
computation

Article

Creating Collections with Embedded Documents for
Document Databases Taking into Account the Queries

Yulia Shichkina * and Muon Ha

Faculty of Computer Science and Technology, Saint Petersburg Electrotechnical University,
197022 Saint Petersburg, Russia; muon.ha@mail.ru
* Correspondence: strange.y@mail.ru

Received: 31 March 2020; Accepted: 13 May 2020; Published: 15 May 2020
����������
�������

Abstract: In this article, we describe a new formalized method for constructing the NoSQL document
database of MongoDB, taking into account the structure of queries planned for execution to the
database. The method is based on set theory. The initial data are the properties of objects,
information about which is stored in the database, and the set of queries that are most often
executed or whose execution speed should be maximum. In order to determine the need to create
embedded documents, our method uses the type of relationship between tables in a relational
database. Our studies have shown that this method is in addition to the method of creating collections
without embedded documents. In the article, we also describe a methodology for determining in
which cases which methods should be used to make working with databases more efficient. It should
be noted that this approach can be used for translating data from MySQL to MongoDB and for the
consolidation of these databases.

Keywords: NoSQL; database query; collection; document; database structure optimization;
embedded documents

1. Introduction

Access to accurate information in the modern era is a major challenge that organizations have to
face. For example, a police officer must know whether he has the right to apply the law when a new
situation arises. The social worker must have accurate information about the applicant. The doctor
wants to know all the information about the patient who could be treated in any hospital and with
any diagnosis.

The aforementioned situations and many other situations require quick access to either a single
common source of information, or to a data collection system from various sources. The main problem
is that each of the sources of information usually allows obtaining specific information stored in it
and this, as a result, entails a loss of understanding of the requested object as a whole. The latter
leads to the fact that the information obtained does not reflect the full content of the object. Therefore,
it is important to create systems for the automatic collection of data from databases of various types
and structures.

Relational databases are the most common forms of data storage. In addition to these databases,
there are NoSQL and NewSQL databases. These new forms of databases today are used by more
and more companies, including such large ones as Google or Amazon [1]. Chen et al. [2] describe
fifteen categories of NoSQL databases and some principles and examples for choosing a suitable
NoSQL database for different industries. Diogo et al. [3] analyze and compare the consistency model
implementation on five popular NoSQL databases: Redis, Cassandra, MongoDB, Neo4j, and OrientDB.

The problem of combining information is not only that data is collected from databases of
various types. Even if the databases are of the same type, the databases can have a different structure.

Computation 2020, 8, 45; doi:10.3390/computation8020045 www.mdpi.com/journal/computation

http://www.mdpi.com/journal/computation
http://www.mdpi.com
https://orcid.org/0000-0001-7140-1686
http://www.mdpi.com/2079-3197/8/2/45?type=check_update&version=1
http://dx.doi.org/10.3390/computation8020045
http://www.mdpi.com/journal/computation

Computation 2020, 8, 45 2 of 22

When combining information, it is necessary to analyze the structure of the new database for the
combined information. In this part, there is again a problem: the lack of a NoSQL database formalized
apparatus for determining the number and composition of collections, in contrast to relational
databases with methodologies based on relational algebra and functional dependencies. Each database
administrator analyzes the structure and composition of the future database based on their experience
and recommendations of leading experts.

The aim of our research was to find a method that allows creating the optimal collection structure
with embedded documents with an orientation to future database queries. We have created such a
method. Our research has shown that this method can also be used to transform databases such as a
family of columns and even relational databases. The purpose of this article is to familiarize readers
with this method and demonstrate its work on document databases, as these databases are very often
used in practice and well described in a large number of publications, for example, [4–7].

We propose a new formalized method for constructing a NoSQL document database, taking into
account the structure of queries planned for execution to the database. This method consists of steps
and rules that allow creating a database structure that will speed up database queries and make the
database smaller by storing fewer duplicates.

The method has two key properties: it takes into account the structure of queries and the
relationship between database objects. The first property allows not to use “join” operations in
database queries. The second property, due to the organization of embedded documents, reduces the
number of duplicate data in the database, and makes the database smaller. The method can be used
when creating new databases or restructuring existing document databases, as well as when converting
relational databases to document databases.

The article is structured as follows. The second section provides an overview of related work,
shows the diversity of existing solutions and their focus. In the third section, based on the analysis of
existing solutions, it shows the relevance of the task of finding a formalized method for converting data
from one format to another, taking into account the structure of queries. The fourth section provides a
methodology for transforming the data structure depending on the initial state of the database, the fifth
section describes a method for converting data from one format to another, taking into account the
structure of queries and relationships between objects. The sixth section presents the results of testing
the method. In conclusion, the research results are summarized and the eighth section contains the
main directions for continuing research.

2. Related Work

Database consolidation is an important task in many areas of database applications, such as
heterogeneous database integration, e-commerce, data warehousing, or semantic query processing.
A lot of research has been and is being done in the world today by individual scientists as well as
research organizations and, as a result, various solutions are offered for this problem. Among the known
results in the field of database consolidation are the systems SemInt [8,9], Learning Source Descriptions
(LSD) in [10,11], Semantic Knowledge Articulation Tool (SKAT) [12], TranScm [13], Palopoli in [14],
ARTEMIS [15,16], and Mediator environment for Multiple Information Sources (MOMIS) [17,18].
However, all of these systems focus on consolidating relational databases and do not solve the problem
of integrating a relational database with NoSQL or NewSQL. In our research, we created a method
that can be used to consolidate relational databases and NoSQL with the resulting NoSQL database.

It should be noted that many studies over the past thirty years have been devoted to the problems
of transforming a relational database schema [19,20]. No matter how the scheme of the relational
database has been improved, it has its limitations, which contributed to the development of other
forms of databases, such as key-value and their varieties [4–7] or graph databases [21].

The integration of relational databases and NoSQL is a new problem that is relevant to the urgency
of the solution and studied little today.

Computation 2020, 8, 45 3 of 22

Chickerur [22] proposed a way to transfer relational databases to MongoDB by converting tables
to CSV files and import the converted files using the built-in MongoDB command. He also compared
the performance of MySQL and MongoDB using queries to add, update, and delete data from an
airline database. Performance tests showed that MongoDB performs queries well on large amounts
of data. However, this method only directly translates tables into collections without regard to the
relationships between tables. MongoDB performs worse queries on a set of collections. Our method
differs in that it takes into account the structure of database queries.

Hanine et al. [23] developed an approach to transferring data from relational databases to
MongoDB, which consists of three stages: extracting data from the source database, converting data,
and transferring the converted data to the target database. Unfortunately, this approach does not solve
the problem of the dependence of query performance on database schemas and relationships between
objects. In our approach, we take into account the relationships and show that query performance
increases from this.

Li et al. [24] proposed a model for converting a relational schema into a NoSQL database schema
based on a data structure and data queries. This model has a three-phase structure: a description of
the structure of the relational database and the requirements for data queries; query-oriented data
modeling for NoSQL database; a query-oriented description of the NoSQL database schema. In this
model, there is no allowance for dependencies between database objects during the transition from
a relational database to a NoSQL database. The new NoSQL database structure is based only on
metadata about objects and queries. The method described in [25] is also based on information about
queries. In our approach, we show how relationships between objects affect the structure of a document
with embedded documents.

Zhao et al. [26] proposed an approach to data migration from a relational database to a NoSQL
database based on relational algebra methods. In this study, the authors propose adapting the theory
and methods of relational algebra to the development of the MongoDB database schema. For the same
purposes, we use set theory, which allows us to construct formalized rules for translating a relational
database into a MongoDB database.

Alotaibi et al. [27] propose six rules for translating a relational database into a NoSQL database
of three types (Column-Based, Document-Based, and Graph-Based). Moreover, in all three types,
NoSQL database subspecies are considered. Each rule is associated with the type of relationship
between the tables (1-1, 1-M, M-M) or with a special operation carried out in one of the tables (for
example, aggregation). This article demonstrates how easy it is to translate a relational database into
NoSQL if it is possible to ignore the structure of the queries. The problem is that NoSQL databases
are query-specific. Those queries that refer to several tables in the relational database will work very
slowly in the NoSQL database, if there was a direct translation of the relational database into NoSQL.
The main problem is the lack of NoSQL databases of the operations of join data sets (collections, tables,
families, etc.). The authors solve this problem by creating a single collection in the NoSQL database.
This is not a good solution: combine all the tables into one collection. This leads to an increase in data
volume and a memory problem. At the end of our article, we show, based on the results of testing, that
our approach based on building a certain number of collections is better than the approach based on
creating a single collection.

Celesti et al. [28] accelerate queries that use operations «join» at the application level.
They implement their approach also in MongoDB. Their approach is good because it allows
saving data models. This approach will not be very good in case of data consolidation,
when the same data will appear in different models in one way or another and, as a result,
during consolidation, structure modification will still be necessary. We solve this problem in
our approach. When consolidating to an existing database of another database, objects and new object
attributes appear in the current database. Therefore, database queries in the previous form cannot be
performed or are executed for a very long time. The method proposed by us allows restructuring the
database schema so that all queries are executed quickly.

Computation 2020, 8, 45 4 of 22

One possible solution is the NoSQLayer software module, which can consist of two modules [29,30]:
a data transfer module that identifies and analyzes the NoSQL database schema and converts it into a
relational database schema, and a data mapping module that allows users to create queries in SQL,
selecting data from the NoSQL database. This program is not intended for data migration and many
queries work more slowly than if there were direct access to the NoSQL database in the built-in
query language [31]. In our approach, we optimize the database query processing using the internal
query language.

Feng et al. [32] developed an approach to transforming UML class diagrams into a Cassandra
database schema. This approach does not provide for optimizing the NoSQL schema for executing
queries. Currently, we tested and proved that the query structure when creating a collection affects
performance in the MongoDB database, and we are currently testing our approach on Cassandra.

Kartinis et al. [33] provided a technology that allows translating relational database systems into
document-oriented databases. This technology consists of two stages: description of the data of the
existing relational database and transfer to the NoSQL database. This technology does not provide for
optimizing the NoSQL schema for queries. Our method takes into account the relationships between
tables to create embedded documents and reduce the size of the database.

