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Abstract: The simulation of fire is a challenging task due to its occurrence on multiple space-time
scales and the non-linear interaction of multiple physical processes. Current state-of-the-art software
such as the Fire Dynamics Simulator (FDS) implements most of the required physics, yet a significant
drawback of this implementation is its limited scalability on modern massively parallel hardware.
The current paper presents a massively parallel implementation of a Gas Kinetic Scheme (GKS)
on General Purpose Graphics Processing Units (GPGPUs) as a potential alternative modeling
and simulation approach. The implementation is validated for turbulent natural convection against
experimental data. Subsequently, it is validated for two simulations of fire plumes, including a
small-scale table top setup and a fire on the scale of a few meters. We show that the present GKS
achieves comparable accuracy to the results obtained by FDS. Yet, due to the parallel efficiency on
dedicated hardware, our GKS implementation delivers a reduction of wall-clock times of more than
an order of magnitude. This paper demonstrates the potential of explicit local schemes in massively
parallel environments for the simulation of fire.

Keywords: gas kinetic scheme; fire simulation; GPGPU

1. Introduction

Fire is typically associated with a form of combustion that emits sufficient amounts of light
and energy to be perceptible and self-sustaining on a macroscopic scale [1]. It has been known to
mankind for ages, and for a million years, it has been used for different practical purposes [2]. Still,
fire poses a great danger to the lives and well-being of humans. Building fires, such as the Grenfell
tower disaster of 2017 in London, U.K., that caused the death of 72 people [3], show that fire safety is an
important topic in building design, e.g., [4–6]. Fire simulation can be used in multiple ways to improve
fire safety especially in the building design phase and in modeling based prediction of catastrophe
scenarios. In the example of the Grenfell tower disaster, fire simulation was used a posteriori to
investigate the cause of the catastrophe [7]. Other examples of a posteriori fire investigations can be
found for example in [8–11].

The current standard in fire simulation is the Fire Dynamics Simulator (FDS), which is freely
accessible and well documented [12–15]. It is based on a thermal compressible flow solver utilizing
a low Mach number approximation. By this approximation, pressure perturbations travel infinitely
fast, such that sound waves need not be resolved in the time domain, potentially permitting larger
time steps. On the numerical side, this requires the solution of an elliptic pressure equation in
every time step. Yet, the elliptic nature of this problem potentially impedes massive parallelization
for most solvers available for this problem class. Another CFD code for the simulation of fire is
the OpenFOAM [16] extension FireFOAM [17]. In the civil engineering community, also simpler zone
models for the prediction of compartment fires are commonly used [18,19]. These models do not
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resolve the actual flame, but model the time evolution of integral variables in multiple zones and in
multiple compartments.

Modern high performance kinetic flow solvers, such as the Lattice Boltzmann Method
(LBM) [20–23], are utilized to compute approximate solutions of the compressible or weakly
compressible Navier–Stokes equations. Such explicit schemes tend to require a relatively small
time step as compared to implicit methods, but usually require less operations per time step and allow
for straight forward parallelization, resulting in near to optimal scaling beyond tens of thousands of
compute cores [24–26]. A drawback of the LBM is that the full and efficient inclusion of temperature
for modeling of thermal compressibility for non-Boussinesq flows is not straight forward. Gas Kinetic
Schemes (GKS) are another class of kinetic solvers for computational fluid dynamics. They were
originally developed as flow solvers for high Mach number flows with shocks on structured [27–29]
and unstructured [30–33] grids with a high order of accuracy [34–38]. GKS for smooth flow fields at
low speeds, i.e., without shocks, were investigated in [39–46]. This is the flow regime considered in this
work. Additionally, the gas kinetic nature of GKS allows extensions towards rarefied flows and micro
fluid dynamics at finite Knudsen numbers in the frameworks of unified GKS [47–51] and discrete
unified GKS [52–57].

In this work, we present the application of GKS for low speed flows for the simulation
of three-dimensional turbulent natural convection and two fire plumes on two different spatial
scales under the framework of Large Eddy Simulation (LES). All three tests were validated against
experimental data and compared to reference simulations. For high performance computing, massively
parallel hardware in the sense of multi-GPGPU was utilized.

2. Gas Kinetic Scheme Solver

In classical fluid mechanics, the flow evolution is described in terms of the Navier–Stokes
equations coupled to a continuity and energy equation. This set of non-linear partial differential
equations models the conservation of mass, momentum, and energy. Over the last few years,
kinetic methods for fluid mechanics gained substantial popularity. Being typically implemented
as explicit schemes, such methods show excellent parallel scaling properties. Kinetic methods are
based on gas kinetic theory, rather than continuum mechanics. Therein, the fluid state is encoded as
a statistical description of (fictitious) particle ensembles. The particle distribution function f (~x,~u, t)
is the probability to find a particle with velocity ~u at location ~x at time t. Hence, the probability is
distributed not only in physical space, but also in velocity space. By considering actual particle motion
and interactions, gas kinetic theory covers a more detailed physics than the macroscopic Navier–Stokes
equations. The Navier–Stokes equations are in fact a limit of the gas kinetic theory in the case of
a very small mean free path, i.e., vanishing Knudsen numbers and for the incompressible case of
vanishing Mach numbers. The governing equation in gas kinetics is the Boltzmann equation (here
with the Bhatnagar–Gross–Krook (BGK) collision operator [58]):

f,t + ~u · ∇ f =
f eq − f

τ
, (1)

where f eq is the equilibrium distribution and τ a relaxation time. Inserting the first-order
Chapman–Enskog expansion:

f ≈ f eq − τ( f eq
,t + ~u · ∇ f eq) (2)

and computing moments in velocity space yield the compressible Navier–Stokes equations.
In order to formulate a numerical scheme for the simulation of macroscopic fluid dynamics,

a formal solution of the BGK-Boltzmann equation along particle trajectories is employed [27].
The solution along particle trajectories is approximated by Taylor expansion in space and time,
and the initial non-equilibrium distribution is approximated as described in detail in Equation (2).
Utilizing the first-order Chapman–Enskog expansion limits the validity of the resulting numerical
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method to physics described by the Navier–Stokes equations. Fluxes are then computed from
the approximated time dependent solution for f .

