation (3) reduces to

d2v
dx2

3

=
Π
µ

for 0 ≤ x3 ≤ h. (5)

Thus
v(x3) =

Π
2µ

(
x2

3 − x3h
)
+ vB

(
1−

x3

h

)
(6)

where the non-slip condition has been applied at the boundary x3 = h and the slip condition is v = vB

at x3 = 0.

2.2. Flow in the Strict Interior of the Porous Medium

The strict interior of the slab is homogeneous, then

k(x3) = k0 for x3 ≤ −ε (7)

where k0 is the slab permeability in the direction flow e2 and ε is the thickness of the interface. Equation
(3) reduces to

d2v
dx2

3

−
1
k0

v(x3) =
Π
µ

for x3 ≤ −ε. (8)

Thus, in the strict interior for a slab of infinite thickness the (bounded) solution is

v(x3) = v0 + Ce
x3√

k0 (9)

where
v0 = −

Π
µ

k0 (10)

is Darcy’s velocity.

2.3. Flow in the Interface

According to Reference [10], Equation (3) in the interface becomes

d2v
dx2

3

−
ψ(x3)

k0
v(x3) =

Π
µ

for − ε ≤ x3 ≤ 0 (11)

where ψ(x3) is assumed to be varying as x3/ε, where ε is the thickness of the interfacial region.
As expected, this only implies that the function is rapidly varying in the interfacial region, as expected.
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The arbitrary constants arise from solving this second order linear differential equation together
with the expressions of v0 and C in Equation (9) may be evaluated by invoking the global smoothness
of v and v′.

According to Reference [10], the linear differential Equation (11) has been solved together with
the expressions of v0 and C in Equation (9), considering the following relations

x = βx3, u(x) = v(x3) (12)

with

β =

(
1

k0ε

) 1
3

, Ω = −
v0

k0β2 (13)

Equation (11) becomes

d2u
dx2 − xu(x) = Ω for − βε ≤ x ≤ 0 (14)

3. Finite Element Formulation

The unknown variable u in Equation (14) is approximated over an element as

u(x) =
2∑

i=1

Niui (15)

where Ni is the velocity shape function and u1, u2 are the appropriate boundary conditions of
Equation (14). Applying the Galerkin weighted residual [12] criterion results in

x2∫
x1

Ni(x)
[

d2u
dx2 + xu−Ω

]
= 0 (16)

subject to the continuity of the velocity gradient at the upper and the lower boundaries of the interface.
According to the standard Galerkin method and governing equations (Appendix A), the global
equations are

2
β ε +

β2ε2

48 −
2
β ε +

β2ε2

48 0

−
2
β ε +

β2ε2

48
4
β ε +

β2ε2

6 −
2
β ε +

β2ε2

16

0 −
2
β ε +

β2ε2

16
2
β ε +

7β2ε2

48




U1

U2

U3

 =

−

1
4βεΩ+

(
du
dx

)
x=0

−
1
2βεΩ

−
1
4βεΩ−

(
du
dx

)
x=−βε

 (17)

Here U1, U2 and U3 are the system nodal values at x = 0, −βε2 ,−β ε. Solving for
(

du
dx

)
x=0

and
applying U1 = uB, the velocity at the upper boundary of the interface yields(

dv
dx3

)
x3=0

= Γ1v0 + Γ2v(0) (18a)

where (using Mathematica)

Γ1 =

−18432k2
0 + 6ε2

(
27ε2 +

√
k0

(
1

k0ε

) 2
3

(
−3072 k2

0 − 256k
3
2
0

(
1

k0ε

) 1
3 ε+ 32 k0ε2 + ε4

))
6 k2

0

384
(

1
k0ε

) 4
3 ε2(8k0 + ε2) +

−3072k2
0+1024k0ε2+7ε4

k
3
2
0


(18b)
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and

Γ2 =

−18432 k2
0 − 282ε4 +

9216 k2
0−736 k0 ε2−5ε4

k0
3
2
(

1
k0 ε

) 4
3

6 k2
0

384
(

1
k0ε

) 4
3 ε2(8k0 + ε2) +

−3072k2
0+1024k0ε2+7ε4

k
3
2
0


(18c)

The expression of the boundary condition (1) is obtained by dividing the interfacial region into
2− elements bounded by 3− values xi (i = 1, 2, 3). Numerical evaluations show that

− Γ1 = Γ2 (19)

at certain values of for each material considered by Beavers and Joseph. The boundary condition (1)
can be considered to evaluate vB in Equation (6): Then,

vB = −
Π k
2µ

(
σ2 + 2Γ2

√
k0σ

1 + Γ2
√

k0σ

)
(20)

where σ = h√
k0

. This expression is identical to that calculated by Beavers and Joseph [2] after identifying

their parameter α with Γ2
√

k0. When the interfacial region is divided into 4− elements bounded by 5−
values xi (i = 1− 5), then the boundary condition is(

dv
dx3

)
x3=0

= Γ11v0 + Γ22v(0) (21)

where Γ11 and Γ22 are obtained in the same way as Γ1 and Γ2. Accordingly, using the last identification,
the boundary condition (1) becomes (

dv
dx3

)
x3=0

= Γ2(vB − v0). (22)

The boundary condition (21) has the same form of Equation (2) for Γ2 = α√
k0

.