According to [34], relations in a document-oriented database model can be represented in
the form of embedded documents and relationships between these documents. However, firstly,
embedded documents can be used for a limited amount of data, and secondly, it remains a problem to
determine the form of embedding. The studies described in [34] confirm this. A positive characteristic
of our method is not only its ability to make decisions about the need to use embedded documents,
but, very importantly, the definition of the form of embedded documents and the place where they
should be embedded.

Gu et al. [35] applied the traditional rules of normalizing the relational database schema theory
(normal form theorems: second and third normal forms (2NF, 3NF) and the Boyce–Codd normal form
(BCNF)) to develop the MongoDB schema. For example, if there is a functional relationship between
two attributes, then both data attributes are converted to a single data item in MongoDB. The same
principle applies to partial and transitive dependencies. Testing showed that, as a result of applying this
approach, it is possible to actually increase query performance for related database objects. However,
testing was carried out on a small scheme. The approach does not take into account relationships
“Many to Many”, primary keys and foreign keys. In this article, we show how relationships of this
type between objects can be taken into account.

Thus, the analysis of works in the field of optimizing the structure of NoSQL databases, in particular,
document databases, showed that there are many different approaches to translating databases,
but there is no integrated approach that would simultaneously take into account the types of
relationships between objects and the structure of queries to objects databases and would allow
building such a number of collections and such an internal structure that queries to select data from a
document database are executed as quickly as possible.

In this article, examples of tests of the proposed method used MongoDB databases of various
structures and sizes.

MongoDB is a database that is used very often in various subject areas. In the literature,
there are many good methodologies for its application for various practical problems. For example,
Wang et al. [36] describe the sharding technology of MongoDB and the new approach to managing
large-scale remote sensing data; Marrara et al. [37] describe a method for constructing blind queries
to JSON document stores using MongoDB as an example; the method for processing queries in the
space-time range based on the index using the example of a large database MongoDB is described by
Qian et al. [38]. Many works are devoted to describing the application of the MongoDB system in various
subject areas: to create a prototype of a three-dimensional cadastral system and three-dimensional
visualization [39]; predicting the consumed heat capacity of buildings [40], to control groundwater flow

Computation 2020, 8, 45 5 of 22

and contaminant transport [41], in a personalized healthcare monitoring system [42] and, of course,
IoT applications [43].

3. Formulation of the Problem

Transferring data between different data sources is a necessary step for many data mining
tasks. However, the differences between the storage methods in the two relational and non-relational
(NoSQL) forms pose many problems in the areas of data translation, transformation, and consolidation.
One of these problems is matching NoSQL collections to relational database tables. For translation,
transformation, and consolidation of various types of databases, it is also necessary to take into account
the lack of structure in some databases and the features of the query language.

For relational databases, there are methods for creating relationships based on declared functional
dependencies between attributes. For NoSQL and NewSQL databases, such formalized methods do
not exist, only recommendations. For example, when converting a relational database into a document
database, the database administrator has little benefit from knowing the relational database schema.
He needs to consider many options for the form of a document database in order to choose the best one.

In this case, the following options for formatting are possible (the list is not complete):

• To each table in a relational database to assign a separate collection of documents in MongoDB;
• From all tables in the relational database to make one collection of documents in MongoDB,

by applying the join operation to the tables;
• To create such a set of document collections in MongoDB, so that they most fully fit the queries

being executed.

These three options can be effective with one database design and not be effective with another
database. In our article [25], we presented a method based on set theory, which allows determining
which of the three options will be effective. In this article, we show how it is possible to make the
selected collection structure even more effective if you create collections with attached documents.
At the same time, the choice of the number of collections and the determination of the contents of the
collections (with embedded documents or without embedded documents) is based on such parameters
as: attributes of objects in the database, structure of queries to the database and types of relationships
between database objects.

4. The Methodology for Determining Collections in a Document Database

In the method of creating collections without embedded documents, the new MongoDB database
is created on the basis of the existing relational database. We have shown that the use of a formalized
set-based approach helps to find the optimal collection of collections in MongoDB based on information
about the executed queries to the database.

If the new MongoDB database is not created from a relational database then it is necessary to use
information about the attributes of objects that are planned to be stored in the database; apply relational
algebra methods to these attributes and create a database schema that satisfies the normal form.

The methodology for preparing input data for applying the method of searching for the optimal
form of a document database is shown in Figure 1.

Figure 1 shows that if the final result should be a document database, then for optimal performance
of query execution it is necessary to apply our two methods sequentially to the set of attributes of
database objects:

• Determination of the optimal number of collections [25];
• Determination of the internal structure of documents in the collection: the number and order of

embedded documents. We describe this method in this article.

Computation 2020, 8, 45 6 of 22

These two methods are applicable when translating a relational database into a document database,
consolidation of a relational database with a document database, document database restructuring,
and creating a new document database.

To determine the need to create embedded documents, it is better if the scheme is initially reduced
to normal form using relational algebra. This will allow compromising between query performance
and the minimum amount of memory for storing data.

Computation 2020, 8, x FOR PEER REVIEW 6 of 22

To determine the need to create embedded documents, it is better if the scheme is initially
reduced to normal form using relational algebra. This will allow compromising between query
performance and the minimum amount of memory for storing data.

Figure 1. The scheme of creating input data for applying the method of building embedded
documents.

To determine the structure of embedded documents, it is necessary to have information
about the relationships between objects. One way to obtain this information is to search for
functional dependencies between the attributes of objects, then construct a relational database
schema and bring the schema to normal form using the relational algebra [44]. At the same time,
the data remain in the same form; only the schemes are studied. Therefore, this process is not
time-consuming and does not affect data. The relational database schema is intended in this case
to describe the relationships between objects in order to understand which documents should
be embedded.

5. Methods for Determining the Structure of Embedded Documents in the Database

The method for determining the number and order of embedded documents is based on the
type of relationships between tables in the relational model. Depending on the type of link, it is
necessary to apply a specific rule to create a document in the collection.

The first step in applying this method as shown in Figure 1 it is necessary to collect all the
attributes that are in the document database into one collection (an analog of many fields of one
table). Then, convert the schema of this table to normal form (preferably BCNF). The input to the
search for the structure and number of collections in the document database is a set of these
tables.

Below we consider the main types of relationships (one-to-one «1 − 1», one-to-many «1 −𝑀», many-to-many «𝑀 − 𝑀») for two tables and three tables. The rules for the three tables are
based on the rules for two tables. The rules for a model of more than three tables will be based
on the rules for two and three tables, so it makes no sense to consider them.

Figure 1. The scheme of creating input data for applying the method of building embedded documents.

To determine the structure of embedded documents, it is necessary to have information about
the relationships between objects. One way to obtain this information is to search for functional
dependencies between the attributes of objects, then construct a relational database schema and bring
the schema to normal form using the relational algebra [44]. At the same time, the data remain in the
same form; only the schemes are studied. Therefore, this process is not time-consuming and does
not affect data. The relational database schema is intended in this case to describe the relationships
between objects in order to understand which documents should be embedded.

5. Methods for Determining the Structure of Embedded Documents in the Database

The method for determining the number and order of embedded documents is based on the type
of relationships between tables in the relational model. Depending on the type of link, it is necessary
to apply a specific rule to create a document in the collection.

The first step in applying this method as shown in Figure 1 it is necessary to collect all the attributes
that are in the document database into one collection (an analog of many fields of one table). Then,
convert the schema of this table to normal form (preferably BCNF). The input to the search for the
structure and number of collections in the document database is a set of these tables.

Below we consider the main types of relationships (one-to-one «1 − 1», one-to-many «1 −M»,
many-to-many «M−M») for two tables and three tables. The rules for the three tables are based on the

Computation 2020, 8, 45 7 of 22

rules for two tables. The rules for a model of more than three tables will be based on the rules for two
and three tables, so it makes no sense to consider them.

We show that when applying the method for determining the number of collections from [25],
embedded documents can only exist when there is a 1−M relationship between tables whose attributes
are included in the collection. Therefore, for two tables, only one rule is deduced.

When determining the form of embedded documents based on three tables, the sequence of
relationships between the tables and the number of primary and secondary tables is important.

5.1. Defining Embedded Documents for Two Tables

This subsection presents the rules for determining the form of embedded documents for document
database collections consisting of documents compiled on the basis of a two-table relational database
schema. At the beginning, the necessary information on input data is given, on the basis of which a
decision is made on the need and form of embedded documents, then the rules and an explanation of
these rules are given.

Input data:

• Two tables of the relational model, on the basis of which a non-relational document database
schema is created—T1 and T2:

T1{T11, T12, . . . , T1k}

T2{T21, T22, . . . , T2n}

where Ti j is the j-th field of the i-th table, k is the number of fields in relation to T1 and n is the
number of fields in the table T2.

• According to the method of determining collections in the document database, let a collection of
documents be obtained (the structure of these documents depends on the structure of the queries):

Q{T11, . . . , T1m, T21, . . . , T2r}, m ≤ k, r ≤ n

• Tables T1 and T2 have 1−M relationships: T1 1−M
T2

• The tables have keys that belong to this collection:

T1 : T11, T12, . . . , T1s1, where 1 ≤ s1 ≤ m

(1)T2 : T21, T22, . . . , T2s2, where 1 ≤ s2 ≤ r

• There is a collection of queries S2 to the collection Q:

S21
{
T11, . . . , T1s1, . . . , T1i1, T21, . . . , T2s2, . . . , T2 j1

}
;

. . .

S2t
{
T11, . . . , T1st, . . . , T1it, T21, . . . , T2s2, . . . , T2 jt

}
;

and the set of queries S1 to the attributes of the table T2 from the collection Q:

S11{. . . , T2i1, . . .};

. . .

S1r{. . . , T2ir, . . .}.

Queries in the sets S1 and S2 are queries only for data selection, i.e., in terms of SQL, queries of the
form “select ... from . . . where ...”. These queries can have multi-level subqueries, there can be operations
of aggregation, grouping, sorting. In them, in terms of SQL, there can also be operations of joining,

Computation 2020, 8, 45 8 of 22

intersecting, and subtracting tables, since the method [25] was previously applied. Under database
queries are not considered database queries to delete, modify, and insert data.

