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Abstract: Following the corrected chronology of ancient Hindu scientists/mathematicians, in this
article, a sincere effort is made to report the origin of Pythagorean triples. We shall account for
the development of these triples from the period of their origin and list some known astonishing
directions. Although for researchers in this field, there is not much that is new in this article,
we genuinely hope students and teachers of mathematics will enjoy this article and search for new
directions/patterns.
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1. Introduction

The Pythagorean theorem (after Pythagoras, around 582–481 BC) states that: If a and b are the
lengths of the two legs of a right triangle and c is the length of the hypotenuse (see Figure 1), then the
sum of the areas of the two squares on the legs equals the area of the square on the hypotenuse, i.e.,

a2 + b2 = c2. (1)
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For the origin of this theorem, its far reaching extensions, and applications, see Agarwal [2]. A set of three
positive integers a, b, and c which satisfies Pythagorean relation (1) is called Pythagorean triple (or triad) and
written as ordered triple (a, b, c). For convenience it is always assumed that 0 < a < b < c. A triangle whose
sides (line segments whose lengths are denoted by integers) form a Pythagorean triple is called a Pythagorean
triangle, it is clearly a right triangle. Pythagorean triangles tell us which pairs of points with whole-number
coordinates on the horizontal and vertical direction are also whole-number distance apart. Thus, there is
a one-to-one correspondence between Pythagorean triangles and Pythagorean triples. Therefore, we can
use Pythagorean triangle and Pythagorean triple interchangeably. A Pythagorean triangle (a, b, c) is said
to be primitive (sometimes reduced) if a, b, c have no common divisor other than 1. Thus, each primitive
Pythagorean triple has a unique representation (a, b, c). It is obvious that every primitive Pythagorean
triangle can lead to infinitely many non-primitive triangles, for, if (a, b, c) is a primitive Pythagorean triangle,
then (ka, kb, kc) is a non-primitive Pythagorean triangle, where k > 1 is an integer. Conversely, every non-
primitive Pythagorean triangle gives rise to a primitive Pythagorean triangle. Therefore, it suffices to study

Figure 1. Pythagorean theorem.

For the origin of this theorem, its far reaching extensions, and applications, see Agarwal [1]. A set
of three positive integers a, b, and c, which satisfies Pythagorean Relation (1), is called a Pythagorean
triple (or triad) and written as ordered triple (a, b, c). For convenience, it is always assumed that
0 < a < b < c. A triangle whose sides (line segments whose lengths are denoted by integers) form a
Pythagorean triple is called a Pythagorean triangle; it is clearly a right triangle. Pythagorean triangles
tell us which pairs of points with whole-number coordinates on the horizontal and vertical direction are
also a whole-number distance apart. Thus, there is a one-to-one correspondence between Pythagorean
triangles and Pythagorean triples. Therefore, we can use Pythagorean triangle and Pythagorean
triple interchangeably. A Pythagorean triangle (a, b, c) is said to be primitive (sometimes reduced) if
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a, b, c have no common divisor other than one. Thus, each primitive Pythagorean triple has a unique
representation (a, b, c). It is obvious that every primitive Pythagorean triangle can lead to infinitely
many non-primitive triangles, for, if (a, b, c) is a primitive Pythagorean triangle, then (ka, kb, kc) is
a non-primitive Pythagorean triangle, where k > 1 is an integer. Conversely, every non-primitive
Pythagorean triangle gives rise to a primitive Pythagorean triangle. Therefore, it suffices to study
only primitive Pythagorean triangles. In recent years, primitive Pythagorean triples have been used in
cryptography as random sequences and for the generation of keys; see Kak and Prabhu [2].

Pythagorean triples (3, 4, 5), (12, 16, 20), (15, 20, 25), (5, 12, 13), (8, 15, 17), and (12, 35, 37) first
appeared in Apastamba (one of seven available Sulbasutras, first about 3200 BC, named after the sages;
see by Lakshmikantham et al. [3] and Agarwal et al. [4]). These triples were used for the precise
construction of altars. In 1943, Plimpton 322 (written between 1790 and 1750 BC, during the time of
the Babylonian king Hammurabi (around 1811–1750 BC) in old Babylonian script) was classified as
a “commercial account”. However, two years later, two prominent historians of mathematics Otto
Neugebauer (1899–1990) and Abraham Sachs (1915–1983) made a startling discovery that the content of
Plimpton 322 was a list of Pythagorean triples. Table 1 reproduces the text in modern notation with base
60. There are four columns, of which the rightmost, headed by the words “its name” in the original text,
merely gives the sequential number of the lines 1 to 15. The second column and third columns (counting
from the right to left) are headed “solving number of the diagonal” and “solving number of the width,”
respectively; that is, they give the length of the diagonal and of the short side of a rectangular, or
equivalently, the length of the hypotenuse and the short leg of a right triangle. We will label these
columns with letters c and a, respectively. The leftmost column is the most curious of all. Its heading
again mentions the word “diagonal,” but the exact meaning of the remaining text is not entirely clear.
However, when one examines its entries, an unexpected fact emerges: this column gives (c/b)2, that
is the value of csc2 θ, where θ is the angle opposite side of b and csc is the cosecant function (see
Figure 1). As an example, in the third line, we read a = 1, 16, 41 = 1× 602 + 16× 60 + 41 = 4601, and
c = 1, 50, 49 = 1× 602 + 50× 60 + 49 = 6649, and hence b =