4. The Velocity in the Interface

Matching the velocities in the interface with those associated with the strict interior of the porous
medium, the constant C in Equation (9) is evaluated. Then v2(= v(−ε)) is

v2 = v0

(
A1 +

1
2

(
σ2 + 2Γ2

√
k0σ

1 + Γ2
√

k0σ

)
A2

)
(23)

where

A1 =
24ε

(
128ε+ 3β3ε4 + 16

√
k0 β

(
8 + β3ε3

))
384
√

k0 βε(8 + β3ε3) + k0(−3072 + 1024β3ε3 + 7β6ε6)
(24)

and

A2 =
k0

(
−96 + 3β3ε3

)(
32 + 3β3ε3

)
384
√

k0 βε(8 + β3ε3) + k0(−3072 + 1024β3ε3 + 7β6ε6)
. (25)

Recalling (15), the velocity in the interface becomes

v( x3) =
v0

2ε

[(
σ2 + 2Γ2

√
k0σ

1 + Γ2
√

k0σ

)
(ε+ x3 − x3 A2) − 2 x3A1

]
(26)
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where A1 and A2 are evaluated using MATHEMATICA.

5. Comparisons with Experimental Data and Analytical Solution

According to Beavers and Joseph [2], the fractional increase in mass flow rate ϕ due to the presence
of the porous wall is:

ϕ =
Qp −Qi

Qi
(27)

where Qp and Qi are the mass flow rate within the free fluid region for porous medium and impermeable
wall, respectively. The obtained result of ϕ is

ϕ =
3
(
σ+ 2Γ2

√
k0

)
σ
(
1 + σΓ2

√
k0

) . (28)

The comparison with the experimental results is performed using the characteristics of the porous
materials used by Beavers and Joseph in their experiments and recalled in Table 1. These results show
that the increase in mass flow rate ϕ is sensitive to the value of the ε.

Table 1. Permeability of the porous specimens used in Beavers and Joseph experiments and the
corresponding values thickness of the interface and α for the interfacial region divided into 2 elements.

Porous Species Permeability k0 Range of ε Values of α Values of α for Beavers
and Joseph