• T′2(S2) is the set of all the attributes involved in the queries S2:

T′2(S2) =
{
T21, . . . , T2s2, . . . , T2 j1

}
∪ . . .∪

{
T21, . . . , T2s2, . . . , T2 jt

}
=

{
T21, . . . , T2s2, . . . , T2 j1, . . . , T2 jt

}
• Total queries S1 equal to Vs,

Output data: Collection Q′ ≈ Q.
Rule 1. An embedded document should consist of attributes of the set:

T′2 = T′2(S2)∪
Vs
∪

i=1
(S1i − T′2(S2))S1i−T′2(S2),∅ and S1i−T′2(S2),S1i

,

and the new structure of the Q collection has the form:

Q′
{
T11, . . . , T1s1, . . . , T1m, T′2 :

{
T′2(S2)∪

∪

Vs
∪

i=1
(S1i −T′2(S2))S1i−T′2(S2),∅ and S1i−T′2(S2),S1i

}
, T′′ 2 :

 Vs
∪

i=1
(S1i) S1i∩T′2(S2)=∅

 (1)

where T′2 and T′′ 2 are the names of the new keys for the embedded documents.
Explanation. The principle of creating embedded documents: to group those attributes that are

in the queries executed simultaneously to two tables. These attributes are the set T′2(S2). However,
the remaining attributes from table T2, which are in the collection Q, are obviously those attributes
that are included only in queries to table T2, i.e., these are attributes from the sets S1. Among the
sets S1 there may be sets that contain the attributes T′2(S2). To separate them from the embedded
document is to complicate the query. Therefore, they must be subtracted from the sets S1. Thus, the set
(S1i − T′2(S2)), these are the attributes from the i-th query S1, which are only in queries to the table
T2 and at the same time contain attributes from queries S2 if S1i − T′2(S2) , ∅ and S1i − T′2(S2) , S1i.

In total, such attributes will be
Vs
∪

i=1
(S1i − T′2(S2))S1i−T′2(S2),∅ and S1i−T′2(S2),S1i

. These attributes must

be added to the embedded document along with the attributes T′2(S2).
If attributes from the set { T21, . . . , T2r} in the Q collection that are not included in the embedded

document are left in the main document, this means increasing the amount of data in the Q collection.
Therefore, they must be collected in a separate subdocument. These attributes can be included in the
queries of the set S1 along with other attributes that are included in the first embedded document.

These attributes are set: T′′ 2 =
Vs
∪

i=1
(S1i) S1i∩T′2(S2)=∅ .

Thus: the attributes from (1) will be included in the embedded document.

Note 1. If T′′ 2 =
Vs
∪

i=1
(S1i) S1i∩T′2(S2)=∅ = ∅, then the new collection structure Q will have the

form: Q′{T11, . . . , T1s1, . . . , T1m, T′2 : {T21, . . . , T2r}}. It is this option that is often implemented when
translating tables of a relational database with 1 −M relationships in MongoDB according to the
principle: all tables must be assigned one collection.

Note 2. Above, only the relation of tables of type 1-M was considered. If the relational database
schema initially satisfied the normal form of BCNF, 3NF, or 4NF, then there can be no other relationships
between tables T1 and T2. If for some reason, such as the denormalization of the relational database
schema, this relationship exists, then:

• There can be no embedded documents for relationship between tables of the database of type
1− 1, due to the correspondence to each record from table T1 of a single record from table T2.

• For an M −M relationship, embedded documents are built on the same principle as for
1−M relationship.

Computation 2020, 8, 45 9 of 22

5.2. Defining Embedded Documents for Three Tables Not Interconnected Sequentially

This subsection presents the rules for determining the form of embedded documents for document
database collections based on a three-table relational database schema. In this database schema,
one table is the main table, and two other tables are associated with this table.

Input data:

• Three tables of the relational model, on the basis of which the non-relational document database
schema is built: T1, T2, and T3:

T1{T11, T12, . . . , T1k}

T2{T21, T22, . . . , T2n}

T3{T31, T32, . . . , T3m}

where Ti j is the j-th field of the i-th table, k is the number of fields in relation to T1, n is the number
of fields in the table T2, and m is the number of fields in the table T3.

• By the method of defining collections in a document database, a collection has been obtained:

Q{T11, . . . , T1k′ , T21, . . . , T2n′ , T31, . . . , T3m′ }, k′ ≤ k, n′ ≤ n, m′ ≤ m

• Tables T1, T2, and T3 have relationships of type 1−M: T3 M−1
T1 1−M

T2 or more schematically
in Figure 2.

• In the tables the keys belonging to this collection are defined:

T1 : T11, T12, . . . , T1s1, where 1 ≤ s1 ≤ k′

T2 : T21, T22, . . . , T2s2, where 1 ≤ s2 ≤ n′

T3 : T31, T32, . . . , T3s3, where 1 ≤ s3 ≤ m′

Computation 2020, 8, x FOR PEER REVIEW 9 of 22

𝑇 𝑇 , 𝑇 , … , 𝑇 𝑇 𝑇 , 𝑇 , … , 𝑇

where 𝑇 is the 𝑗-th field of the 𝑖-th table, 𝑘 is the number of fields in relation to 𝑇 , 𝑛 is the
number of fields in the table 𝑇 , and 𝑚 is the number of fields in the table 𝑇 .

• By the method of defining collections in a document database, a collection has been obtained: 𝑄 𝑇 , … , 𝑇 , 𝑇 , … , 𝑇 , 𝑇 , … , 𝑇 , 𝑘 ≤ 𝑘, 𝑛 ≤ 𝑛, 𝑚′ ≤ 𝑚

• Tables 𝑇 , 𝑇 , and 𝑇 have relationships of type 1 − 𝑀: 𝑇 𝑇 𝑇
or more schematically in Figure 2.

Figure 2. The scheme of relationships between tables 𝑇 , 𝑇 , and 𝑇 for the case when the first table
is the main, second, and third tables are secondary, associated with the first table

• In the tables the keys belonging to this collection are defined: 𝑇 : 𝑇 , 𝑇 , … , 𝑇 , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑠1 ≤ 𝑘′ 𝑇 : 𝑇 , 𝑇 , … , 𝑇 , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑠2 ≤ 𝑛′ 𝑇 : 𝑇 , 𝑇 , … , 𝑇 , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑠3 ≤ 𝑚′
Output data: Collection 𝑄′ ≈ 𝑄.
Rule 2. If 𝑆 𝑇 , … , 𝑇 , … , 𝑇 is the query that refers only to the attributes of one table, for

Example 𝑇 , then from Section 5.1, it follows that there cannot be embedded documents in this
collection.

Rule 3. If 𝑆 𝑇 , … , 𝑇 , … , 𝑇 , 𝑇 , … , 𝑇 , … , 𝑇 is the query that refers to the attributes of two
tables 𝑇 , 𝑇 or 𝑇 , 𝑇 , then in Section 5.1, it is shown that the new structure of the collection 𝑄 will
have the form (1).

Rule 4. If 𝑆 𝑇 , … , 𝑇 , … , 𝑇 , 𝑇 , … , 𝑇 , … , 𝑇 , 𝑇 , … , 𝑇 , … , 𝑇 is the database query that
refers to the attributes of all three tables 𝑇 , 𝑇 , and 𝑇 , then the new structure of the collection 𝑄
will have the form:

𝑄′ 𝑇 , … , 𝑇 , 𝑇 : 𝑇 𝑆 ∪
∪ 𝑆 − 𝑇 𝑆 ∅ , 𝑇 : 𝑆 ∩ ∅ , 𝑇 : 𝑇 𝑆 ∪
∪ 𝑆 − 𝑇 𝑆 ∅ , 𝑇 : 𝑆 ∩ ∅

(2)

where 𝑇 , 𝑇 are the names of new keys for embedded documents; attributes 𝑇 𝑆 —these are all
attributes of the table 𝑇 included in queries of type 𝑆 for the collection 𝑄; attributes 𝑇 𝑆 are
all attributes of the table 𝑇 included in queries of type 𝑆 to the collection 𝑄, 𝑉 is the number of
queries of type 𝑆 , 𝑇 is the set of attributes that are not included in 𝑇 of all the attributes of table 𝑇 included in the collection 𝑄, 𝑇 is the set of attributes that are not included in 𝑇 of all the
attributes of table 𝑇 included in the collection 𝑄.

Figure 2. The scheme of relationships between tables T1, T2, and T3 for the case when the first table is
the main, second, and third tables are secondary, associated with the first table.

Output data: Collection Q′ ≈ Q.
Rule 2. If S1{T11, . . . , T1s1, . . . , T1i} is the query that refers only to the attributes of one table,

for Example T1, then from Section 5.1, it follows that there cannot be embedded documents in
this collection.

Rule 3. If S2
{
T11, . . . , T1s1, . . . , T1i, T21, . . . , T2s2, . . . , T2 j

}
is the query that refers to the attributes of

two tables T1, T2 or T1, T3, then in Section 5.1, it is shown that the new structure of the collection Q will
have the form (1).

Computation 2020, 8, 45 10 of 22

Rule 4. If S3
{
T11, . . . , T1s1, . . . , T1i, T21, . . . , T2s2, . . . , T2 j, T31, . . . , T3s3, . . . , T3r

}
is the database

query that refers to the attributes of all three tables T1, T2, and T3, then the new structure of
the collection Q will have the form:

Q′
{
T11, . . . , T1m, T′2 :

{
T′2(S2)∪

∪

Vs
∪

i=1
(S1i − T′2(S2))S1i−T′2(S2),∅ and S1i−T′2(S2),S1i

, T′′ 2 :

Vs
∪

i=1
(S1i) S1i∩T′2(S2)=∅

, T′3 :
{
T′3(S3)∪

∪

Vs
∪

i=1
(S1i − T′3(S3))S1i−T′3(S3),∅ and S1i−T′3(S3),S1i

 , T′′ 3 :

Vs
∪

i=1
(S1i) S1i∩T′3(S3)=∅

(2)

where T′2, T′3 are the names of new keys for embedded documents; attributes T′2(S3)—these
are all attributes of the table T2 included in queries of type S3 for the collection Q; attributes T′3(S3)

are all attributes of the table T3 included in queries of type S3 to the collection Q, Vs is the number of
queries of type S1, T′′ 2 is the set of attributes that are not included in T′2 of all the attributes of table T2

included in the collection Q, T′′ 3 is the set of attributes that are not included in T′3 of all the attributes
of table T3 included in the collection Q.