In the present paper, we consider a simplification for smooth low-Mach number flows of
the original GKS [39,45,46]. This simplified scheme has been validated in two dimensions for thermal
compressible flows in the setting of natural convection on structured and unstructured grids [45].
Furthermore, a two-dimensional refinement algorithm for quad-tree-type non-uniform Cartesian
grids was proposed for efficient grid generation and massively parallel implementation [46]. Therein,
the GKS was implemented for GPGPUs utilizing the NVIDIA CUDA frame work [59], and high
computational performance was shown. On GPGPUs with thousands of cores accessing the same
memory, computational performance is often limited by memory access rather than by floating
point operations [60]. The limiting factor in memory access can either be bandwidth or latency.
The observation that the two-dimensional GKS utilizes up to 80% of the sustainable bandwidth [46]
implies that the GKS algorithm is mostly memory-bound.

The code used in the present paper is a three-dimensional extension of the code used in [46].
The numerical kernel is essentially a straight forward extension to three dimensions, such that
the reader is referred to [46] for further details. The same holds for the non-uniform grid
implementation, where the procedure from [46] is implemented in three dimensions. The interface
ghost cell interpolation coefficients for the second-order accurate interpolation are the same in 3D as in
2D. Additionally, the present code features an explicit sub-grid scale model for LES in terms of a static
Smagorinsky eddy viscosity model [61].

A reduced version of the code is available online (with registration) under an open source
license [62]. This preliminary version contains no spatial refinement and no combustion model, yet.

3. Performance of the Single GPGPU Implementation

All simulations in this work were run in single precision. The present implementation achieved
update rates of up to 300 million cell updates per second for simulation of non-reacting flows on an
NVIDIA Tesla P100 GPGPU in single precision. Including the fire module reduced the performance to
about 215 million cell updates per second.

The utilization of the hardware for GPGPUs can be measured in terms of bandwidth utilization,
because GPGPU computations are often memory limited, i.e., the time to read the data from the memory
has a larger effect on the performance than the number of floating point operations. The theoretical
peak bandwidth of the NVIDIA Tesla P100 is 732 GB/s. The maximal sustainable bandwidth was
measured by the GPU-Stream tool [63]. For the NVIDIA Tesla P100 GPGPUs, the maximal sustainable
bandwidth was found to be 543 GB/s. In order to estimate the memory traffic of the algorithm,
we counted the number of bytes moved for a single cell update. For non-reacting flow, this was
1041 B. Our code had a net memory traffic of 312 GB/s, which was 57% of the sustainable bandwidth.
The actual data traffic was reduced by the utilization of the cache of the GPGPU, which cannot be
controlled directly. To gain an estimate, we omitted all computations from the code and performed
only read and write operations. With this, we obtained an update rate of 825 GB/s, which was 152%
of the sustainable bandwidth. We assumed here that the 100/152× 1041 B ≈ 685 B was the actual
number of bytes moved for one cell update and that the remaining 356 B were read from the cache.
The corrected memory traffic accounted for 206 GB/s, which was 38% of the sustainable bandwidth.
An ideal memory bound algorithm would hide all computations with memory traffic. However, for
this to be possible, much more threads than cores have to be activated at the same time in the GPGPU.
These threads have to allocate their own registers, such that their state persists even though the thread
is currently not being processed. This allows for the GPGPU to switch between computation contexts,
while threads have to wait for data due to memory latency. This mechanism is called latency hiding.
A limiting factor for the number of active threads is the number of registers required per thread.
The ratio of the actual number of active threads and the maximum number of active threads supported
by the hardware is called occupancy. The occupancy is hence a metric for how well the GPGPU can
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hide the memory latency. The streaming multi-processors of the P100 support up to 64 warps of
32 threads and provide 65,536 registers. The flux computation kernel in the present GKS required
246 registers. Hence, eight warps could be active at the same time, which resulted in an occupancy of
8/64 = 12.5%. The actual achieved occupancy for the present implementation was measured with
the CUDA profiling tools. The nvprof tool reported a measured occupancy of 12.3% for the present
implementation. This value indicates that latency hiding could not be utilized to its full extent.

4. Multi-GPGPU Implementation

Even though GPGPUs allow high performances for moderate system sizes, their memory is
limited. The present paper features multi-GPGPU communication to overcome this limitation. The GKS
algorithm is comprised of only local support, i.e., the flux computation requires only the next neighbor
information. For multi-GPGPU, the flow domain is split into box-shaped sub-domains, where each
sub-domain is processed by one GPGPU. For complete communication, it is sufficient to exchange
a single layer of cells between neighboring sub-domains. The last layer of cells in the sub-domain is
sent to the neighboring process, and one layer of communication ghost cells outside the sub-domain is
received from the same neighboring process.

The communication procedure is shown in Figure 1. The flow state data of the exchanged cells is
not continuous in memory. Therefore, as a first step, the flow state data of the sending cells is collected
in a send buffer by a kernel. This send buffer is then sent to the neighboring process via Message
Passing Interface (MPI) library calls. There, the data are received in a receive buffer and subsequently
distributed to the communication ghost cells. These ghost cells are located at the same location
as the corresponding send cells in the physical space of the simulation domain, but are directly
outside the receiving sub-domain. Furthermore, the send and receive buffers must be downloaded
and uploaded, respectively, because MPI can only access host memory. The host is the computer
containing the GPGPU. Some modern MPI implementations feature CUDA support, where the network
adapter can directly access GPGPU memory to improve communication performance. This procedure
was implemented, but not used for the results in this work.

In three dimensions, one sub-domain can have a total of 26 neighboring sub-domains, connected
via faces (6), edges (12), and corners (8). In order to reduce the number of communication neighbors,
sequential communication along the coordinate axes is used; see Figure 1. This effectively reduces
the number of communication neighbors to the six face neighbors. Sequential communication
means that all communication in x-direction is completed on one process, before communication
in the y-direction is started on this process. Similarly, the z-communication must only start after
the y-communication is finished. In this way, information is also passed over edges and corners; see
the highlighted cell in Figure 1.

