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Abstract: In this paper, we consider a coupled system of equations that describes simplified
magnetohydrodynamics (MHD) problem in perforated domains. We construct a fine grid that
resolves the perforations on the grid level in order to use a traditional approximation. For the solution
on the fine grid, we construct approximation using the mixed finite element method. To reduce the
size of the fine grid system, we will develop a Mixed Generalized Multiscale Finite Element Method
(Mixed GMsFEM). The method differs from existing approaches and requires some modifications to
represent the flow and magnetic fields. Numerical results are presented for a two-dimensional model
problem in perforated domains. This model problem is a special case for the general 3D problem.
We study the influence of the number of multiscale basis functions on the accuracy of the method
and show that the proposed method provides a good accuracy with few basis functions.

Keywords: generalized multiscale finite element method; magnetohydrodynamics; perforated domain

1. Introduction

The magnetohydrodynamic (MHD) system describes the interactions of electrically conducting
incompressible flows in the presence of a magnetic field. MHD flows are usually involved in the
contexts: liquid metal cooling of nuclear reactors, electromagnetic casting of metals, MHD generators,
accelerators, and MHD ion propulsion, see [1–3]. The equations that model the MHD are the
coupling of incompressible Navier–Stokes equations and the Maxwell’s equations via the Lorentz
force and Ohm’s law. There are some research works devoted to the numerical approximation of MHD
equations. For treating the nonlinear terms effectively, three classical iterative methods (Stokes-type,
Newtown and Oseen-type ones) within finite element approximation for the steady MHD equations
have been developed in [4,5]. Especially, the theoretical analysis and numerical examples in [4,6] show
that the Picard iteration (called Oseen-type iteration by the authors in the reference) is suitable for
high Reynolds number problems. The local and parallel finite element algorithms based on two-grid
methods were given in [7–9]. The stabilized finite element schemes that capture physical solutions
were investigated in [10]. The mixed finite element methods with divergence-free velocities and
magnetics fields are developed [11–13]. However, analysis of the above literature mainly focuses on
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the singly-connected computational domains. In this paper, our goal is to develop multiscale methods
for MHD flows on complex domains with perforations.

In this paper, we consider a simplified MHD problem in perforated domains, and propose
a multiscale method for constructing the reduced order model on the coarse grid. In particular,
we consider a special 2D case of MHD equations and the full MHD problem will be considered
in the future. We start with the mixed formulation for both equations of the simplified MHD
problem in a perforated domain. For the solution of the nonlinear system, we use a Picard iteration
to decouple the equations. We construct a fine grid that resolves perforations on the grid level
and write an approximation using a mixed finite element method. Problems in perforated domains
have a multiscale nature and approximations on the fine grid lead the large system of equations.
To reduce the size of the discrete system, multiscale methods or homogenization techniques are
needed [14–19]. Homogenization techniques are constructed to solve problems with scale separation,
i.e., when perforations are of similar sizes. When the perforated media do not have scale separation,
multiscale methods are used [20–24]. In the papers [20,21], the authors presented the multiscale
finite element method for problems in perforated domains, but these approaches use a limited
number of degrees of freedom per coarse element. In the papers [18,25], the general approach
for constructing the multiscale basis functions using local spectral characteristics was presented
in [18,25]. Continuous and Discontinuous Galerkin Generalized Multiscale Finite Element Methods
(GMsFEM) for coarse grid approximation of the problems in perforated domains was presented
in [26,27]. The GMsFEM is a systematic approach to identify multiscale basis functions via local
snapshots and local spectral problems. The local snapshots are constructed by solving local problems
and contain the information about local geometry structure (perforations). By performing local spectral
decomposition, the method identifies multiscale basis functions. For accurately approximating the
fluxes, we use a Mixed Generalized Multiscale Finite Element method and construct multiscale basis
functions for them [28–31]. In Mixed GMsFEM, we construct the snapshot space for each coarse edge,
perform the local spectral decomposition in the snapshot space and select the dominant modes as
multiscale basis functions for the flux. The presented work is based on our previous papers [30,31],
where we presented a Mixed GMsFEM for solutions of the problems in perforated domains. In this
paper, we apply and study the method for solving the incompressible magnetohydrodynamics (MHD)
problem in perforated domains. We present numerical results for some perforated geometries 2D.
These numerical results demonstrate one can achieve a good accuracy with fewer basis functions.