5.3. Defining Embedded Documents for Three Tables Interconnected Sequentially

This section presents the rules for determining the form of embedded documents for document
database collections based on a three-table relational database schema. Unlike the previous section in
this database schema, the tables are connected in series: the first table is the main one in conjunction
with the second table, the second table is the main one in conjunction with the third table.

Input data:

• Three tables of the relational model, on the basis of which the non-relational document database
schema is built: T1, T2, and T3:

T1{T11, T12, . . . , T1k}

T2{T21, T22, . . . , T2n}

T3{T31, T32, . . . , T3m}

where Ti j is the j-th field of the i-th table, k is the number of fields in relation to T1, n is the number
of fields in the table T2, and m is the number of fields in the table T3.

• By the method of defining collections in a document database, a collection has been obtained:

Q{T11, . . . , T1k′ , T21, . . . , T2n′ , T31, . . . , T3m′ }, k′ ≤ k, n′ ≤ n, m′ ≤ m

• Tables T1, T2, and T3 have relationships of type 1−M: T3 1−M
T1 1−M

T2 or more schematically
in Figure 3.

• In the tables the keys belonging to this collection are defined:

T1 : T11, T12, . . . , T1s1, where 1 ≤ s1 ≤ k′

T2 : T21, T22, . . . , T2s2, where 1 ≤ s2 ≤ n′

T3 : T31, T32, . . . , T3s3, where 1 ≤ s3 ≤ m′

Computation 2020, 8, 45 11 of 22

Computation 2020, 8, x FOR PEER REVIEW 10 of 22

5.3. Defining Embedded Documents for Three Tables Interconnected Sequentially

This section presents the rules for determining the form of embedded documents for document
database collections based on a three-table relational database schema. Unlike the previous section
in this database schema, the tables are connected in series: the first table is the main one in conjunction
with the second table, the second table is the main one in conjunction with the third table.

Input data:

• Three tables of the relational model, on the basis of which the non-relational document database
schema is built: 𝑇 , 𝑇 , and 𝑇 : 𝑇 𝑇 , 𝑇 , … , 𝑇 𝑇 𝑇 , 𝑇 , … , 𝑇 𝑇 𝑇 , 𝑇 , … , 𝑇

where 𝑇 is the 𝑗-th field of the 𝑖-th table, 𝑘 is the number of fields in relation to 𝑇 , 𝑛 is the
number of fields in the table 𝑇 , and 𝑚 is the number of fields in the table 𝑇 .

• By the method of defining collections in a document database, a collection has been obtained: 𝑄 𝑇 , … , 𝑇 , 𝑇 , … , 𝑇 , 𝑇 , … , 𝑇 , 𝑘 ≤ 𝑘, 𝑛 ≤ 𝑛, 𝑚′ ≤ 𝑚

• Tables 𝑇 , 𝑇 , and 𝑇 have relationships of type 1 − 𝑀: 𝑇 𝑇 𝑇
or more schematically in Figure 3.

Figure 3. The relationship between the tables 𝑇 , 𝑇 and 𝑇 for the case when: (1) first table is the
main, (2) the second table is simultaneously secondary for the first table and the main for the third
table, and (3) the third table is secondary, related to the second table

• In the tables the keys belonging to this collection are defined: 𝑇 : 𝑇 , 𝑇 , … , 𝑇 , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑠1 ≤ 𝑘′ 𝑇 : 𝑇 , 𝑇 , … , 𝑇 , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑠2 ≤ 𝑛′ 𝑇 : 𝑇 , 𝑇 , … , 𝑇 , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑠3 ≤ 𝑚′
Output data: Collection 𝑄′ ≈ 𝑄.
Consider the possible query options for the collection 𝑄:

• 𝑆 𝑇 , … , 𝑇 , … , 𝑇 is the database query that refers only to the attributes of one table, for
example, 𝑇 .

This case is considered in Section 5.1 when defining embedded documents for a collection
constructed from the attributes of two tables and it is shown that there cannot be embedded
documents in this collection.

• 𝑆 𝑇 , … , 𝑇 , … , 𝑇 , 𝑇 , … , 𝑇 , … , 𝑇 —a query that refers to the attributes of two tables 𝑇 , 𝑇 , or 𝑇 , 𝑇 .

Figure 3. The relationship between the tables T1, T2 and T3 for the case when: (1) first table is the main,
(2) the second table is simultaneously secondary for the first table and the main for the third table,
and (3) the third table is secondary, related to the second table.

Output data: Collection Q′ ≈ Q.
Consider the possible query options for the collection Q:

• S1{T11, . . . , T1s1, . . . , T1i} is the database query that refers only to the attributes of one table,
for example, T1.

This case is considered in Section 5.1 when defining embedded documents for a collection
constructed from the attributes of two tables and it is shown that there cannot be embedded documents
in this collection.

• S2
{
T11, . . . , T1s1, . . . , T1i, T21, . . . , T2s2, . . . , T2 j

}
—a query that refers to the attributes of two tables

T1, T2, or T2, T3.

This case is considered in Section 5.1 when defining embedded documents for a collection built
from the attributes of two tables and it is shown that the new structure of the collection Q will take the
form according to Rule 1.

• S3
{
T11, . . . , T1s1, . . . , T1i, T21, . . . , T2s2, . . . , T2 j, T31, . . . , T3s3, . . . , T3r

}
—a query that refers to the

attributes of all three tables T1, T2 and T3.

This case is a generalization of Case B from two tables to three tables. In this case, the new
structure of the Q collection will have the form:

Rule 5.

Q′
T11, . . . , T1m, T′2 :

T′2(S2)∪∪
Vs
∪

i=1
(S1i − T′2(S2))S1i−T′2(S2),∅ and S1i−T′2(S2),S1i

,

T′3 :

T′3(S3) ∪
Vs
∪

i=1
(S1i − T′3(S3))S1i−T′3(S3),∅ and S1i−T′3(S3),S1i

,

T′′ 2 :

 Vs
∪

i=1
(S1i) S1i∩T′2(S2)=∅

, T′′ 3 :

 Vs
∪

i=1
(S1i) S1i∩T′3(S3)=∅

(3)

where T′2, T′3 are the names of new keys for embedded documents; attributes T′2(S3)—these are
all attributes of the table T2 included in queries of type S3 for the collection Q; attributes T′3(S3) are
all attributes of the table T3 included in queries of type S3 to the collection Q, Vs is the number of
queries of type S1, T′′ 2 is the set of attributes that are not included in T′2 of all the attributes of table
T2 included in the collection Q, and T′′ 3 is the set of attributes that are not included in T′3 of all the
attributes of table T3 included in the collection Q.

• S4{T11, . . . , T1s1, . . . , T1i, T31, . . . , T3s3, . . . , T3r}—a query that refers to the attributes of two tables
T2 and T3.

Because database query to the attributes of tables T1 and T3 can be performed only through the
attributes of the table T2, then this case as a result reduces to Case C).

Computation 2020, 8, 45 12 of 22

Note 3. If the collection Q is created for more than three tables, then the form of embedded
documents is determined according to Rules 1–5.

The scheme for applying the rules for the three tables is given in Appendix A.

6. Testing the Effectiveness of the Methodology for Determining the Structure of Embedded
Documents in a Document Database

To test the effectiveness of the developed methodology for determining the structure of embedded
documents in document databases, we performed queries to databases filled with the same attribute
values, but having different collection structures: with and without embedded documents.

Testing was carried out on a personal computer: Intel (R) Core (TM) i7-8700 CPU @ 3.20GHz,
with Windows operating system, MySQL Community Server Version 8.0.17, MongoDB Community
Server v. 4.0.5.

During the experiments, all additional functions, such as cache, indexes, and multi-threading,
were disabled. The used data is synthetic. Each database query is executed 25 times. The difference
in the execution time of each of 25 times for one query varied within e = 0.01 ms (for example:
t1 = 0.3526 ms, t2 = 0.3401 ms, etc.). The execution time of each database query, given in all tables
below, is the average execution time of a given query 25 times.

Below are three examples from the testing.
Example 1. To establish relationships between objects in the MongoDB database, it was built a

schema of a relational database consisting of three tables, one of which is the main and two associated
with it (Figure 4). Data volume: main table T1—10,000 records, related tables: T2—100,000 records,
T3—100,000 records.

Computation 2020, 8, x FOR PEER REVIEW 12 of 22

with it (Figure 4). Data volume: main table 𝑇 —10,000 records, related tables: 𝑇 —100,000 records, 𝑇 —100,000 records.

Figure 4. An example of a database of three tables. This is the case when the first table is the main,
second, and third tables are secondary, associated with the first table.

The database schema shown in Figure 4 has two MongoDB databases in accordance with it:

(1). A database consisting of one collection 𝑄 , including all fields of tables 𝑇 , 𝑇 and 𝑇 . A
fragment of this collection is shown in Figure 5.

Figure 5. A single MongoDB collection without embedded documents.

(2). The database, built in accordance with the Rules 1–4 described in Section 5. The new structure
of the collection 𝑄’ will have the form:

Q’{key_t1,Name,T2_of_T1{key_t2, Adress},T3_of_t1{key_t3,Product_name}}

The structure of this collection is shown in Figure 6.

Figure 6. New collection with sequentially embedded documents.

To test these two variants of the MongoDB database, eight queries were executed, differing in
their structure. The average value of the query execution time is presented in Table 1 and in Figure
7.

Figure 4. An example of a database of three tables. This is the case when the first table is the main,
second, and third tables are secondary, associated with the first table.

The database schema shown in Figure 4 has two MongoDB databases in accordance with it:

(1). A database consisting of one collection Q, including all fields of tables T1, T2 and T3. A fragment
of this collection is shown in Figure 5.

Computation 2020, 8, x FOR PEER REVIEW 12 of 22

with it (Figure 4). Data volume: main table 𝑇 —10,000 records, related tables: 𝑇 —100,000 records, 𝑇 —100,000 records.

Figure 4. An example of a database of three tables. This is the case when the first table is the main,
second, and third tables are secondary, associated with the first table.