Communication is a severe bottleneck in distributed computations. For GPGPUs, this effect is not
as prominent as for distributed CPU communications, because the problem size per sub-domain is
usually large compared to the message length of the communication. Nevertheless, communication
invokes performance losses. The CUDA framework offers remedies for this. On CUDA-enabled
GPGPUs, the compute hardware and the memory management hardware are mostly independent.
The compute hardware can process data while memory is transferred between GPGPU and host memory.
Further, compute kernel invocations are non-blocking with respect to the host, such that the host
side communication (invocation of MPI routines) can also be done while the GPGPU processes data.
This allows for communication hiding, which aims at performing computation and communication
concurrently. Communication hiding is state-of-the-art in distributed GPU computing. Examples for
communication hiding in LBM can be found, e.g., in [64–66].

The flux computation on cell faces in the vicinity of the sub-domain boundaries depends on
the received cells. In order to keep the code logically consistent, the set of cell faces is divided into two
sub-sets. The first contains all cell faces that were independent of the communication and the second
faces that depend on the communication. The second set can only be processed after the communication
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is complete. Communication hiding is implemented in terms of CUDA streams. CUDA streams are
independent queues, where each queue processes its tasks sequentially. One stream is used for
the evaluation of the first sub-set of cell faces; see Stream 1 in Figure 2. This kernel is invoked first.
The second stream handles all communication and interacts with the CPU; see Stream 2 in Figure 2.
It finally computes the fluxes of the second sub-set of cell faces. The independent execution of the two
streams is synchronized after the flux computation, and finally, all cells are updated. Figure 2 accounts
for a single time step with communication in only one direction.

Fluid Cells

Boundary Ghost Cells

Communication Ghost Cells

Send Buffer

Receive Buffer

Highlighted Cell

GPU 1 GPU 2

GPU 3 GPU 4

x-Communication y-Communication

Figure 1. Multi-GPGPU communication pattern in two dimensions: The communication in the three
directions is performed sequentially in the order x-y-z. The highlighted cell shows the information
transport over diagonals.

collect distribute compute flux

compute flux

MPI

update cellStream 1

Stream 2

CPU synchronize

Figure 2. Multi-GPGPU communication hiding: The cell faces independent of the receive ghost cells
are processed concurrently with the communication and the evaluation of the remaining cell faces.

The algorithm for a single time step with communication hiding is given in Algorithm 1.
This algorithm is an extension of the nested time stepping algorithm for GKS on a single GPU
published in [46]. We utilize recursive time stepping to implement the nested time steps. The time
step function is called with a level and a time step length. Each time step starts with the fine to coarse
interpolation, if the current level is not the finest one. Subsequently, boundary ghost cells are set to
fulfill the boundary conditions. Then, all faces that do not depend on communication on this level are
processed. This is invoked in a non-blocking manner on the compute stream (Stream 1). Concurrently,
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the communication is performed on the communication stream (Stream 2). Here, we see the sequential
communication per coordinate direction. When the communication is finished, the remaining faces
are processed also on the communication stream (Stream 2). Afterwards, the streams are joined,
by synchronizing the device, i.e., waiting for all streams to finish. If this level is not the finest,
the coarse to fine interpolation is performed, and the nested time step function itself is called twice
for the next finer level with half the time step length. This is the essence of nested time stepping.
Performing two shorter time steps on the finer level saves time step evaluations on coarser levels by
satisfying a local stability criterion instead of a global one. At the end of each time step, the cells are
updated, i.e., the fluxes that were collected in an update variable are added to the current flow state.
This function is repeated for the length of the simulation.

Algorithm 1 Recursive nested time stepping for multi-GPU.

1: function NESTEDTIMESTEP(level, ∆t)
2:
3: if level 6= f inestLevel then
4: call FINETOCOARSEINTERPOLATION(level)
5: end if
6:
7: call SETBOUNDARYCONDITIONS(level)
8:
9: call on Stream 1 COMPUTEFLUXES(level, regularFaces)

10:
11: call on Stream 2 SENDDATA(level, x)
12: call on Stream 2 RECVDATA(level, x)
13:
14: call on Stream 2 SENDDATA(level, y)
15: call on Stream 2 RECVDATA(level, y)
16:
17: call on Stream 2 SENDDATA(level, z)
18: call on Stream 2 RECVDATA(level, z)
19:
20: call on Stream 2 COMPUTEFLUXES(level, commFaces)
21:
22: synchronize device
23:
24: if level 6= f inestLevel then
25: call COARSETOFINEINTERPOLATION(level)
26:
27: call NESTEDTIMESTEP(level + 1, ∆t/2)
28: call NESTEDTIMESTEP(level + 1, ∆t/2)
29: end if
30:
31:
32: call UPDATECELLS(level)
33: end function

The performance of the multi-GPGPU implementation was measured in terms of parallel efficiency.
The parallel efficiency is the ratio of the run times of coupled and independent sub-domains, i.e., with
and without communication. The scaling was observed from a single GPGPU (as baseline) up to
32 GPGPUs. The baseline grid was a cube with uniform resolution. Under weak scaling, the workload
per GPGPU is kept constant, such that the base cube was multiplied by the number of GPGPUs.
Under strong scaling, the total workload is kept constant, such that the base cube was split into as
many parts as there were GPGPUs. The decomposition with two GPGPUs was one-dimensional
(2 × 1 × 1), with four GPGPUs two-dimensional (2 × 2 × 1), and with eight and more GPGPUs
three-dimensional (2× 2× 2, 4× 2× 2, and 4× 4× 2). All tests were performed on the PHOENIX
(https://www.tu-braunschweig.de/en/it/dienste/21/phoenix) compute cluster at TU Braunschweig,
Germany. The cluster provides eight GPU nodes. Each is equipped with two INTEL Xeon E5-2640v4
CPUs, 64 GB of RAM, and four NVIDIA Tesla P100 GPUs with 16 GB HBM2 memory each. The nodes
are connected by an Intel Omni-Path high speed network.

https://www.tu-braunschweig.de/en/it/dienste/21/phoenix
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For weak scaling, the communication hiding was able to keep the parallel efficiency above
90% for all tested problem sizes; see Figure 3a. Without communication hiding, the performance
deteriorated at 32 GPGPUs, which was related to the hierarchical network topology in the HPC-system
utilized for these benchmarks. The first 20 GPGPUs were connected to the same switch, while
the remaining 12 GPGPUs were connected to another switch, such that the communication had to go
an additional step. The good performance under weak scaling was due to the constant favorable ratio
of computation per communication. For strong scaling, this ratio successively deteriorated, which can
be seen in Figure 3b. For the larger problems, the communication hiding was able to keep the efficiency
above 85 %. For the smallest problem size, parallel efficiency deteriorated also when communication
hiding was utilized. This was due to the small number of cells (32× 32× 64) per GPGPU, such that
the GPGPUs could not utilize their full potential due to reduced latency hiding.