The paper is organized as follows. In Section 2, we describe the problem formulation.
Next, we decouple the system of equations using Picard iterations. In Sections 3 and 4, we present
a fine grid and multiscale approximations for the magnetic field and flow problems, respectively.
Fine grid and coarse grid approximations are presented using mixed formulation. Construction
of the multiscale basis functions are presented. In Section 5, we present numerical results for the
two-dimensional problem in a perforated domain. The paper ends with a conclusion.

2. Problem Formulation

The full steady incompressible MHD equations in Ω ⊂ R3 is a complex system which link the
velocity field u = (u1, u2, u3), magnetic field B = (B1, B2, B3) and pressure p:

−R−1
e ∆u + u · ∇u +∇p− Sc curl B× B = f , x ∈ Ω,

R−1
em curl(curl B)− curl(u× B) = g, x ∈ Ω,

∇ · u = 0, x ∈ Ω,

∇ · B = 0, x ∈ Ω,

(1)

where Re is the hydrodynamic Reynolds number, Rem the magnetic Reynolds number, Sc the coupling
number. We refer the readers to [32] for details on the existence, uniqueness, and finite element
approximation of solutions of (1).



Computation 2020, 8, 58 3 of 15

This article considers a magnetic field B = (0, 0, B) perpendicular to the velocity field u =

(u1, u2, 0) of (1) in two-dimensional perforated domain Ω, then the simplified MHD equations without
any body force and hydrodynamic convective terms are described as follows:

∇ · (uB)−∇ · (R−1
em ∇B) = 0, x ∈ Ω,

−R−1
e ∆u +∇p− ScB∇B = 0, x ∈ Ω,

∇ · u = 0, x ∈ Ω.

(2)

Let D = R−1
em , q = −D∇B be the flux and Ω is the perforated domain (see Figure 1). We write

Equation (2) in the mixed form

D−1q +∇B = 0, x ∈ Ω,

∇ · q +∇ · (uB) = 0, x ∈ Ω,

−R−1
e ∆u +∇p + ScD−1Bq = 0, x ∈ Ω,

∇ · u = 0, x ∈ Ω,

(3)

and consider with the following boundary conditions

u = 0, x ∈ ΓP, (∇u− pI) · n = 0, x ∈ ∂Ω/ΓP,

B = 0, x ∈ ΓP, B = g, x ∈ Γ1, q · n = 0, x ∈ Γ2,

where ΓP is the boundary of perforations, Γ1 ∪ Γ2 ∪ ΓP = ∂Ω, n is the unit outward normal vector on
∂Ω and I is the n× n identity matrix.

Figure 1. Illustration of a perforated domain.

For linearization, we use Picard iterations and obtain the following algorithm

• Find (qk+1, Bn+1) from

D−1qk+1 +∇Bk+1 = 0,

∇qk+1 +∇(ukBk+1) = 0,
(4)

• Find (uk+1, pn+1) from

−R−1
e ∆uk+1 +∇Sc pk+1 + ScD−1Bk+1qk+1 = 0,

∇uk+1 = 0.
(5)

Here k is the nonlinear iteration.
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3. Magnetic Field Problem

We have the following variational formulations: find (qk+1, Bn+1) ∈ Vq ×QB such that

m(qk+1, v) + g(Bk+1, v) = fq(v) ∀v ∈ Vq,

g(qk+1, r) + c(Bk+1, r) = 0, ∀r ∈ QB,
(6)

where k is the nonlinear iteration and

m(q, v) = −
∫

Ω
D−1q · v dx, g(B, q) =

∫
Ω

B∇q dx,

c(B, r) =
∫

Ω
(uk∇B) · r dx, fq(v) =

∫
Γ1

g v · n ds.