The database schema shown in Figure 4 has two MongoDB databases in accordance with it:

(1). A database consisting of one collection 𝑄 , including all fields of tables 𝑇 , 𝑇 and 𝑇 . A
fragment of this collection is shown in Figure 5.

Figure 5. A single MongoDB collection without embedded documents.

(2). The database, built in accordance with the Rules 1–4 described in Section 5. The new structure
of the collection 𝑄’ will have the form:

Q’{key_t1,Name,T2_of_T1{key_t2, Adress},T3_of_t1{key_t3,Product_name}}

The structure of this collection is shown in Figure 6.

Figure 6. New collection with sequentially embedded documents.

To test these two variants of the MongoDB database, eight queries were executed, differing in
their structure. The average value of the query execution time is presented in Table 1 and in Figure
7.

Figure 5. A single MongoDB collection without embedded documents.

Computation 2020, 8, 45 13 of 22

(2). The database, built in accordance with the Rules 1–4 described in Section 5. The new structure of
the collection Q’ will have the form:

Q’{key_t1,Name,T2_of_T1{key_t2, Adress},T3_of_t1{key_t3,Product_name}}

The structure of this collection is shown in Figure 6.

Computation 2020, 8, x FOR PEER REVIEW 12 of 22

with it (Figure 4). Data volume: main table 𝑇 —10,000 records, related tables: 𝑇 —100,000 records, 𝑇 —100,000 records.

Figure 4. An example of a database of three tables. This is the case when the first table is the main,
second, and third tables are secondary, associated with the first table.

The database schema shown in Figure 4 has two MongoDB databases in accordance with it:

(1). A database consisting of one collection 𝑄 , including all fields of tables 𝑇 , 𝑇 and 𝑇 . A
fragment of this collection is shown in Figure 5.

Figure 5. A single MongoDB collection without embedded documents.

(2). The database, built in accordance with the Rules 1–4 described in Section 5. The new structure
of the collection 𝑄’ will have the form:

Q’{key_t1,Name,T2_of_T1{key_t2, Adress},T3_of_t1{key_t3,Product_name}}

The structure of this collection is shown in Figure 6.

Figure 6. New collection with sequentially embedded documents.

To test these two variants of the MongoDB database, eight queries were executed, differing in
their structure. The average value of the query execution time is presented in Table 1 and in Figure
7.

Figure 6. New collection with sequentially embedded documents.

To test these two variants of the MongoDB database, eight queries were executed, differing in
their structure. The average value of the query execution time is presented in Table 1 and in Figure 7.

Table 1. The speed of execution of queries to document databases: without embedded documents and
with embedded documents.

Query Option 1 DB
(without Embedded Documents), Time, ms

Option 2 DB
(with Embedded Documents), Time, ms

Q1 0.1106 0.0698
Q2 0.1026 0.0716
Q3 0.142 0.124
Q4 0.3526 0.01
Q5 0.346 0.013
Q6 0.3366 0.014
Q7 0.3666 0.043
Q8 0.369 0.041

1

Figure 7. A diagram showing the execution time of eight queries to a database of two types: a single
database and a database with embedded documents.

Computation 2020, 8, 45 14 of 22

Example 2. To establish relationships between objects in the MongoDB database, it was built a
schema of a relational database consisting of three tables connected in series (Figure 8). Data volume:
main table T1—10,000 records, T2—60,000 records, T3—100,000 records. The volume of T2 in this
example is less than in Example 1. This is because T2 in Example 1 was a secondary table, but in this
example, T2 is a secondary table for T1 and the main for T3. Therefore, the data volume in it should be
more than in T1 and less than in T3.

Computation 2020, 8, x FOR PEER REVIEW 13 of 22

Table 1. The speed of execution of queries to document databases: without embedded documents
and with embedded documents.

Query Option 1 DB
(without Embedded Documents), Time, ms

Option 2 DB
(with Embedded Documents), Time, ms

Q1 0.1106 0.0698
Q2 0.1026 0.0716
Q3 0.142 0.124
Q4 0.3526 0.01
Q5 0.346 0.013
Q6 0.3366 0.014
Q7 0.3666 0.043
Q8 0.369 0.041

Figure 7. A diagram showing the execution time of eight queries to a database of two types: a single
database and a database with embedded documents.

Example 2. To establish relationships between objects in the MongoDB database, it was built a
schema of a relational database consisting of three tables connected in series (Figure 8). Data volume:
main table 𝑇 —10,000 records, 𝑇 —60,000 records, 𝑇 —100,000 records. The volume of 𝑇 in this
example is less than in Example 1. This is because 𝑇 in Example 1 was a secondary table, but in this
example, 𝑇 is a secondary table for 𝑇 and the main for 𝑇 . Therefore, the data volume in it should
be more than in 𝑇 and less than in 𝑇 .

Figure 8. The case of sequentially related tables. This is case when first table is the main, the second
table is simultaneously secondary for the first table and the main for the third table, and the third
table is secondary, related to the second table.

Let two MongoDB databases be set in accordance with the database schema shown in Figure 8:
(1). A database consisting of one collection 𝑄, composed of all the fields of tables 𝑇 , 𝑇 , and 𝑇 . A

fragment of this collection is shown in Figure 8.
(2). The database, built in accordance with Rules 1–4 described in Section 5. The new structure of the

collection 𝑄’ will have the form:

Figure 8. The case of sequentially related tables. This is case when first table is the main, the second
table is simultaneously secondary for the first table and the main for the third table, and the third table
is secondary, related to the second table.

Let two MongoDB databases be set in accordance with the database schema shown in Figure 8:

(1). A database consisting of one collection Q, composed of all the fields of tables T1, T2, and T3.
A fragment of this collection is shown in Figure 8.

(2). The database, built in accordance with Rules 1–4 described in Section 5. The new structure of the
collection Q’ will have the form:

Q’{key_t1,Name,T2_of_T1:{key_t2, Adress,T3_of_T2:{key_t3,Product_name}}}

The structure of this collection is shown in Figure 9.

Computation 2020, 8, x FOR PEER REVIEW 14 of 22

Q’{key_t1,Name,T2_of_T1:{key_t2, Adress,T3_of_T2:{key_t3,Product_name}}}

The structure of this collection is shown in Figure 9.

Figure 9. New collection with two levels of embedded documents.

To test these two variants of the MongoDB database, six queries were executed, differing in their
structure. The average value of the query execution time is presented in Table 2 and in Figure 10.

Table 2. The speed of execution of queries to document databases: without embedded documents
and with embedded documents.

Query Option 1 DB
(without Embedded Documents), Time, ms

Option 2 DB
(with Embedded Documents), Time, ms

Q1 0.108 0.07
Q2 0.171 0.126
Q3 0.162 0.052
Q4 0.036 0.007
Q5 0.038 0.027
Q6 0.037 0.025

Figure 10. A diagram showing the execution time of six queries to a database of two types: a single
database and a database with embedded documents.

Example 3. To establish relationships between objects in the MongoDB database, it was built a
schema of a relational database consisting of four tables. Two tables are the main and two tables are

Figure 9. New collection with two levels of embedded documents.

To test these two variants of the MongoDB database, six queries were executed, differing in their
structure. The average value of the query execution time is presented in Table 2 and in Figure 10.

Computation 2020, 8, 45 15 of 22

Table 2. The speed of execution of queries to document databases: without embedded documents and
with embedded documents.

Query Option 1 DB
(without Embedded Documents), Time, ms

Option 2 DB
(with Embedded Documents), Time, ms

Q1 0.108 0.07
Q2 0.171 0.126
Q3 0.162 0.052
Q4 0.036 0.007
Q5 0.038 0.027
Q6 0.037 0.025

1

Figure 10. A diagram showing the execution time of six queries to a database of two types: a single
database and a database with embedded documents.

Example 3. To establish relationships between objects in the MongoDB database, it was built a
schema of a relational database consisting of four tables. Two tables are the main and two tables are
secondary (Figure 11). Data volume: T1—15,000 records, T2—50,000 records, T3—110,000 records,
and T4—200,000 records.

Computation 2020, 8, x FOR PEER REVIEW 15 of 22

secondary (Figure 11). Data volume: T1—15,000 records, T2—50,000 records, T3—110,000 records,
and T4—200,000 records.

Figure 11. An example of a database of four tables.

Let two MongoDB databases be set in accordance with the database schema shown in Figure 8:

(1). A database consisting of one collection 𝑄, composed of all the fields of tables 𝑇 , 𝑇 , 𝑇 and 𝑇 .
A fragment of this collection is shown in Figure 8.

(2). The database, built in accordance with Rules 1–4 described in Section 5. The new structure of the
collection 𝑄’ will have the form:

Q’{key_t1,Name,T2_of_T1:{key_t2,Adress},T3_of_T1:{key_t3,Product_name, T4_of_T3:
{key_t4, Brand}}}}

The structure of this collection is shown in Figure 12.

Figure 12. The new collection with sequential and multi-level embedded documents.

To test these two variants of the MongoDB database, eight queries were executed, differing in
their structure. The average value of the query execution time is presented in Table 3 and in Figure
13. Examples of queries are given in Appendix B.

We have tested the method on databases of various contents and structure. In this article, we
have demonstrated three of the most revealing examples that can be schematically represented as
follows (Table 4):

Figure 11. An example of a database of four tables.

Let two MongoDB databases be set in accordance with the database schema shown in Figure 8:

(1). A database consisting of one collection Q, composed of all the fields of tables T1, T2, T3 and T4.
A fragment of this collection is shown in Figure 8.

Computation 2020, 8, 45 16 of 22

(2). The database, built in accordance with Rules 1–4 described in Section 5. The new structure of the
collection Q’ will have the form:

Q’{key_t1,Name,T2_of_T1:{key_t2,Adress},T3_of_T1:{key_t3,Product_name, T4_of_T3: {key_t4, Brand}}}}

The structure of this collection is shown in Figure 12.

Computation 2020, 8, x FOR PEER REVIEW 15 of 22

secondary (Figure 11). Data volume: T1—15,000 records, T2—50,000 records, T3—110,000 records,
and T4—200,000 records.

Figure 11. An example of a database of four tables.