(a)

1 2 4 8 16 32

number of GPUs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
a
ra

lle
l 
E

ff
ic

ie
n
c
y

weak scaling

128
3

128
3
 - Comm Hiding

256
3

256
3
 - Comm Hiding

360
3

360
3
 - Comm Hiding

(b)

1 2 4 8 16 32

number of GPUs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
a
ra

lle
l 
E

ff
ic

ie
n
c
y

strong scaling

128
3

128
3
 - Comm Hiding

256
3

256
3
 - Comm Hiding

424
3

424
3
 - Comm Hiding

Figure 3. Multi-GPGPU: parallel efficiency for weak scaling (a) and strong scaling (b).

This section shows that the present implementation can efficiently distribute the workload to
multiple GPGPUs, given that the total problem size is large enough.

5. Combustion Model

The GKS flow solver is augmented with a simple combustion model to demonstrate its
applicability to simulate fire. The basic GKS tracks a single component fluid. For the simulation of
fire, the local composition of this fluid is required. In GKS, multiple components can be implemented
by tracking partial densities [67]. As an alternative, the single density can be split into multiple
components based on transported scalars. In this paper, we follow the second approach. We use
the scalar transport scheme for GKS proposed by Li et al. [68].

The fluid in the present model is composed of the three components, fresh air, gaseous fuel,
and combustion products with mass fractions YA, YF, and YP, respectively. The two mass fractions of
fuel and products are tracked explicitly in the simulation as scalar quantities, and the mass fraction of
air is given implicitly by requiring that the sum of mass fractions is one. These three components are
a simplification of the five species actually present in the reaction under consideration. Fresh air is
comprised of a fixed mixture of oxygen, O2, and nitrogen, N2. The fuel is assumed to be pure methane,
CH4. The reaction products are a fixed mixture of carbon dioxide, CO2, water, H2O, and nitrogen, N2.
The nitrogen is assumed to be inert. The stoichiometry of the one-step reaction is described by:

CH4 + 2O2 + nN2N2 −→ CO2 + 2H2O + nN2N2 + ∆HCH4 , (3)
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where all chemical symbols are to be interpreted as one mol of the species and nN2 is a stoichiometric
factor of nitrogen that passively accompanies the reaction. The combustion of methane is an exothermic
reaction with the molar heat of combustion ∆HCH4 . In reduced species, the reaction is:

∆XF + ∆XA −→ ∆XP + ∆HCH4 , (4)

where XF, XA, and XP are the mole fractions of air, fuel, and products, respectively, and ∆ denotes that
only parts of the present amounts react. For the conversion of mole and mass fractions, see Appendix A.
The reaction can similarly be written in terms of mass fractions with hCH4 being the mass specific heat
of combustion, such that:

∆YF + ∆YA −→ ∆YP + ∆hCH4 , (5)

From the stoichiometry in the full reaction Equation (3), we see that ∆XO2 = 2∆XF. In terms of
mass fractions, the exact reaction mixture is given by the ratio:

s =
∆YF
∆YO2

=
∆XF MF/M

2∆XF MO2 /M
=

MF
2MO2

, (6)

where M(·) denotes molar masses. Finally, the reacting mass of fuel is defined by the minimum amount
of fuel and oxygen as:

∆YF = min(YF, sYO2). (7)

The mass of oxygen YO2 is computed from the mass of air by:

XO2 = X∞
O2

XA, such that YO2 = X∞
O2

MO2

MA︸ ︷︷ ︸
= Y∞

O2

YA, (8)

where X∞
O2

is the mole fraction of oxygen in fresh air.
In more advanced models, the rate of the reaction is given by an Arrhenius-type reaction rate.

In LES simulations such as discussed in this work, the reaction time scale is much shorter than a time
step of the flow solver. In addition, a reaction can only take place where both fresh air and fuel are
present, i.e., where they are mixed. Real mixing can only happen by molecular diffusion, which is
usually slow. Turbulence can increase the diffusion by increasing the gradients and contact areas of
the diffusing species. In LES, the small-scale turbulence is not resolved. Hence, the reaction is mixing
limited, because reaction is fast and mixing is slow. In order to capture this behavior and the influence
of the turbulence on the combustion, a model similar to the default model of Version 5 of FDS [69]
is implemented.

The task of the combustion model is to predict the mass of reacting fuel ∆YF. For this, the “mixed
is burned” assumption is used [13]. In LES, the flow structures are usually not fully resolved, such that
the flame-air interface thickness is much smaller than the cell size. Hence, a cell in the vicinity of
the flame front will contain fuel, air, reacting fuel air mixture, and products. In this way, cells can be
partially mixed. Thus, the assumption of instantaneous reaction in the mixed part of the cell is justified
and adopted. The mixing time scale in the FDS 5 combustion model [69] used here is:

τ =
0.1∆x2

DLES
, (9)

where DLES is the eddy diffusivity predicted by the sub-grid scale turbulence model. The mixed
fraction of a cell is ∆t/τ, where ∆t is the time step of the flow simulation. The local heat release rate is
then given by:

q̇′′′ = ρ
min(YF, sYO2)

τ
∆hCH4 . (10)
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The amounts of consumed fuel, oxygen, and air over one time step are:

∆(ρYF) =
q̇′′′

∆hCH4

∆t, (11)

∆(ρYO2) =
∆(ρYF)

s
(12)

and

∆(ρYA) =
∆(ρYO2)

Y∞
O2

=
∆(ρYF)

sX∞
O2

=
2MA

X∞
O2

MF
∆(ρYF), (13)

respectively. Finally, the updates of mass fractions and energy due to the reaction are implemented as:

(ρYF)(t + ∆t) = (ρYF)(t)− ∆(ρYF) (14)

(ρYP)(t + ∆t) = (ρYP)(t) + ∆(ρYA) + ∆(ρYF) (15)

(ρE)(t + ∆t) = (ρE)(t) + q̇′′′∆t. (16)

Including this reactive model into the GKS solver induced additional stability issues. Accordingly,
suitable limiters are designed to stabilize the simulations. At the leading fronts of flame plumes,
excessive temperatures are observed. Thus, thermal diffusivity is locally increased in the presence of
large temperature gradients as:

kL = k + min
(

kL,max, CT∆x2||∇T||
)

, (17)

where kL is the increased thermal diffusivity, kL,max is an upper bound, and CT is an adjustable constant.
This limiter smears out severe temperature peaks.