We can rewrite fine grid approximation in the matrix form(
M GT

G Ck

)(
qk+1

Bk+1

)
=

(
Fq

0

)
(7)

where Ck = C(uk). The fine grid problem is solved using the lowest-order Raviart-Thomas element.

Multiscale Approximation

To construct the multiscale space for the coarse scale approximation, we use a Mixed
GMsFEM [23,28–31]. Let T H be a coarse grid of domain Ω and EH be the set of all faces of the
coarse grid, where H is the coarse mesh size and Ne be the total number of faces. We define the
neighborhood of the face Ei ∈ EH by

ωi =
⋃

j

{
Kj ∈ T H | Ei ∈ ∂Kj

}
.

and ωi is a union of two coarse grid blocks when Ei lies in the interior of the domain Ω (see Figure 2).

Figure 2. Illustration of a coarse grid and local domain (ωi) for the Magnetic field problem.

We construct a multiscale space for the flux

Vq,H = span{ψi}
Nq
i=1, QB,H = {r ∈ L2(Ω) : r|K ∈ P0(K), ∀K ∈ TH}

and for the B, we use the space of piecewise constant functions over the coarse triangulation T H .
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Here ψi are the multiscale basis functions that supported in a coarse neighborhood
ωi, Nq = dim(Vq,H) is the number of basis functions and NB = dim(QB,H) is equal to the number of
coarse grid cells .

For the coarse grid approximation, we use a Mixed GMsFEM and have the following variational
formulation: find (qk+1

H , Bk+1
H ) ∈ Vq,H ×QB,H such that

m(qk+1
H , v) + g(Bk+1

H , v) = f (v) ∀v ∈ Vq,H ,

g(qk+1
H , r) + c(Bk+1

H , r) = 0, ∀r ∈ QB,H ,
(8)

We can write our system in matrix form for each nonlinear iteration(
MH GH
GT

H CH

)(
qH
BH

)
=

(
FH
0

)
, (9)

where
MH = Rq MRT

q , GH = RqGRT
B, CH = RBCRT

B, FH = RqFq.

Here Rq and RB are the projection matrices

Rq =
[
ψ1, . . . , ψNq

]
, RB =

[
η1, . . . , ηNB

]
.

We remark that {ψi}
Nq
i=1 are the multiscale basis functions for flux and {ηi}NB

i=1 are the basis
functions for B.

For construction of the multiscale space for the flux, we start with the construction of the snapshot
space that contains an extensive set of basis functions formed by the solution of local problems with all
possible boundary conditions up to the fine grid resolution. After that, we solve a spectral problem to
select dominant modes in the snapshot space.

Snapshot space. We solve the following problem on the coarse neighborhood ωi that corresponds
to the coarse-grid edge Ei ∈ EH : Find (φi

l , η) such that

m(φi
l v) + g(η, v) = 0, v ∈ Vi

h,

g(φi
l , r) =

∫
ωi

c r dx, r ∈ Qi
h,

(10)

with boundary condition φi
l · ni = 0 on ∂ωi and additional boundary condition φi

l · ni = δi
l on

coarse edge Ei, where ni is the outward unit-normal vector on ∂ωi. The local problem (10) is solved
separately on each coarse-grid element Ki

j ⊂ ωi using the fine-grid defined in ωi by the lowest-order

Raviart–Thomas element. Here Ei = ∪
Ji
l=1el , where el are the fine-grid edges on Ei/ΓP, and Ji is the

number of the fine grid edges on Ei/ΓP. The delta function δi
l is a piecewise constant function defined

on Ei/ΓP such that it has value 1 on el and value 0 on the other fine-grid edges. The constant c in (10)
is chosen by compatibility condition, c = 1

|Ki
j |
∫

Ei
φi

l · ni ds, j = 1, 2.

The collection of the solutions of the above local problems generates the snapshot space in ωi

Vi,snap = {φi
l : 1 ≤ l ≤ Ji}, Ri,snap =

[
φi

1, . . . , φi
Ji

]
.