Fometal 1.1× 10−5 2.0− 3.0× 10−5 0.867991− 0.082716 0.8

Fometal A 1.5× 10−5 0.2− 0.35× 10−5 0.148943− 0.707495 0.78

Fometal B 6.1× 10−5 0.9− 1.5× 10−5 2.45519− 1.02221 1.45

Fometal C 12.7× 10−5 1.5− 2.0× 10−5 13.5647− 3.32535 4.0

Aloxite A 1.0× 10−5 1.5− 2.5× 10−5 0.126144− 0.086583 0.1

Aloxite B 2.48× 10−5 3.0− 5.7× 10−5 0.177047− 0.108711 0.1

Table 1 shows that the range of ε to apply the boundary condition is obtained by the finite element
method and is used to evaluate the fractional of increase in mass flow rate ϕ. Here, a two-element
solution is formulated by taking equally spaced nodes at x = 0, ε/2, ε. Note that the arrangement
of the α -values in the table in the fourth column corresponds to the ε -values of the third column
(meaning α = 2.45519 for ε = 0.2× 10−5 and α = 1.02221 for ε = 1.5× 10−5 for Fometal B). For Fometal
with k0 = 1.1× 10−5 and Fometal A.B, C the data show a good agreement with the curves obtained by
using the boundary condition (22) at the porous wall, at a certain range of thickness of the interface
(as appeared in Figures 2–5). For the Aloxite A and B, the results obtained by the FEM are coincide
with the analytical solution obtained by Beavers and Joseph [2] (Figures 6 and 7). With respect to
the experiments, it is not possible to find values of ε for these materials that allow the curves to pass
through all the experimental points simultaneously. However, the appeared values of ε give the best
fit with the experimental points. The highest values for the thickness ε are reached by the Aloxite
B. As depicted in Figure 8, the experiment and the numerical results agree for Fometal C at σ < 20
while for Aloxite A is partially agree for 20 < σ < 80. The fourth column in the table shows the range
of α corresponding the thickness and compared with values of α proposed by B&J. The comparison
between Aloxite A and Fometal C (Figure 8) shows that the experimental results of the Aloxite A
spread over a range of σmuch greater than the Fometal C which provides an explicit dependence of ϕ
on the thickness of the interface.
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Table 2 shows that the range of ε to apply the boundary condition that is obtained by the
finite element method. Four element solution is formulated by taking equally spaced nodes at
x = 0, ε/4, ε/2 , 3ε/4, ε. A comparison was made between the two-element and four elements in
FEM. It is clear from the Figure 9, the agreement between them and the analytical results is at value
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ε = 2.0 × 10−6 and ε = 0.1 × 10−6 in the first and second method, respectively, for k = 1.1 × 10−5.
For the permeability k = 1.5× 10−5 the curves in both methods apply with the analytical method when
the value of epsilon is equal to ε = 2.0× 10−6 and ε = 2.0× 10−7 (Figure 10). Finally, the agreement
between them and the analytical results at the value 5.7× 10−5 and 5.0× 10−5. In the first and second
method respectively at k = 2.48× 10−5 (Figure 7). Figure 11 shows the relationship between ε and α
for different values of k. The reverse relationship between ε and α values is clear in Figure 11.Computation 2020, 8, 14 10 of 15 
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Figure 11. Comparison between α verses ε for materials have low permeability.

6. Discussion

In this study, we used the materials listed in the table so we could compare the numerical
results obtained by the analytical and experimental results conducted by Beavers and Joseph. Table 1
shows the numerical results using the FEM fit with the analytical solution and experimental data
of Beavers and Joseph [2] for the Fometal and partially for the Aloxite. It is noticed that the range
ε in case of Aloxite is greater than that for Fometal, which could be due to the irregular nature of
Aloxite, as mentioned above. Relation (19) is true only within the range of ε that appeared in the table.
The numerical data indicated that values of Γ2 range from 21.830 to 35.552 for Aloxite, from 165.663 to
201.374 for Fometal with low permeability, and 295.077 to 1203.67 for Fometal with a high permeability.

As mentioned above, α =
√

k0 Γ2 is true within the values of ε the indicated and is compared with
the values considered by Beavers and Joseph [2]. Figure 8, where α is plotted against ε, shows that α
decreases with the increase of ε, which the outcomes of values of ε from the numerical and experimental
results agree with. The comparison with Beavers and Joseph [2] for Fometal B, C, and Aloxite A shows
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that the values of α, drop within a numerically evaluated range. For example, for Fometal B, the value
of the thickness ε that makes α = 1.45 the same value obtained by Beavers and Joseph) is ε = 1.2× 10−5

(evaluated from α = Γ2
√

k0). Also, for Fometal C, the value of the thickness ε that makes α = 4.0
(the same value obtained Beavers and Joseph) is ε = 1.9× 10−5. For the other materials, the values of α
suggested by Beavers and Joseph are completely outside the range of α as evaluated numerically.

For Aloxite B there is a slight difference inα values and completely different for the first Fometal and
Fometal A, and these results are subject to the properties of the porous medium at the transition zone.

For Tables 1 and 2, alpha has upper and a lower bounds, whereas there is a specific value in
the results derived by Beaver and Joseph. Beaver and Joseph indicated that the alpha values differ
according to the fluid used in the experiment. Then it is expected that if different types of fluids
are used in the same porous material, then alpha values will fall in the specified period obtained by
the FEM.

Figure 5 compares the curve that represents ϕ for the thickness ε = 2× 10−5 when dividing the
interfacial region into the two elements in Figure 5a and the four elements in Figure 5b. It illustrates the
convergence of numerical computations in both cases to the analytical solution developed by Beaver
and Joseph. Figure 7 shows the affinity of the numerical results with the analytical and experimental
cases in the case of dividing the interface into two and four elements, but for a different thickness of
the interfacial area.

Another discussion concerns the velocity in the interfacial zone. According to relation (25),
the velocity profile in the interfacial zone (−ε ≤ x3 ≤ 0) is a straight line in x3 for the range of ε that
appeared in Table 1.

7. Conclusions

In this work, flow in a channel over a porous medium under a constant pressure gradient is studied.
The boundary conditions that should be applied to the inhomogeneous interface zone with variable
permeability between the two homogeneous regions of free fluid and porous medium are derived.
The up scaled Navier-Stokes equation that is used to describe the flow in the two homogeneous regions
is assumed to hold in the inhomogeneous interface zone with variable permeability. The finite element
method has been used to solve the problem in the whole domain, where the velocity and the stress are
continuous across the interface. The computational results show that the stress condition is related to
the thickness of the inhomogeneous interface zone with variable permeability.