Let two MongoDB databases be set in accordance with the database schema shown in Figure 8:

(1). A database consisting of one collection 𝑄, composed of all the fields of tables 𝑇 , 𝑇 , 𝑇 and 𝑇 .
A fragment of this collection is shown in Figure 8.

(2). The database, built in accordance with Rules 1–4 described in Section 5. The new structure of the
collection 𝑄’ will have the form:

Q’{key_t1,Name,T2_of_T1:{key_t2,Adress},T3_of_T1:{key_t3,Product_name, T4_of_T3:
{key_t4, Brand}}}}

The structure of this collection is shown in Figure 12.

Figure 12. The new collection with sequential and multi-level embedded documents.

To test these two variants of the MongoDB database, eight queries were executed, differing in
their structure. The average value of the query execution time is presented in Table 3 and in Figure
13. Examples of queries are given in Appendix B.

We have tested the method on databases of various contents and structure. In this article, we
have demonstrated three of the most revealing examples that can be schematically represented as
follows (Table 4):

Figure 12. The new collection with sequential and multi-level embedded documents.

To test these two variants of the MongoDB database, eight queries were executed, differing in
their structure. The average value of the query execution time is presented in Table 3 and in Figure 13.
Examples of queries are given in Appendix B.

Table 3. The speed of execution of queries to document databases: without embedded documents and
with embedded documents.

Query Option 1 DB
(without Embedded Documents), Time, ms

Option 2 DB
(with Embedded Documents), Time, ms

Q1 0.078 0.055
Q2 0.175 0.163
Q3 0.169 0.135
Q4 0.198 0.08
Q5 0.234 0.109
Q6 0.199 0.012
Q7 0.209 0.022
Q8 0.206 0.026

Computation 2020, 8, x FOR PEER REVIEW 16 of 22

Table 3. The speed of execution of queries to document databases: without embedded documents
and with embedded documents.

Query Option 1 DB
(without Embedded Documents), Time, ms

Option 2 DB
(with Embedded Documents), Time, ms

Q1 0.078 0.055
Q2 0.175 0.163
Q3 0.169 0.135
Q4 0.198 0.08
Q5 0.234 0.109
Q6 0.199 0.012
Q7 0.209 0.022
Q8 0.206 0.026

Figure 13. A diagram showing the execution time of six queries to a database of two types: a single
database and a database with embedded documents.

Table 4. Schematic representation of a document in a document database composed of attributes
corresponding to the fields of different tables.

Original Document Database Schema

A New Scheme with Embedded Documents,
Obtained Taking into Account the Structure of
Database Queries and Relationships between

Objects

Figure 13. A diagram showing the execution time of six queries to a database of two types: a single
database and a database with embedded documents.

Computation 2020, 8, 45 17 of 22

We have tested the method on databases of various contents and structure. In this article, we have
demonstrated three of the most revealing examples that can be schematically represented as follows
(Table 4):

Table 4. Schematic representation of a document in a document database composed of attributes
corresponding to the fields of different tables.

Original Document Database Schema
A New Scheme with Embedded Documents, Obtained
Taking into Account the Structure of Database Queries

and Relationships between Objects

Computation 2020, 8, x FOR PEER REVIEW 16 of 22

Table 3. The speed of execution of queries to document databases: without embedded documents
and with embedded documents.

Query Option 1 DB
(without Embedded Documents), Time, ms

Option 2 DB
(with Embedded Documents), Time, ms

Q1 0.078 0.055
Q2 0.175 0.163
Q3 0.169 0.135
Q4 0.198 0.08
Q5 0.234 0.109
Q6 0.199 0.012
Q7 0.209 0.022
Q8 0.206 0.026

Figure 13. A diagram showing the execution time of six queries to a database of two types: a single
database and a database with embedded documents.

Table 4. Schematic representation of a document in a document database composed of attributes
corresponding to the fields of different tables.

Original Document Database Schema

A New Scheme with Embedded Documents,
Obtained Taking into Account the Structure of
Database Queries and Relationships between

Objects

Computation 2020, 8, x FOR PEER REVIEW 16 of 22

Table 3. The speed of execution of queries to document databases: without embedded documents
and with embedded documents.

Query Option 1 DB
(without Embedded Documents), Time, ms

Option 2 DB
(with Embedded Documents), Time, ms

Q1 0.078 0.055
Q2 0.175 0.163
Q3 0.169 0.135
Q4 0.198 0.08
Q5 0.234 0.109
Q6 0.199 0.012
Q7 0.209 0.022
Q8 0.206 0.026

Figure 13. A diagram showing the execution time of six queries to a database of two types: a single
database and a database with embedded documents.

Table 4. Schematic representation of a document in a document database composed of attributes
corresponding to the fields of different tables.

Original Document Database Schema

A New Scheme with Embedded Documents,
Obtained Taking into Account the Structure of
Database Queries and Relationships between

Objects

Computation 2020, 8, x FOR PEER REVIEW 16 of 22

Table 3. The speed of execution of queries to document databases: without embedded documents
and with embedded documents.

Query Option 1 DB
(without Embedded Documents), Time, ms

Option 2 DB
(with Embedded Documents), Time, ms

Q1 0.078 0.055
Q2 0.175 0.163
Q3 0.169 0.135
Q4 0.198 0.08
Q5 0.234 0.109
Q6 0.199 0.012
Q7 0.209 0.022
Q8 0.206 0.026

Figure 13. A diagram showing the execution time of six queries to a database of two types: a single
database and a database with embedded documents.

Table 4. Schematic representation of a document in a document database composed of attributes
corresponding to the fields of different tables.

Original Document Database Schema

A New Scheme with Embedded Documents,
Obtained Taking into Account the Structure of
Database Queries and Relationships between

Objects

Computation 2020, 8, x FOR PEER REVIEW 16 of 22

Table 3. The speed of execution of queries to document databases: without embedded documents
and with embedded documents.

Query Option 1 DB
(without Embedded Documents), Time, ms

Option 2 DB
(with Embedded Documents), Time, ms

Q1 0.078 0.055
Q2 0.175 0.163
Q3 0.169 0.135
Q4 0.198 0.08
Q5 0.234 0.109
Q6 0.199 0.012
Q7 0.209 0.022
Q8 0.206 0.026

Figure 13. A diagram showing the execution time of six queries to a database of two types: a single
database and a database with embedded documents.

Table 4. Schematic representation of a document in a document database composed of attributes
corresponding to the fields of different tables.

Original Document Database Schema

A New Scheme with Embedded Documents,
Obtained Taking into Account the Structure of
Database Queries and Relationships between

Objects

For databases whose documents contain attributes of more than two tables, many other options
for embedded documents are possible. The method described above allows uniquely determining the
form of embedding documents.

The diagrams in Figure 8, Figure 10, and Figure 13 show that depending on the structure of the
queries, the speedup of the query execution in the database created by the proposed method (this is
a database with embedded documents in the figures) can be from 10% to 70%, but all queries with
embedded documents were faster. This can be explained by the fact that the volume of the collection
when using embedded documents is much smaller than in the case of building a collection without
embedded documents. For example, in Example 1, when transferring data from a MySQL database
to MongoDB, a new collection with embedded documents consisted of 20,000 documents and had a
volume of ≈20 MB, and a collection without embedded documents consisted of 100,770 documents and
had a volume of ≈138 MB. Therefore, it is very important to evaluate in which collections documents
should be embedded and in which not. These examples show the effectiveness of the application of the
methodology and rules for constructing collections described in Sections 4 and 5, taking into account
the relationships between the objects in the database and the structure of the queries that are executed
to them.

7. Conclusions

As a result of the research, a formalized method based on set theory was developed that allows
automating the process of building a document database for a given set of properties of objects and the
relationships between them. Information on the structure of database queries allows determining the
number and composition of collections for the MongoDB database so that it is possible not to perform
“join” operations in database queries. Taking into account the relationships between objects allows
assessing the need to create embedded documents, their number and composition.

Computation 2020, 8, 45 18 of 22

For example, let two tables be obtained from the results of constructing a relational schema based
on database attributes. Let each table have five attributes. Then, it is possible to create one collection of
nine attributes (taking into account the relationship of the tables). It is possible to create two collections
of four and five attributes. It is possible to create three collections of three attributes. It is possible
to create four collections of two and three attributes. There are other options. It is possible to create
collections with embedded documents, or without embedded documents. In total, we get more than
10 options. Which to choose? It all depends on what queries will be performed most often on tables
and how tables are related. This is what our method does. The method unambiguously answers these
questions: how many and which collections.

We thoroughly tested our method on document databases of various structures with different
relationships between tables. In each test, we measured the average query execution time. We showed
some of these measurements in Section 6. Having analyzed all the measurements of query execution
time, we conclude that organizing a database using the method proposed in this article allows
us to speed up query execution by 10–50% compared with other forms of database organization.
The percentage of increasing the speed of query execution depends on two parameters: the initial
database schema (before applying the method described in this article to this schema) and the structure
of the query.

This method can be used when translating a database from relational format to MongoDB
format, to define collections in a new MongoDB database, and when consolidating databases of
various structures.

In general, the proposed method can be applied to:

• Creating an effective structure of a new document database;
• Data translation from a relational database to a document database;
• Data translation from an arbitrary database into a document database;
• Database consolidation.

There are other possibilities for applying this method, such as creating temporary collections, etc.
It should also be noted that the data is transferred to the new structure last, and this is usually

done using software modules or using the tuple algebra, which is partially described in [44].

8. Further Research

As shown in the examples, the method works well for all queries. However, for some queries,
the method works better, while for others it is worse. For example, it can be seen from Appendix B
that Q3 and Q6 queries are performed on tables T1, T2, and T3. The query Q3 in the new form of the
database does not work much better than in the previous one. The query Q6 in the new form is much
faster than in the previous one. We have not yet found an explanation for this fact. This is the subject
of our further research.

The main problem in document databases was that there was no formalized method that would
unequivocally give an answer to the administrator about the optimal form and structure of documents
taking into account database queries. Among NoSQL databases, there are databases of the type of
a column family, which are also used to store related data and are also oriented to specific database
queries. Therefore, for these databases, the decision on the optimal organization of column families is
also important. At the moment, we are conducting research on the adaptation of the proposed method
to the databases of the column family (using Casandra as an example).