Multiscale space. For reduction on the snapshot space, we solve the following local spectral
problem in ωi

Ai,snapψ
i,snap
k = λkSi,snapψ

i,snap
k , (11)
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where

Ai,snap = [asnap
mn ] = ai(φ

i
m, φi

n) = Ri,snap AiRT
i,snap, Si,snap = [msnap

mn ] = si(φ
i
m, φi

n) = Ri,snapSiRT
i,snap,

and
ai(q, v) =

∫
Ei

(q · ni)(v · ni)ds, si(q, v) =
∫

ωi

q v dx +
∫

ωi

÷q÷ vdx.

To form a multiscale space, we arrange the eigenvalues in increasing order, and choose the first
Mi eigenvalues and take the corresponding eigenvectors ψi

k = Ri,snapψ
i,snap
k as the basis functions

(k = 1, ..., Mi)

Vq,H = span{ψi
k : 1 ≤ i ≤ Ne, 1 ≤ k ≤ Mi}, Rq =

[
ψ1

1, ..., ψ1
M1

, ..., ψNe
1 , ..., ψNe

MNe

]
.

This space will be used as the approximation space for the flux.

4. Flow Problem

For the approximation of the flow problem on the fine grid, we use a Discontinuous Galerkin
method [33–38]. Let T h be a fine-grid partition of the domain Ω, E h be the set of facets in T h and
E h = E h

int ∪ E h
out (E h

int is the set of interior facets and E h
out is the set of boundary facets). We use the

notations K and E to denote cell and facet in the fine grid T h. We define the jump [u] and the average
{u} of a function u on interior facet

[u]E = u|K+ − u|K− , {u}E =
u|K+ + u|K−

2
,

where n is the unit normal vector on E, K+ and K− are the two cells sharing the facet E. For E ∈ E h
out,

we define
[u]E = u|E, {u}E = u|E.

We have the following variational formulations for the DG approach: find (uk+1, pn+1) ∈ Vu×Qp

such that

aDG(uk+1, v) + bDG(pk+1, v) = fu(v), ∀v ∈ Vu,

bDG(uk+1, r) = 0, ∀r ∈ Qp,
(12)

where

aDG(u, v) =
∫

Ω
R−1

e ∇u · ∇v dx− ∑
E∈E h

∫
E

(
{R−1

e ∇u · n} · [v] + {R−1
e ∇v · n} · [u]−

∫
E

γ

h
R−1

e [u] · [v]
)

ds,

bDG(u, p) = − ∑
K∈T H

∫
K

p∇u dx + ∑
E∈E h

∫
E

p [u] · n ds, fu(v) = −
∫

Ω
(ScD−1Bk+1qk+1) · v dx.

The fine scale velocity space Vu = {v ∈ L2(Ω) : v|K ∈ (P1(T))2, ∀K ∈ T h} contains functions
that are piecewise linear in each fine-grid element K and are continuous along the fine-grid edges,
but are discontinuous across coarse grid edges. For the pressure, we use the space of piecewise
constant functions.

In the matrix form, we have (
A GT

G 0

)(
uk+1

pk+1

)
=

(
Fk+1

u
0

)
(13)

where Fk+1
u = Fu(Bk+1, qk+1).
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Next, we present a multiscale method for solutions of the Stokes problem. Similarly, to the
Mixed GMsFEM to obtain multiscale basis functions, we solve problems in local domains with
various boundary conditions to form a snapshot space and use a spectral problem to perform
a dimension reduction.

Multiscale Approximation

Next, we present the construction of the multiscale space for the coarse scale approximation
of velocity. Note that, in the DG multiscale method we construct a multiscale basis in each coarse
block [26,27,39–41]. Let T H be a coarse-grid partition of the domain Ω with mesh size H and EH

be the set of facets in T H , EH = EH
int ∪ EH

out. For the pressure approximation, we use the piecewise
constant function space Qp,H over the coarse cells. We define Vu,H as the multiscale velocity space,
which contains a set of basis functions supported in each coarse block K (see Figure 3).

Figure 3. Illustration of a coarse grid and local domain (Ki) for the Flow problem.