The scalar transport equations are subject to dispersion errors that produce negative and excessive
mass fractions. Increased diffusivities are again used to repair this defects in a conservative fashion.
The increased diffusivity DL for the generic passive scalar Θ is:

DL =


D− CPSΘ for Θ < 0

D + CPS(Θ− 1) for Θ > 1

D else,

(18)

where CPS is an adjustable constant. In this work, CPS = 0.1 is chosen for all simulations.
Finally, the maximal local heat release is limited by an upper bound, i.e.:

q̇′′′L = max
(
q̇′′′, q̇′′′max

)
, (19)

where q̇′′′L is the limited heat release rate and q̇′′′max a maximal allowed heat release rate. Such a limiter
is also used in Version 5 of FDS [69].

6. Validation

This section features three validation cases for the present flow solver. First, a simple setup of
turbulent natural convection at a high Rayleigh number was simulated and compared to experimental
data. Then, a small-scale and a large-scale fire were simulated and compared to experimental data to
validate the combustion model. These results were also compared to the results obtained with Version
6 of FDS.
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6.1. Turbulent Natural Convection

In our prior work on the development of GKS, we extensively validated GKS in two
dimensions for various natural convection-related simulations, featuring validation based on reference
simulations [45,46]. These included simulations of moderate Rayleigh numbers at high temperature
differences and high Rayleigh numbers at small temperature differences due to the limited availability
of reference data. In the present study, we present three-dimensional validation against experimental
data. The availability of experimental data is, to the best of our knowledge, scarce. Ideally, we would
seek a reference with a large temperature difference and a high Rayleigh number. The setup we
feature here was investigated experimentally by Tian and Karayiannis [70,71] and numerically
by Salinas-Vázquez et al. [72]. The setup includes a target Raleigh number of:

Ra =
Pr g L3 ε

ν2 = 1.58× 109 (20)

and a dimensionless temperature difference of:

ε =
∆T
T0

= 0.132, (21)

where T0 is the mean temperature. These parameters can be qualified as a high Rayleigh number,
but at a small temperature difference compared to the ε = 1.2 we used in the previous two-dimensional
tests [45,46].

The experiment was performed in a square cavity with dimensions Lx × Ly × Lz = 0.75 × 1.5 ×
0.75 m3 [70]. The x-normal walls were kept at hot and cold temperatures, respectively. In the experiment,
the wall temperatures were 50 ◦C and 10 ◦C. Top and bottom walls, normal to the z-axis, were highly
conducting, such that the experiment produced non-uniform temperature profiles along these walls.
This is contrary to synthetic cavity flows with differentially heated sides, such as the benchmarks
by de Vahl Davis [73] and Vierendeels et al. [74], where top and bottom walls were not insulated.
In the simulations, a cubic fit of the measured data in the experiment was used. The fitted profiles are:

Tt − Tc

∆T
= 0.65585− 0.20368x− 0.542x2 − 2.7318x3 (22)

and
Tb − Tc

∆T
= 0.33714− 0.26424x + 0.53013x2 − 2.6438x3 (23)

with x ∈ (−0.5, 0.5) for top and bottom temperatures Tt and Tb, respectively.
Further parameters for the simulation were a barometric number of Ba = gL/(RT) = 0.1 (see [45]

for the definition), a Prandtl number Pr = 0.71, and K = 2 internal degrees of freedom for the fluid
molecules. The barometric number was set by the reference temperature and the Rayleigh number by
viscosity. All remaining parameters were chosen as unity. The temperature dependent viscosity was
modeled by Sutherland’s law; see, e.g., [75]. All velocity related results were normalized by a reference
velocity [70]:

U0 =

√
gL

∆T
T0

. (24)

The gravitational acceleration g is implemented based on the so-called well-balanced scheme of
Tian et al. [76].

The flow domain for the present simulation was a cube with dimension L3 and with periodic
boundary conditions in the y-direction to resemble the larger extent of the experimental cavity. The flow
domain was discretized by a non-uniform grid with four grid levels and refinement towards the walls;
see Figure 4a. The background grid had a resolution of 1283 such that the third refinement level
had a wall resolution of ∆x/L = 9.8× 10−4. This wall resolution was slightly coarser than the wall
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normal resolution in the reference simulation of Salinas-Vázquez et al. [72] where a stretched grid with
∆x/L = 3× 10−4 at the wall was used. The grid was distributed to eight GPGPUs with a layout of
2 × 4 × 1 subdomains.

(a) (b)

Figure 4. 3D square cavity: (a) Non-uniform grid for the GKS simulations with four levels. (b) Contour
of the Q criterion at Q = 3U0. Grey contour: simulation by Salinas-Vázquez et al. [72]; green Contour:
present GKS simulation; the grey contour shows additional turbulence at the top and bottom walls,
which is not seen in the present simulation.

As a first result, we show instantaneous turbulent structures as iso-surfaces of the Q-criterion [77].
It is apparent that the present simulation and the results of Salinas-Vázquez et al. [72] did not match in
detail as the latter showed increased levels of turbulence on top and bottom walls.