When restructuring the database, the next step after defining a new database structure for the
database administrator is to rewrite the queries from the old form to the new form (if these queries are
in stored procedures or scripts). To speed up the process of converting a database from one form to
another, we have created an approach to the automatic conversion of queries. The input for the query
conversion method is information about the form and structure of the document, which is output by
the method described in this article. We are currently testing this method.

Computation 2020, 8, 45 19 of 22

One way to improve query performance is to create indexes. When changing the form of
organization of the database, the use of indexes to the previous attributes may not give their initial
effectiveness. Therefore, it is necessary to conduct research to supplement the method (presented in
this article) with information about indexes. This we plan to do in a future study.

Author Contributions: Conceptualization, Methodology and Writing—original draft, Y.S. Software,
Formal analysis, Visualization, M.H. All authors have read and agreed to the published version of the manuscript.

Funding: The paper was prepared in Saint-Petersburg Electrotechnical University (LETI) and is supported by
the Agreement No. 075-11-2019-053 dated 20.11.2019 (Ministry of Science and Higher Education of the Russian
Federation, in accordance with the Decree of the Government of the Russian Federation of April 9, 2010 No. 218)

Conflicts of Interest: The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Appendix A

The scheme for determining the form of embedded documents based on three tables is presented
in Figure A1.

Computation 2020, 8, x FOR PEER REVIEW 19 of 22

Figure A1. A diagram showing the execution time of six queries to a database of two types: a single
database and a database with embedded documents.

Appendix B

Table A1 shows examples of queries that were declared in Example 3 in this article and in
accordance with which the database was restructured.

Table A1. Schematic representation of a document in a document database composed of attributes
corresponding to the fields of different tables.

Query Option 1 DB
(without Embedded Documents)

Option 2 DB
(with Embedded Documents)

Q1

Display all the data of people with the given last name and address from tables T1, T2:
SQL: select name, address from t1, t2 where t1.key_1 = t2.key_1

db.T1.find({},{‘Name’:1,’T2_of_T1.Adress’:
1,’_id’:0})

db.getCollection(“T1”).find({},{‘Name’:1,
‘Adress’:1,’_id’:0})

Q2

Display a list of all objects with the given values of the attributes “product” and “brand” from
tables T2, T4:

SQL: select product_name, brand from t2, t4 where t2.key_t2 = t4.key_t2
db.T1.find({},{‘T3_of_T1.Product_name’:1,

‘T3_of_T1.T4_of_T3.Brand’: 1,’_id’:0})
db.getCollection(“T1”).find({},{‘Product_nam

e’:1, ‘Brand’:1,’_id’:0})

Q3

List all people with the given attributes “Last name”, “product” and “brand” from tables T1, T3,
T4:

SQL: select name, product, brand from t1,t3,t4 where t1.key_t1 = t3.key_t1 and t3.key_t3 =
t4.key_t3

db.T1.find({},{‘Name’:1,’T3_of_T1.Product_nam
e’:1,’T3_of_T1.T4_of_T3.Brand’: 1,’_id’:0})

db.getCollection(“T1”).find({},{‘Name’:1,’Pro
duct_name’:1, ‘Brand’:1,’_id’:0})

Q4

Find all the addresses of this person Charity Dickerson:
SQL: select adress from t1,t2 where t1.key_t1 = t2.key_t1 and name = ‘charity dickerson’

db.T1.find({‘Name’:’Charity Dickerson’},
{‘T2_of_T1.Adress’:1,’_id’:0})

db.getCollection(“T1”).find({‘Name’:’Charity
Dickerson’},{‘Adress’:1,’_id’:0})

Q5 Search for all products that have the brand name: ‘Sureraquistor International Corp.’:

Figure A1. A diagram showing the execution time of six queries to a database of two types: a single
database and a database with embedded documents.

Appendix B

Table A1 shows examples of queries that were declared in Example 3 in this article and in
accordance with which the database was restructured.

Computation 2020, 8, 45 20 of 22

Table A1. Schematic representation of a document in a document database composed of attributes
corresponding to the fields of different tables.

Query Option 1 DB
(without Embedded Documents)

Option 2 DB
(with Embedded Documents)

Q1
Display all the data of people with the given last name and address from tables T1, T2:

SQL: select name, address from t1, t2 where t1.key_1 = t2.key_1

db.T1.find({},{‘Name’:1,’T2_of_T1.Adress’: 1,’_id’:0}) db.getCollection(“T1”).find({},{‘Name’:1, ‘Adress’:1,’_id’:0})

Q2
Display a list of all objects with the given values of the attributes “product” and “brand” from tables T2, T4:

SQL: select product_name, brand from t2, t4 where t2.key_t2 = t4.key_t2

db.T1.find({},{‘T3_of_T1.Product_name’:1,
‘T3_of_T1.T4_of_T3.Brand’: 1,’_id’:0})

db.getCollection(“T1”).find({},{‘Product_name’:1,
‘Brand’:1,’_id’:0})

Q3
List all people with the given attributes “Last name”, “product” and “brand” from tables T1, T3, T4:
SQL: select name, product, brand from t1,t3,t4 where t1.key_t1 = t3.key_t1 and t3.key_t3 = t4.key_t3

db.T1.find({},{‘Name’:1,’T3_of_T1.Product_name’:1,’T3_of_T1.T4_of_T3.Brand’:
1,’_id’:0})

db.getCollection(“T1”).find({},{‘Name’:1,’Product_name’:1,
‘Brand’:1,’_id’:0})

Q4
Find all the addresses of this person Charity Dickerson:

SQL: select adress from t1,t2 where t1.key_t1 = t2.key_t1 and name = ‘charity dickerson’

db.T1.find({‘Name’:’Charity Dickerson’},
{‘T2_of_T1.Adress’:1,’_id’:0})

db.getCollection(“T1”).find({‘Name’:’Charity
Dickerson’},{‘Adress’:1,’_id’:0})

Q5
Search for all products that have the brand name: ‘Sureraquistor International Corp.’:

SQL: select t3.product_name from t3,t4 where t3.key_t3 = t4.key_t3 and t4.brand = ‘sureraquistor international corp.’

db.T1.find({‘T3_of_T1.T4_of_T3.Brand’:’Sureraquistor International Corp.’},
{‘T3_of_T1.Product_name’:1,’_id’:0})

db.getCollection(“T1”).find({‘Brand’:’Sureraquistor
International Corp.’},{‘Product_name’:1,’_id’:0})

Q6
Search all products and brands for the man ‘Mindy Garcia’

SQL: select Product_name, Brand from t1,t3,t4 where t1.key_t1 = t3.key_t1 and t3.key_t3 = t4.key_t3 and Name = ‘Mindy Garcia’

db.T1.find({‘Name’:’Mindy Garcia’},
{‘T3_of_T1.Product_name’:1,’T3_of_T1.T4_of_T3.Brand’:1, ‘_id’:0})

db.getCollection(“T1”).find({‘Name’:’Mindy
Garcia’},{‘Product_name’:1,’Brand’:1,’_id’:0})

Q7
Search all products and customers at 662 South Second Drive:

SQL: select Name, Product_name from t1,t3,t2 where t1.key_t1 = t2.key_t1 and t1.key_t1 = t3.key_t1 and Adress = ‘662 South Second Drive’

db.T1.find(
{‘T2_of_T1.Adress’:’662 South Second Drive’},
{‘T3_of_T1.Product_name’:1,’Name’:1, ‘_id’:0})

db.getCollection(“T1”).find({‘Adress’:’662 South Second
Drive’},{‘Product_name’:1,’Name’:1,’_id’:0})

Q8

Search for all products, addresses and customer brands of Sonia Chang:
SQL: select Adress, Product_name, Brand from t1,t2,t3,t4 where t1.key_t1 = t2.key_t1 and t1.key_t1 = t3.key_t1 and t3.key_t3 = t4.key_t3 and Name

= ‘Sonia Chang’

db.T1.find({ ‘Name’: ‘Sonia Chang’},
{‘T3_of_T1.Product_name’:1,’T2_of_T1.Adress’:1,’T3_of_T1.T4_of_T3.Brand’:1,’_id’:0})

db.getCollection(“T1”).find({‘Name’: ‘Sonia Chang’},
{‘Product_name’:1,’Adress’:1,’Brand’:1,’_id’:0})

References

1. Padhy, R.P.; Patra, M.R.; Satapathy, S.C. RDBMS to NoSQL: Reviewing some next-generation non-relational
database’s. Int. J. Adv. Eng. Sci. Technol. 2020, 11, 15–30.

2. Chen, J.; Lee, W. An Introduction of NoSQL Databases Based on Their Categories and Application Industrie.
Algorithms 2019, 12, 106. [CrossRef]

3. Diogo MCabral, B.; Bernardino, J. Consistency Models of NoSQL Databases. Future Internet 2019, 11, 43.
[CrossRef]

4. Storey, V.C.; Song, I.Y. Big data technologies and Management: What conceptual modeling can do.
Data Knowl. Eng. 2017, 108, 50–67. [CrossRef]

5. Corbellini AMateos CZunino AGodoy, D.; Schiaffino, S. Persisting big-data: The NoSQL landscap. Inf. Syst. J.
2017, 63, 1–23. [CrossRef]

6. Makris ATserpes KAndronikou, V.; Anagnostopoulos, D. A classification of NoSQL data stores based on key
design characteristics. Procedia Comput. Sci. 2016, 97, 94–103. [CrossRef]

7. Atzeni PBugiotti, F.; Rossi, L. Uniform access to NoSQL systems. Inf. Syst. J. 2014, 43, 117–133. [CrossRef]
8. Li, W.; Clifton, C. Semantic Integration in Heterogeneous Databases Using Neural Networks.

In Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile,
12–15 September 1994; pp. 1–12.

9. Li WClifton, C.; Liu, S. Database Integration Using Neural Networks: Implementation and Experiences.
Knowl. Inf. Syst. 2000, 2, 73–96.