We construct a multiscale space for the velocity T H

Vu,H = span{ψi}Nu
i=1, Qp,H = {r ∈ L2(Ω) : r|K ∈ P0(K), ∀K ∈ TH}

and for the pressure, we use the space of piecewise constant functions over the coarse triangulation,
Nu = dim(Vu,H) is the number of basis functions and Np = dim(Qp,H) is equal to the number of
coarse grid cells.

For the coarse grid approximation, we use a DG approach and have the following variational
formulation: find (uk+1

H , pk+1
H ) ∈ Vu,H ×Qp,H such that

aDG(uk+1
H , v) + gDG(pk+1

H , v) = f (v) ∀v ∈ Vu,H ,

g(uk+1
H , r) = 0, ∀r ∈ Qp,H ,

(14)

We can write the system in matrix form for each nonlinear iteration(
AH GH
GT

H 0

)(
uH
pH

)
=

(
FH
0

)
, (15)

where
AH = Ru ART

u , GH = RuGRT
p , FH = RuFu.
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Here Ru and Rp are the projection matrices

Ru = [ψ1, . . . , ψNu ] , Rp =
[
η1, . . . , ηNp

]
,

where {ψi}Nu
i=1 are the multiscale basis functions for velocity.

For construction of the multiscale space for the velocity, we start with the construction of the
snapshot space that contains an extensive set of basis functions formed by the solution of local problems
with all possible boundary conditions up to the fine grid resolution. After that, we solve a spectral
problem to select dominant modes of the snapshot space.

Snapshot space. We construct local snapshot basis in each coarse block Ki, (i = 1, · · · , N),
where N is the number of coarse blocks in Ω. The local snapshot space consists of functions which are
solutions φi

l ∈ Vu(Ki) of
−R−1

e ∆φi
l +∇η = 0, x ∈ Ki,

∇ · φi
l = c, x ∈ Ki,

(16)

with φi
l = δl

i on ∂Ki (l = 1, · · · , Ji), where Ji is the number of fine grid nodes on the boundary of Ki,
and δl

i is the discrete delta function defined on ∂Ki. This problem is solved on the fine mesh using
some appropriate approximation spaces (DG). Here constant c is chosen by the compatibility condition,
c = 1

|Ki |
∫

∂Ki
δl

i · n ds.
Using local solutions, we form a local snapshot space in Ki

Vi,snap = {φi
l : 1 ≤ l ≤ Ji}, Ri,snap =

[
φi

1, . . . , φi
Ji

]
.

Multiscale space. To reduce the size of the snapshot space, we solve the following local spectral
problem in the snapshot space for Ki

Ai,snapψ
i,snap
k = λkSi,snapψ

i,snap
k , (17)

where
Ai,snap = Ri,snap AiRT

i,snap, Si,snap = Ri,snapSiRT
i,snap,

and Ai is the matrix representation of the bilinear form ai(u, v) and Si is the matrix representation of
the bilinear form si(u, v)

ai(u, v) =
∫

Ki

R−1
e ∇u · ∇v dx, si(u, v) =

∫
∂Ki

u · v dx.

We remark that the integral in si(u, v) is defined on the boundary of the coarse block. In this case,
the number of the spectral problem equals the number of coarse blocks.

We arrange the eigenvalues in increasing order and choose the first eigenvectors corresponding
to the first Mi the smallest eigenvalues ψi

k = Ri,snapψ
i,snap
k as the basis functions (k = 1, ..., Mi)

Vu,H
i = span{ψi

k : 1 ≤ i ≤ Ne, 1 ≤ k ≤ Mi}, Ru =
[
ψ1

1, ..., ψ1
M1

, ..., ψNc
1 , ..., ψNc

MNc

]
.

This space will be used as the approximation space for the velocity. The global multiscale space
Vu,H is the combination of the local ones, i.e.,

Vu,H = span{φi
k : 1 ≤ k ≤ Li, 1 ≤ i ≤ N}.

5. Numerical Results

We present numerical results for the model problem in the perforated domain. We use the
Generalized Multiscale Finite Element method (GMsFEM) to construct a coarse grid approximation.
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The presented method based on the calculations of local multiscale basis functions in order to form
a projection matrix that is used to construct a lower-dimensional approximation. After obtaining
the solution of the reduced-order system, we reconstruct a fine grid resolution using a transposed
projection matrix. For error calculations, we use a solution of the problem with traditional finite
element approximation on the fine grid as the reference solution.