Good agreement is obtained between the computational results and the Beavers and Joseph [2]
experiment by adjusting the values of the thickness of the transition zone. In particular, it was able to
correctly predict the slope of the fractional increase in mass flow rate ϕ versus the non-dimensional
height of the free fluid region for the Aloxite experiments. Despite this, the values of the thickness had
to be adjusted to obtain good agreement with the available data.

This study shows that the obtained boundary condition using the Finite Element Method is
true at a specified thickness values of the transition zone for both Fometal and Aloxite materials.
Furthermore, this methodology is applicable to a wide range of transport phenomena in engineering
problems [16–32] and of transport phenomena in biological problems [33–35]. Finally, an expression of
α is obtained and the numerical results on both the permeability and the thickness of the transition
zone. Besides, a comparison with the suggested α values of Reference [2] is carried out.

Author Contributions: Both authors contributed to the work presented in this paper as follows: Conceptualization,
A.H.S. and M.A.F.; methodology, A.H.S. and M.A.F.; software, M.A.F.; validation, A.H.S. and M.A.F.; formal
analysis, A.H.S.; investigation, A.H.S. and M.A.F.; resources, A.H.S. and M.A.F.; data curation, A.H.S. and M.A.F.;
writing—original draft preparation, A.H.S.; writing—review and editing, M.A.F.; visualization, A.H.S. and M.A.F.;
supervision, M.A.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Computation 2020, 8, 14 13 of 15

Appendix A

Consider the problem

d2u
dx2 + xu = Ω x j ≤ x ≤ x j+1 (A1)

subject to the boundary condition

u
(
x j

)
= u j, u

(
x j+1

)
= u j+1 (A2)

The problem domain is divided into 2− elements (or 4− elements) bounded by 3− values (or
5− values) xi of the independent variable, so that x1 = x j and x2 = x j+1. An approximate solution is
assumed in the form

u(x) =
2∑

i=1

Ni(x)ui (A3)

The interpolation functions are defined as

N1(x) =
x j+1 − x
x j+1 − x j

x j ≤ x ≤ x j+1 (A4a)

N1(x) =
x− x j

x j+1 − x j
x j ≤ x ≤ x j+1. (A4b)

The interpolation functions satisfy the conditions

N1
(
x = x j

)
= 1 N1

(
x = x j+1

)
= 0 (A5a)

N2
(
x = x j

)
= 0 N1

(
x = x j+1

)
= 1. (A5b)

Applying the Galerkin weighted residual criterion results in

x j+1∫
x j

Ni(x)
d2u
dx2 dx +

x j+1∫
x j

xNi(x)dx−

x j+1∫
x j

ΩNi(x)dx = 0 i = 1, 2. (A6)

Applying integration by parts to the first integral results in

Ni(x)
du
dx

∣∣∣∣∣x j+1

x j

−

x j+1∫
x j

dNi
dx

du
dx

dx +

x j+1∫
x j

xNi(x)dx−

x j+1∫
x j

ΩNi(x)dx = 0 i = 1, 2. (A7)

Equation (A7) is equivalent to the two equations, is

x j+1∫
x j

dN1

dx
du
dx

dx =

x j+1∫
x j

xN1(x)dx−

x j+1∫
x j

ΩN1(x)dx +
du
dx

∣∣∣∣∣
x j

(A8a)

∫ x j+1

x j

dN2

dx
du
dx

dx =

∫ x j+1

x j

xN2(x)dx−
∫ x j+1

x j

ΩN2(x)dx−
du
dx

∣∣∣∣∣
x j+1

. (A8b)
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Using (A3) setting j = 1 and substituting in Equation (A8) yields

x2∫
x1

dN1

dx

[
u1

dN1

dx
+ u2

dN2

dx

]
dx =

x2∫
x1

xN1(x)dx−

x2∫
x1

ΩN1(x)dx +
du
dx

∣∣∣∣∣
x1

(A9a)

x2∫
x j

dN2

dx

[
u1

dN1

dx
+ u2

dN2

dx

]
dx =

x2∫
x j

xN2(x)dx−

x2∫
x j

ΩN2(x)dx−
du
dx

∣∣∣∣∣
x2

(A9b)

which are of the form [
k11 k12

k21 k22

]{
u1

u2

}
=

{
F1

F2

}
(A10)

where

ki j =

∫ x2

x1

dNi
dx

dN j

dx
dx i, j = 1, 2. (A11)
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