10. Doan ADomingos, P.; Levy, A. Learning source description for data integration. WebDB 2000, 81, 2000.
11. Doan ADomingos, P.; Halevy, A.Y. Reconciling schemas of disparate data sources. SIGMOD Rec. 2001, 30,

509–520. [CrossRef]
12. Miller RJHaas, L.M.; Hernández, M.A. Schema Mapping as Query Discovery. In Proceedings of the 26th

International Conference on Very Large Data Bases, Cairo, Egypt, 10–14 September 2000; pp. 77–88.

http://dx.doi.org/10.3390/a12050106
http://dx.doi.org/10.3390/fi11020043
http://dx.doi.org/10.1016/j.datak.2017.01.001
http://dx.doi.org/10.1016/j.is.2016.07.009
http://dx.doi.org/10.1016/j.procs.2016.08.284
http://dx.doi.org/10.1016/j.is.2013.05.002
http://dx.doi.org/10.1145/376284.375731

Computation 2020, 8, 45 21 of 22

13. Milo, T.; Zohar, S. Using schema matching to simplify heterogeneous data translation. Vldb 1998, 98, 1–21.
14. Palopoli, L.; Saccà, D.; Ursino, D. An automatic technique for detecting type conflikts in database shemes.

In Proceedings of the seventh international conference on Information and knowledge management,
Yokohama, Japan, 22–23 November 1998; pp. 306–313.

15. Castano, S.; De Antonellis, V. A schema analysis and reconciliation tool environment for nheterogeneous
databases, Proceedings. IDEAS’99. In Proceedings of the Int. Database Engineering and Application
Symposium, Montreal, QC, Canada, 2–4 August 1999. Cat. No.PR00265.

16. Castano SDe Antonellis, V.; Di De Vimercati, S.C. Global viewing of heterogeneous data sources. IEEE Trans.
Knowl. Data. Eng. 2001, 13, 277–297. [CrossRef]

17. Bergamaschi, S.; Castano, S.; Vincini, M.; Beneventano, D. Semantic integration of heterogeneous information
sources. Data Knowl. Eng. 2001, 36, 215–249. [CrossRef]

18. Bergamaschi, S.; Castano, S.; Vincini, M. Semantic integration of semistructured and structured data sources.
SIGMOD Rec. 1999, 28, 54–59. [CrossRef]

19. Pardede, E.; Rahayu, J.W.; Taniar, D. Mapping Methods and Query for Aggregation and Association
Relationship in Object-Relational Database using Collection. In Proceedings of the 2004 IEEE International
Conference on Information Technology: Coding and Computing (ITCC), Las Vegas, NV, USA, 5–7 April 2004;
pp. 539–543.

20. Shichkina, Y.; Kupriyanov, M.; Shevsky, V. The Application of Graph Theory and Adjacency Lists to Create
Parallel Queries to Relational Databases. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin, Germany, 2018; Volume 10963,
pp. 61–77.

21. Robinson, I.; Webber, J.; Eifrem, E. Graph Databases: New Opportunities for Connected Data; O’Reilly Media,
Inc.: Sebastopol, CA, USA, 2015.

22. Chickerur, S. Comparison of Relational Database with Document-Oriented Database (MongoDB) for Big
Data Applications. In Proceedings of the 8th International Conference on Advanced Software Engineering
and Its Applications ASEA, Jeju Island, Korea, 25–28 November 2015; pp. 41–47.

23. Hanine, M.; Bendarag, A.; Boutkhoum, O. Data Migration Methodology from Relational to NoSQL Databases,
World Academy of Science, Engineering and Technology. Int. J. Comput. Electr. Autom. Control Inf. Eng. 2015,
9, 2566–2570.

24. Li, X.; Ma, Z.; Chen, H. QODM: A Query-Oriented Data Modeling Approach for NoSQL Databases.
In Advanced Research and Technology in Industry Applications (WARTIA); IEEE: Piscataway, NJ, USA, 2014;
pp. 338–345.

25. Ha, V.M.; Shichkina, Y.A.; Kostichev, S.V. Determination of the collection of collections for databases of the
key-document type for a given set. Comput. Tools Educ. 2019, 3, 15–28. [CrossRef]

26. Zhao, G.; Huang, W.; Liang, S.; Tang, Y. Modeling MongoDB with Relational Model. In Emerging Intelligent
Data and Web Technologies (EIDWT); IEEE: Piscataway, NJ, USA, 2013; pp. 115–121.

27. Alotaibi, O.; Pardede, E. Transformation of Schema from Relational Database (RDB) to NoSQL Databases.
Data 2019, 4, 148. [CrossRef]

28. Celesti, A.; Fazio, M.; Villari, M. A Study on Join Operations in MongoDB Preserving Collections Data
Models for Future Internet Applications. Future Internet 2019, 11, 83. [CrossRef]

29. Rocha, L.; Vale, F.; Cirilo, E. A Framework for Migrating Relational Datasets to NoSQL. Procedia Comput. Sci.
2015, 51, 2593–2602. [CrossRef]

30. Liang, D.; Lin, Y.; Ding, G. Mid-model Design Used in Model Transition and Data Migration between
Relational Databases and NoSQL Databases. In Proceedings of the IEEE International Conference on Smart
City, Chengdu, China, 19–21 December 2015; pp. 866–869.

31. Hamid, S.; Rezapour, M.; Moradi, M.; Ghadiri, N. Performance evaluation of SQL and MongoDB databases
for big e-commerce data. In Proceedings of the IEEE Pacific RIM Conference on Communications, Computers,
and Signal Processing, Victoria, BC, Canada, 24–26 August 2015; pp. 1–7.

32. Feng, W.; Gu, P.; Zhang, C.; Zhou, K. Transforming UML Class Diagram into Cassandra Data Model
with Annotations. In Proceedings of the IEEE International Conference on Smart City, Chengdu, China,
19–21 December 2015; pp. 798–805.

http://dx.doi.org/10.1109/69.917566
http://dx.doi.org/10.1016/S0169-023X(00)00047-1
http://dx.doi.org/10.1145/309844.309897
http://dx.doi.org/10.32603/2071-2340-2019-3-15-28
http://dx.doi.org/10.3390/data4040148
http://dx.doi.org/10.3390/fi11040083
http://dx.doi.org/10.1016/j.procs.2015.05.367

Computation 2020, 8, 45 22 of 22

33. Karnitis, G.; Arnicans, G. Migration of Relational Database to Document-Oriented Database:
Structure Denormalization and Data Transformation. In Proceedings of the 7th International Conference on
Computational Intelligence, Communication Systems and Networks (CICSyN), Riga, Latvia, 3–5 June 2015;
pp. 113–118.

34. Mason, R.T. NoSQL Databases and Data Modeling Techniques for a Document-oriented NoSQL Database.
Comput. Sci. 2015, 3, 259–268.

35. Gu, Y.; Shen, S.; Wang, J.; Kim, J. Application of NoSQL Database MongoDB. In Proceedings of the IEEE
International Conference on Consumer Electronics-Taiwan (ICCE-TW), Taipei, Taiwan, 6–8 June 2015;
pp. 158–159.

36. Wang, S.; Li, G.; Yao, X.; Zeng, Y.; Pang, L.; Zhang, L. A Distributed Storage and Access Approach for Massive
Remote Sensing Data in MongoDB. ISPRS Int. J. Geo-Inf. 2019, 8, 533. [CrossRef]

37. Marrara, S.; Pelucchi, M.; Psaila, G. Blind Queries Applied to JSON Document Stores. Information 2019,
10, 291. [CrossRef]

38. Qian, C.; Yi, C.; Cheng, C.; Pu, G.; Wei, X.; Zhang, H. GeoSOT-Based Spatiotemporal Index of Massive
Trajectory Data. ISPRS Int. J. Geo-Inf. 2019, 8, 284. [CrossRef]

39. Višnjevac, N.; Mihajlović, R.; Šoškić, M.; Cvijetinović, Ž.; Bajat, B. Prototype of the 3D Cadastral System
Based on a NoSQL Database and a JavaScript Visualization Application. ISPRS Int. J. Geo-Inf. 2019, 8, 227.
[CrossRef]

40. Acquaviva, A.; Apiletti, D.; Attanasio, A.; Baralis, E.; Bottaccioli, L.; Cerquitelli, T.; Chiusano, S.; Macii, E.;
Patti, E. Forecasting Heating Consumption in Buildings: A Scalable Full-Stack Distributed Engine. Electronics
2019, 8, 491. [CrossRef]

41. Marchiori, A.; Li, Y.; Evans, J. Design and Evaluation of IoT-Enabled Instrumentation for a Soil-Bentonite
Slurry Trench Cutoff Wall. Infrastructures 2019, 4, 5. [CrossRef]

42. Alfian, G.; Syafrudin, M.; Ijaz, M.F.; Syaekhoni, M.A.; Fitriyani, N.L.; Rhee, J. A Personalized Healthcare
Monitoring System for Diabetic Patients by Utilizing BLE-Based Sensors and Real-Time Data Processing.
Sensors 2018, 18, 2183. [CrossRef]

43. Syafrudin, M.; Alfian, G.; Fitriyani, N.L.; Rhee, J. Performance Analysis of IoT-Based Sensor, Big Data
Processing, and Machine Learning Model for Real-Time Monitoring System in Automotive Manufacturing.
Sensors 2018, 18, 2946. [CrossRef]

44. Shichkina, J.; Degtyarev, A.; Kulik, B.; Fridman, A. Optimization of relational databases schemas by means of
n-tuple algebra. AIP Conf. Proc. 2017, 1863, 110008. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/ijgi8120533
http://dx.doi.org/10.3390/info10100291
http://dx.doi.org/10.3390/ijgi8060284
http://dx.doi.org/10.3390/ijgi8050227
http://dx.doi.org/10.3390/electronics8050491
http://dx.doi.org/10.3390/infrastructures4010005
http://dx.doi.org/10.3390/s18072183
http://dx.doi.org/10.3390/s18092946
http://dx.doi.org/10.1063/1.4992293
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Formulation of the Problem
	The Methodology for Determining Collections in a Document Database
	Methods for Determining the Structure of Embedded Documents in the Database
	Defining Embedded Documents for Two Tables
	Defining Embedded Documents for Three Tables Not Interconnected Sequentially
	Defining Embedded Documents for Three Tables Interconnected Sequentially

	Testing the Effectiveness of the Methodology for Determining the Structure of Embedded Documents in a Document Database
	Conclusions
	Further Research
	
	
	References