For a more detailed validation, time averaged velocity profiles are compared. Vertical velocity
profiles matched the experimental data well; see Figure 5a. The GKS slightly under-predicted the peak
velocities on the top left and bottom right, while the reference simulation over-estimated these
velocities. The horizontal velocities showed large discrepancies between all three datasets, such that no
clear result could be gained; see Figure 5b. In the temperature profiles, the present GKS results
showed deviations from the experimental data that were not present in the reference simulations;
see Figure 6a. The GKS results were non-monotonic, i.e., they under-estimated temperature just
outside the heated boundary layer and over-estimated temperature just outside the cooled boundary
layer. Overall, the temperature field was captured well. The thermal boundary layer thicknesses were
correctly estimated. Finally, the turbulence was measured as the root-mean-squared vertical velocity
fluctuation. The reference simulation substantially over-estimated the turbulence on top left and bottom
right, while the GKS essentially correctly predicted the strength and profile of the turbulence; see
Figure 6b. This finding is consistent with the discrepancy in turbulent structures, observed in Figure 4b.
It supports the interpretation that the present GKS results resembled the experiment better in that
region than the reference simulation.

Overall, this simulation validates the usage of the present GKS for convection-driven turbulence.
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Figure 5. 3D square cavity: velocity profiles at heights z/L = 0.1, z/L = 0.5, and z/L = 0.9
from bottom to top: (a) Vertical velocity profiles. For visualization, the profiles are shifted by 0.3.
(b) Horizontal velocity profiles. For visualization, the profiles are shifted by 0.05. Experimental values
from Tian and Karayiannis [70] and simulation values from Salinas-Vázquez et al. [72].
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Figure 6. 3D square cavity: temperature and velocity fluctuation profiles at heights z/L = 0.1,
z/L = 0.5 and z/L = 0.9 from bottom to top: (a) Temperature profiles. For visualization,
the profiles are shifted by one. (b) Vertical velocity fluctuation profiles. For visualization, the profiles
are shifted by 0.12. Experimental values from Tian and Karayiannis [70] and simulation values
from Salinas-Vázquez et al. [72].

6.2. Purdue Flame

The reference software for fire simulation FDS in its current Version 6 [12] has been validated
for hundreds of test cases; see [15]. Two of these test cases are considered here. The first example
is a table top experiment performed at Purdue University, USA, and published by Xin et al. [78].
The experiment featured a methane flame over a 7.1 cm diffuser burner with an outlet velocity
of 0.0314 m s−1, a mass flow rate of 84.3× 10−6 kg s−1, and hence, a density of 0.68 kg m−3. With
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the specific heat of combustion for methane of ∆hCH4 = 50 MJ kg−1, the total heat release rate of
the flame is given by q̇ = ṁCH4 ∆hCH4 = 4.2 kW.

This setup was computed with both FDS Version 6 and with the present GKS. The FDS input file
for this test case is available in the FDS repository on GitHub [79]. The computational domain for
GKS spaned 0.15× 0.15× 0.4 m3 with uniform spatial resolutions of ∆x = 4 cm and ∆x = 2 cm for a
coarse and fine simulation, respectively. The lateral sides of the domain featured an open boundary
condition that allowed inflow at ambient conditions if the internal pressure is below the ambient
pressure and prohibits outflow. The top of the domain was a pressure outflow boundary that explicitly
prohibits inflow. The bottom was an insulated wall, and the burner was modeled as a Neumann
boundary for mass flux and a symmetry boundary for velocity and temperature.

The simulation was performed at physical parameters with density of air ρ = 1.2 kg m−3,
gravitational acceleration g = 9.81 m s−2, viscosity µ = 1.8 · 10−5, Pr = 0.71, and K = 2. In order to
accelerate the simulation, ambient temperature and heat of combustion were scaled down by a factor
of 100. This substantially increased the Mach number and reduced the discrepancy between the time
scales of the hydrodynamic and the acoustic modes.

The gravitational acceleration was implemented in a different way than in the previous example
for these fire simulations. The acceleration only changed momentum in the cell while temperature
was kept constant. The energy was then computed from the new momentum and the old temperature.
The temperature and heat release rate limiters were effectively turned off for this test case by setting a
low value for CT = 10−8 and a very large value for q̇′′′max = 500 MW m−3.

In this work, we aim at comparing two completely different numerical methods
and implementations, which are, to a certain degree, able to simulate similar physical setups. The main
difference between the present GKS and FDS is the basic flow solver. Apart from that, the present GKS
utilizes a static Smagorinsky turbulence model, while FDS implementes a local version of Deardorff’s
turbulence model [13,80]. Further, the present GKS employes a simple combustion model with a single
reaction time scale that modeles the turbulent mixing. In FDS, this model is refined by taking into
account multiple physical mixing processes that play a role in the computation of the mixing time
scale. Therein, mixing on coarse scales is based on buoyant mixing, while the turbulent mixing time
scale comes into play at intermediate scales. On small scales, diffusive mixing is modeled. Hence,
this refined model takes into account the mixing mechanism present on the scale of the grid cells.

A detailed comparison between FDS and GKS was not possible because many aspects are
implemented differently. Hence, we aim at a comparison of the final results, only. These are compiled
as time averaged profiles of flow properties in addition to the absolute wall-clock time required for
the simulation. The quality of these results can be assessed independently of how they were produced.
This comparison does not give any insight into which part of the software triggered certain deviations
between the results of both simulations, though.

For the sake of validation, time averaged profiles through the flame were collected at different
heights as given in [78]. Two velocity components were considered here. The vertical velocity
component along the vector of gravitational acceleration is called axial velocity W, because the flame
should in theory show a rotational symmetry. The second component is the radial velocity. For profiles
along the x-axis, the radial velocity corresponds to the horizontal velocity U (except of the sign).
The circumferential velocity component was not considered here, because the flames were not rotating,
and consequently, this velocity component was not measured during the experiment. Any present
circumferential velocities in the simulations would be due to insufficient averaging.

During the initial comparison of the measured and simulated data, it became obvious that
the experimental data were not centered properly. In order to correct for this, we shifted all
experimental results for this test case by δx = 0.0028 m in the negative x-direction. This value
was obtained by computing the normalized first moment of the vertical velocity distribution, i.e.,

δx =
∑ xiW(xi, zi)

∑ W(xi, zi)
, (25)
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for all available data points in the experimental dataset. This procedure centered the experimental
data and made comparison with the centered simulations consistent.