A computational perforated domain is presented in Figure 4 and has dimensions Ω = [0, 1]× [0, 1].
For the approximation of the perforated domain, we use an unstructured fine grid with triangular cells
that resolves perforations on the grid level. This can lead to the large discrete system of equations for
the traditional finite element approximations. To reduce the size of the system, we present a multiscale
solver that used to construct a reduced-order approximation on the coarse grid. The coarse grid can be
either structured or unstructured. In this work, for simplicity, we consider a 10× 10 structured grid
to illustrate the multiscale method. In many applications, it is easier to use structured coarse grids
and resolve the subgrid effects as we do in our simulations. We construct an unstructured fine mesh
that contains 61,912 cells, 93,668 facets and 31,727 vertices. The coarse grid is uniform, which contains
100 cells, 220 facets and 121 vertices. We set R−1

e = 1, D = 10, Sc = 1 and g = 1.

Figure 4. Perforated domain with coarse (left) and fine grids (right).

In Figures 5–7, we present the results of the proposed multiscale method. The distribution of the
magnitude fields (B and q) are presented in Figures 5 and 6. In Figure 7, we show the velocity field.
At the top of the figures, we presented the fine-scale solutions. Multiscale solutions are present on
the bottom figure with DOFc = 980 for q and DOFc = 4100 for velocity field u. Note that, we use the
piecewise constant functions for multiscale solution of B. We use a Picard iteration and perform three
iterations for all cases with εB = 10−9.

Figure 5. The distribution of the magnetic field. (Left): Reference (fine grid) solution, DOFf = 155,580.
(Center): Cell average for reference (fine grid) solution. (Right): Multiscale solution, DOFc = 980
(0.48% from DOFf ).
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Figure 6. The distribution of the flux. Magnitude of flux, x and y components of flux, q, qx, qy (from
left to right). (Top): Reference (fine grid) solution, DOFf = 155,580. (Bottom): Multiscale solution,
DOFc = 980 (0.48% from DOFf ).

Figure 7. The distribution of the velocity. Magnitude of velocity, x and y components of velocity, u,
ux uy (from left to right). (Top): Reference (fine grid) solution, DOFf = 433,384. (Bottom): Multiscale
solution, DOFc = 4100 (0.9% from DOFf ).
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We calculate following errors:

eu =

√∫
Ω |u− ums|2 dx∫

Ω u2 dx
· 100%, eq =

√∫
Ω |q− qms|2 dx∫

Ω q2 dx
· 100%,

ep
L2

=

√∫
Ω |p− pH |2 dx∫

Ω p2 dx
, · 100%, eB

L2
=

√√√√∫Ω |B− BH |2 dx∫
Ω B2 dx

· 100%,

where (q, B) and (u, p) are the reference solutions using traditional fine grid solvers, B̄ and p̄ are the
coarse cell average for reference solutions, (qH , BH) and (uH , pH) are the coarse grid solutions using
presented multiscale solvers, qms = RT

q qH and ums = RT
u uH are the reconstructed multiscale solutions.

In Table 1, we show the relative error for q and B. We presented errors for different velocities:
(1) multiscale velocities with DOFc = 1100 (10 basis), (2) multiscale velocities with DOFc = 2100
(20 basis), (3) multiscale velocities with DOFc = 3100 (30 basis), (4) multiscale velocities with
DOFc = 4100 (40 basis), (5) multiscale velocities with DOFc = 6100 (60 basis) and (6) fine-scale
solution with DOFf = 433,384. We see the relative error for q is reduced from 4.1% to 0.8%, and the
coarse cell average error for B is around one percent.

Table 1. Relative errors for flux and magnetic field with a different number of multiscale basis functions
for 10 × 10 meshes. DOFf = 155,580.