The axial velocities of both simulations show a reasonable agreement to the experimental data
for both FDS and GKS; see Figure 7a. FDS tended to over-estimate the plume width, while GKS
tended to underpredict the width, especially at higher resolution. Both simulations featured a velocity
drop in the center of the flame that was not present in the experimental data. In terms of maximal
velocity magnitude, FDS tended to over-estimate and GKS to under-estimate. The radial velocity
profiles of both simulations showed the measured flow from the inside to the outside; see Figure 7b.
The experimental data featured a strong peak in radial velocity at about x = 2 cm. The strength of this
peak was only captured by the coarse FDS simulation. Both the fine grid FDS and GKS simulation did
not show such a strong peak.
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Figure 7. Purdue flame: profiles of axial (vertical) velocity (a) and radial (horizontal) velocity (b).
The experimental data are available online at https://github.com/firemodels/exp/tree/master/
Purdue_Flames.

https://github.com/firemodels/exp/tree/master/Purdue_Flames
https://github.com/firemodels/exp/tree/master/Purdue_Flames
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The experimental temperature profiles are only reported for the positive x-axis. The absolute
temperature magnitude was under-predicted by GKS, while FDS obtained a good agreement; see
Figure 8a. In accordance with the axial velocity profiles, the fine GKS simulation under-predicted
the flame width. FDS on the other hand captured nearly the correct flame width with a slight tendency
to over-predict. The magnitude of the root-mean-squared vertical (axial) velocity fluctuations was
captured with acceptable accuracy; see Figure 8b. The shape of the profiles deviated substantially from
the experiment for all simulations. GKS showed less turbulence than FDS.
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Figure 8. Purdue flame: temperature (a) and velocity fluctuation (b) profiles. The experimental data
are available online at https://github.com/firemodels/exp/tree/master/Purdue_Flames.

https://github.com/firemodels/exp/tree/master/Purdue_Flames
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In addition to the profiles, we measured the quality of the simulations in terms of L2 deviation
from the experimental data. For the generic quantity φ, the deviation to φExp was computed as:

L2 =
∑
(

φi − φ
Exp
i

)2

∑
(

φ
Exp
i

)2 , (26)

where the simulations results φi are interpolated linearly towards the location of the experimental
data. The sums therein were computed over all grid points on all heights. The L2 deviations for
velocities, temperature, and turbulent kinetic energy are shown in Figure 9. A prevalent accuracy
between the two methods cannot be found. Furthermore, no substantial improvement in accuracy
with refinement was observed for the two simulation methods. In this metric, the GKS results even
deviated more from the experimental data with refinement. Nevertheless, the overall accuracy of both
methods is comparable. Hence, these results show the general applicability of GKS for the simulation
of fire, while some deficiencies in predicting the maximal flame temperature with respect to FDS
were observed.
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Figure 9. Purdue flame: L2 deviation of the simulation results from the experimental data. Axial
velocity (a), radial velocity (b), temperature (c) and turbulent kinetic energy (d).

Finally, we compared the absolute times to the solution for both FDS and GKS; see Figure 10.
FDS was run on a single CPU core, four cores, and twenty cores. All cores were in the same computer
node, which was equipped with two ten-core INTEL Xeon E5-2640v4 CPUs. While using four cores
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brought a substantial speedup, using more cores brought no further improvement in this experiment.
GKS was run on a single NVIDIA Tesla P100 GPGPU. While FDS required between several hours
and multiple days to compute twenty seconds of real-time in the simulation, GKS terminated in about
half an hour on the coarse grid and nine and a half hours for the fine grid. This resulted in a speedup
of about 24 for the coarse and 16 for the fine simulation, demonstrating the capabilities of massively
parallel implementations on GPGPUs. While one could argue that the FLOPS rate of the used CPU
was substantially lower than of the GPGPU and one should rescale the corresponding wall-clock times
accordingly, we note that the inherent FDS solvers cannot utilize the GPGPU architecture, and thus,
the GKS has the advantage to benefit from this many-core architecture. In addition, the scalability of
the GKS on massively parallel CPU-hardware bears no special challenges, but was not addressed in
this work.
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00:00:34:07

0 10 20 30 40 50 60

run time (h)
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Figure 10. Purdue flame: time required for FDS and GKS simulations to simulate flame evolution for
20 s. The CPUs used are INTEL Xeon E5-2640v4, and the GPUs used are NVIDIA Tesla P100s.

6.3. Sandia Flame

The second test case was experimentally investigated at Sandia National Laboratory, Albuquerque,
New Mexico, USA, and published by Tieszen et al. [81,82]. This second test had a similar setup to
the Purdue flame, but took place at a much larger scale. The burner now had a diameter of one meter.
We considered only Test 24 of the Sandia flame experimental series. It was characterized by a total heat
release rate of 2.08 MW with a methane density of 0.5464 kg m−3 and a mass flow rate of 0.0416 kg s−1.
The properties of air were the same as for the Purdue flame. The flow domain covered 3× 3× 4 m3.
Three uniform discretizations with ∆x = 6.25 cm, ∆x = 3.125 cm and ∆x = 1.5625 cm were considered.
For this test case, the temperature and heat release rate limiters were activated choosing CT = 10−3

and q̇′′′max = 2 MW m−3. Both limiters were used to stabilize the simulation. The value for CT was
chosen by successively increasing the value, until the simulation remained stable. The value for q̇′′′max
was taken from FDS Version 5 [69], which also includes this limiter. The justification for this limit
is physically based on a scaling analysis for pool fires, which suggested that the spatial average of
the heat release rate of fires is about 1.2 MW m−3 [83].