DOFc Flux, eq (%) Magnetic Field, eB (%)

u-multiscale solution with DOFc = 1100

320 4.170 1.690
540 1.181 1.578
760 0.958 1.578
980 0.835 1.578

u-multiscale solution with DOFc = 2100

320 4.165 1.688
540 1.176 1.577
760 0.953 1.577
980 0.831 1.577

u-multiscale solution with DOFc = 3100

320 4.164 1.688
540 1.176 1.577
760 0.953 1.577
980 0.830 1.577

u-multiscale solution with DOFc = 4100

320 4.164 1.688
540 1.176 1.577
760 0.952 1.577
980 0.830 1.577

u-multiscale solution with DOFc = 6100

320 4.163 1.688
540 1.176 1.577
760 0.952 1.577
980 0.830 1.577

u-fine-scale solution with DOFf = 433,384

320 4.161 1.688
540 1.174 1.577
760 0.954 1.577
980 0.832 1.577
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In Table 2 we present the relative errors for velocity and for pressure field. We presented errors
for u and p with different B: (1) multiscale magnetic field with DOFc = 320 (1 basis), (2) multiscale
magnetic field with DOFc = 540 (2 basis), (3) multiscale magnetic field with DOFc = 760 (3 basis),
(4) multiscale magnetic field with DOFc = 980 (4 basis) and (5) fine-scale solution with DOFf = 155,580.
We see the relative velocity error reduces from 60% to 8% with a larger number of multiscale
basis functions. We use a discontinuous Galerkin Generalized Multiscale Finite Element Method
(DG-GMsFEM) for the flow problem and Mixed Generalized Multiscale Finite Element Method (Mixed
GMsFEM) for the magnetic field problem. The construction of basis functions in both methods follows
the general framework of GMsFEM by using local snapshots and local spectral problems. The errors
can vary depending on a choice of discretization. In order to further error reduction for the multiscale
approximation of the flow problem, we will apply oversampling techniques in future work [39].

Table 2. Relative errors for velocity and pressure with different number of multiscale basis functions
for 10 × 10 meshes. DOFf = 433,384.

DOFc Velocity, eu (%) Pressure, ep (%)

B-multiscale solution with DOFc = 320

1100 60.501 25.800
2100 16.689 2.005
3100 11.281 1.226
4100 9.792 1.138
6100 8.843 1.078

B-multiscale solution with DOFc = 540

1100 60.477 25.798
2100 16.694 1.996
3100 11.282 1.225
4100 9.792 1.138
6100 8.843 1.078

B-multiscale solution with DOFc = 760

1100 60.473 25.797
2100 16.695 1.997
3100 11.282 1.225
4100 9.792 1.138
6100 8.843 1.078

B-multiscale solution with DOFc = 980

1100 60.472 25.797
2100 16.694 1.997
3100 11.282 1.225
4100 9.792 1.138
6100 8.843 1.078

B-fine-scale solution with DOFf = 155,580

1100 59.420 25.300
2100 16.615 1.878
3100 11.238 1.199
4100 9.754 1.112
6100 8.809 1.055

6. Conclusions

We considered the magnetohydrodynamics (MHD) problem in a perforated domain.
A mathematical model was described using a coupled system of equations for the magnetic field and
for the flow problem. We constructed a fine grid that resolved perforations on the grid level in order to
use a traditional approximation. For the solution on the fine grid, we constructed approximation using
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the mixed finite element method. To reduce the size of the fine grid system with an accurate solution
on the coarse grid, a Mixed Generalized Multiscale Finite Element Method (Mixed GMsFEM) was
presented. Numerical results were presented for a two-dimensional model problem in a perforated
domain and we studied the influence of the number of multiscale basis functions on the method
accuracy. In the multiscale solver, the main computational gain was due to fewer multiscale basis
functions, which are used to reduce the size of the system. For the traditional fine grid solutions,
we have DOFf = 155,580 for the magnetic field problem and DOFf = 433,384 for the flow problem.
For multiscale solvers, we have 0.9% error for q with three multiscale basis functions with DOFc = 760
(0.48% of DOFf ) and 9% error for u with 40 multiscale basis functions with DOFc = 4100 (0.9% of
DOFf ). In the future, we plan to consider oversampling techniques and construct a multiscale solver
for three-dimensional problems.
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