The instantaneous temperature fields of both FDS and GKS simulations at the mid-planes for
the highest resolution are shown in Figure 11. GKS appeared to be more dissipative than FDS, which is
also confirmed below. The maximal temperatures were similar. FDS showed only a small dependence
on the spatial resolution; see the time averaged vertical (axial) velocity profiles Figure 12a. FDS also
captured the maximal velocity of the experiment well, but predicted a slightly broader plume. GKS,
on the other hand, showed a larger deviation between the three spatial resolutions. At z = 0.3 m,
the experimental profile was matched almost exactly for the highest resolution. In the higher profiles,
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GKS tended towards a slightly thinner profile compared to the experimental data. In the radial
velocity profiles, we found an even stronger dependence on the spatial resolution, but the profiles
converged towards the experimental data; see Figure 12b. Temperature profiles were not reported
in the experiment, such that only FDS and GKS are compared in Figure 13a. The FDS profiles of all
three resolutions nearly coincided, while the GKS results showed a strong dependence on spatial
resolution. The turbulent kinetic energy TKE = (U′U′ + V′V′ + W ′W ′)/2 was probably the most
interesting profile when considering the finding in Figure 11. At a height of 10 cm above the burner,
GKS predicted near to no turbulence. Here, we saw a clear difference from the FDS results, which
was consistent with the instantaneous temperature fields. The coarsest resolution remained at a very
low level of turbulence at all heights. The higher resolutions showed more turbulence and seemed
to converge towards the experimental data. FDS delivered the right level of turbulence for the three
spatial resolutions, but the width of the plume was over-estimated.

(a) (b)

Figure 11. Sandia flame, Test 24: Instantaneous temperature field computed by FDS (a) and GKS (b) at
t = 10 s from the fine simulations with ∆x = 1.5625 cm.
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Figure 12. Sandia flame, Test 24: profiles of axial (vertical) velocity (a) and radial(horizontal) velocity
(b). The experimental data are available online at https://github.com/firemodels/exp/tree/master/
Sandia_Plumes.

https://github.com/firemodels/exp/tree/master/Sandia_Plumes
https://github.com/firemodels/exp/tree/master/Sandia_Plumes
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Figure 13. Sandia flame, Test 24: temperature (a) and turbulent kinetic energy (b) profiles.
The experimental data are available online at https://github.com/firemodels/exp/tree/master/
Sandia_Plumes.

Similar to the Purdue flame test case, we also present the L2 deviations between simulations
and experimental data; see Figure 14. For this test case, we saw a clear improvement with a reduced cell
size for both methods. For GKS, the deviation on the coarse grid was larger than for FDS. Nevertheless,
with refinement, GKS reached similar to or better agreement than the experimental data.

https://github.com/firemodels/exp/tree/master/Sandia_Plumes
https://github.com/firemodels/exp/tree/master/Sandia_Plumes
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Figure 14. Sandia flame, Test 24:L2 deviation of the simulation results from the experimental data.
Axial velocity (a), radial velocity (b) and turbulent kinetic energy (c).

Furthermore, we investigated the radial symmetry of the axial (see Figure 15) and radial
(see Figure 16) velocity fields. The velocity fields were not perfectly rotational symmetric.

(a) (b)

Figure 15. Cont.
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(c) (d)

Figure 15. Sandia flame, Test 24: iso-contours of axial velocity. The sub-figures are at heights
z = 0.1 m (a), z = 0.3 m (b), z = 0.5 m (c), and z = 0.9 m (d). The contours are in the range [0.5, 4]m s−1

with a stride of 0.5 m s−1.

(a) (b)

(c) (d)

Figure 16. Sandia flame, Test 24: iso-contours of radial velocity. The sub-figures are at heights
z = 0.1 m (a), z = 0.3 m (b), z = 0.5 m (c), and z = 0.9 m (d). The contours are in the range
[−1,−0.1]m s−1 with a stride of 0.1 m s−1.
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Run times are shown in Figure 17. GKS was between 55 and 40 times faster than FDS. Overall,
this test case shows the same tendency as the small-scale Purdue flame: GKS can obtain plausible
results for these fire simulations. GKS shows a stronger dependence on the spatial resolution, but is
substantially faster, compared to FDS.
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Figure 17. Sandia flame, Test 24: time required for FDS and GKS simulations to simulate flame
evolution for 20 s. The CPUs used are INTEL Xeon E5-2640v4, and the GPUs used are NVIDIA
Tesla P100s.

7. Conclusions

In the present paper, we demonstrated the efficient usage of gas kinetic schemes for the simulation
of fire plumes. To that end, a high performance implementation of GKS for low-Mach number flows in
multi-GPGPU environments was presented. The validity of the solver was shown in two dimensions
in prior work [45,46]. Here, we showed the extension to three dimensions with an update rate on a
single GPGPU of 300 million cell updates per second. On multi-GPU architectures, we demonstrated a
high parallel efficiency of over 85 % for up to 32 GPGPUs, enabled by communication hiding. The flow
solver was augmented by a simple combustion model based on partial mixing and instantaneous
reaction for the one-step methane combustion.

The present GKS was validated for three-dimensional, turbulent natural convection, where it
showed good agreement with experimental data for first- and second-order statistics. The present
fire model was tested on the simulation of two fire plume simulations, one on a small scale and one
on a large scale. We presented validation against experimental data and comparison to the standard
software FDS. Both tests showed consistent results: The overall magnitudes of temperature and velocity
were captured well by the present GKS. For FDS, the results at different spatial resolutions nearly
coincided. A limitation of the present approach was that GKS showed substantial deviations between
the results for different spatial resolutions. However, the results converged to the experimental
data. We assum that the strong dependence on spatial resolution is due to the simple turbulence
and combustion models in the present GKS, while FDS features more elaborate models. Future
investigations are required to investigate this. Even though the accuracy of the results is slightly lower,
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we demonstrated substantial speed-ups of more than an order of magnitude in time to solution with
respect to FDS.

We conclude that, despite the presented shortcomings, GKS is a viable candidate for the simulation
of fire. The focus of future research in this direction has to include advanced turbulence
and combustion modeling.
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Appendix A. Relations between Mass and Mole Fractions

Mass and mole fractions are defined respectively as:

Yi =
mi
m

and Xi =
ni
n

, (A1)

where mi and ni are the mass and amount of the ith species, respectively. The species components sum
up, such that:

m = ∑ mi and n = ∑ ni. (A2)

Hence, mass and mole fractions sum up to one, i.e.,

∑ Yi = 1 and ∑ Xi = 1. (A3)

The relations between mass and mole fractions are:

Xi =
M
Mi

Yi and Yi =
Mi
M

Xi (A4)

with the molar mass of the mixture being:

M = ∑
i

Xi Mi =

(
∑

i

Yi
Mi

)−1

. (A5)
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