√
66492 − 46012 =

√
23040000 = 4800,

giving us the triple (4601, 4800, 6649). Unfortunately, the table contains some obvious errors. In Line
2, we have a = 56, 07 = 56× 60 + 7 = 3367 and c = 3, 12, 01 = 3× 602 + 12× 60 + 1 = 11,521,
and these do not form a Pythagorean triple (the third number b not being an integer). However,
if we replace 3, 12, 01 by 1, 20, 25 = 1 × 602 + 20 × 60 + 25 = 4825, we get an integer value of
b =
√

48252 − 33672 =
√

11943936 = 3456, which leads to the Pythagorean triple (3367, 3456, 4825).
In Line 9, we find a = 9, 1 = 9× 60 + 1 = 541 and c = 12, 49 = 12× 60 + 49 = 769, and these do
not form a Pythagorean triple. However, if we replace 9, 1 by 8, 1 = 481, we do indeed get an integer
value of b; b =

√
7692 − 4812 =

√
360000 = 600, resulting in the triple (481, 600, 769). Again in Line

13, we have a = 7, 12, 1 = 7× 602 + 12× 60 + 1 = 25921 and c = 4, 49 = 4× 60 + 49 = 289, and
these do not form a Pythagorean triple; however, we may notice that 25921 is the square of 161, and
the numbers 161 and 289 do form the triple (161, 240, 289). In Row 15, we find c = 53, whereas the
correct entry should be twice that number, that is 106 = 1, 46, producing the triple (56, 90, 106). This,
however, is not a primitive triple, since its members have the common factor of two; it can be reduced
to the simple triple (28, 45, 53). Similarly, Row 11 is not a primitive triple (45, 60, 75), since its members
have the common factor of 15; it can be reduced to (3, 4, 5), which is the smallest and best known
Pythagorean triple.
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Table 1. Numbers in the brackets are wrong.

(c/b)2 a c

(1,)59,00,15 1,59 2,49 1
(1,)56,56,58,14,50,06,15 56,07 (3,12,01)1,20,25 2
(1,)55,07,41,15,33,45 1,16,41 1,50,49 3
(1,)53,10,29,32,52,16 3,31,49 5,09,01 4
(1,)48,54,01,40 1,05 1,37 5
(1,)47,06,41,40 5,19 8,01 6
(1,)43,11,56,28,26,40 38,11 59,01 7
(1,)41,33,59,03,45 13,19 20,49 8
(1,)38,33,36,36 (9,01)8,01 12,49 9
(1,)35,10,02,28,27,24,26,40 1,22,41 2,16,01 10
(1,)33,45 45 1,15 11
(1,)29,21,54,02,15 27,59 48,49 12
(1,)27,00,03,45 (7,12,01)2,41 4,49 13
(1,)25,48,51,35,06,40 29,31 53,49 14
(1,)23,13,46,40 56 (53)1,46 15

Table 2 produces the text in the decimal system. In this table, we find that the values of (c/b)2

continuously decrease from 1.9834027 to 1.3871604. This implies that the values of c/b = csc θ

continuously decrease, and this in turn shows that θ increases steadily from approximately 45◦

to 58◦. The question that baffles the mind even today is how did the Babylonians find these particular
triples, including such enormously large ones as (13500, 12709, 18541). There seems to be only the
following plausible explanation: they were not only familiar with the Pythagorean theorem, but knew
an algorithm to compute Pythagorean triples and had enormous computational skills; see Siu [5].

Table 2. Numbers in the brackets are wrong.

(c/b)2 b a c

1.9834027 120 119 169 1
1.9491585 3456 3367 (11521) 4825 2
1.9188021 4800 4601 6649 3
1.8862478 13500 12709 18541 4
1.8150076 72 65 97 5
1.7851928 360 319 481 6
1.7199836 2700 2291 3541 7
1.6927093 960 799 1249 8
1.6426694 600 (541)481 769 9
1.5861225 6480 4961 8161 10
1.5625000 60 45 75 11
1.4894168 2400 1679 2929 12
1.4500173 240 (25921)161 289 13
1.4302388 2700 1771 3229 14
1.3871604 90 56 (53)106 15

Finding Pythagorean triples is one of the earliest problems in the theory of numbers, and certainly,
Pythagorean triples are some of the oldest known solutions of the nonlinear Diophantus (about 250)
Equation (1). In Apastamba, it was recorded that the triplets:

(
m,

m2 − 1
2

,
m2 + 1

2

)
, (2)

where m is an odd number, and: (
m,

1
4

m2 − 1,
1
4

m2 + 1
)

, (3)
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where m is an even number, are Pythagorean triples. The Chinese mathematician Liu Hui (around
220–280) in his commentary on the Jiuzhang Suanshu (Nine Chapters on the Mathematical Art), which
is believed to have been written around 1000 BC, included Pythagorean triples and mentioned right
triangles. It is a tradition to assume that Pythagoras himself gave the following partial solution of
Equation (1),

a = 2n + 1, b = 2n2 + 2n, c = 2n2 + 2n + 1, n ≥ 1. (4)

He presumably arrived at (4) from the relation:

(2k− 1) + (k− 1)2 = k2 (5)

and then searching for those k for which 2k− 1 is a perfect square, i.e., 2k− 1 = m2 (since m2 is odd, m
must be odd). This gives:

k =
m2 + 1

2
and k− 1 =

m2 − 1
2

.

Thus, the relation (5) can be written as:

m2 +

(
m2 − 1

2

)2

=

(
m2 + 1

2

)2

from which it is clear that (1) is satisfied with:

a = m, b =
m2 − 1

2
, c =

m2 + 1
2

, (6)

Finally, in (6) letting m = 2n + 1, n ≥ 1, we obtain (4). Notice that in (4), the sum of the long side
and hypotenuse is 4n2 + 4n + 1 = (2n + 1)2, which is the square of the small side. We also remark that
(6) is the same as (2).

We can directly verify that (4) is a solution of (1). Indeed, we have:

c2 = (2n2 + 2n + 1)2 = (2n2 + 2n)2 + 2(2n2 + 2n) + 1 = (2n2 + 2n)2 + (2n + 1)2 = a2 + b2.

Since c− b = 1, it follows that b and c are relatively prime, i.e., a positive integer that divides both
of them is one, and consequently, Pythagorean triples (a, b, c) generated from (4) must be primitive.
Some of the Pythagorean triples that can be obtained from (4) are given in the following table.

n a b c
1 3 4 5
2 5 12 13
3 7 24 25
4 9 40 41
5 11 60 61
6 13 84 85
7 15 112 113
8 17 144 145

It is interesting to note that between the series of larger legs 4, 12, 24, 40, 60, 84, 112, 144, · · · and of
hypotenuses 5, 13, 25, 41, 61, 85, 113, 145, · · · , there is a fascinating pattern (see Boardman [6]):

32 + 42 = 52

102 + 112 + 122 = 132 + 142

212 + 222 + 232 + 242 = 252 + 262 + 272

362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442

· · · = · · ·
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The following table gives Pythagorean triples obtained from (4) by letting n = 10, 102, · · · , 105.

n a b c
10 21 220 221
102 201 20200 20201
103 2001 2002000 2002001
104 20001 200020000 200020001
105 200001 20000200000 20000200001

The above table gives an obvious pattern, so that if we know one row, then we can continue this table
indefinitely. From (4), it follows that there are countably infinitely many primitive Pythagorean triples.

Clearly, Pythagoras’s solution has the special feature of producing right triangles having the
characteristic that the hypotenuse exceeds the larger leg by one. According to Proclus Diadochus
(410–485 AD), Plato of Athens (around 427–347 BC) gave a method for finding Pythagorean triples
that combined algebra and geometry. His solution of Equation (1) is:

a = 2n, b = n2 − 1, c = n2 + 1, n ≥ 2. (7)

For this, it suffices to note that:

c2 = (n2 + 1)2 = (n2 − 1 + 2)2 = (n2 − 1)2 + 4(n2 − 1) + 4 = (n2 − 1)2 + (2n)2 = b2 + a2.

It is interesting to note that for m = 2n, (3) is the same as (7). Some of the Pythagorean triples that
can be obtained from (7) are given in the following table.

n a b c (a, b, c)
2 4 3 5 (3, 4, 5)
3 6 8 10 (6, 8, 10)
4 8 15 17 (8, 15, 17)
5 10 24 26 (10, 24, 26)
6 12 35 37 (12, 35, 37)
7 14 48 50 (14, 48, 50)
8 16 63 65 (16, 63, 65)
9 18 80 82 (18, 80, 82)

10 20 99 101 (20, 99, 101)

(For n = 2, the Pythagorean triple is written as (3, 4, 5).) From (7) it follows that the hypotenuse exceeds
one of the legs by two. Further, for n = 4, we have the Pythagorean triple (8, 15, 17), which cannot be
obtained from Pythagoras’s formula (4). Moreover, for n = 2k + 1, k ≥ 1, (7) becomes:

a = 2(2k + 1), b = 4k2 + 4k, c = 4k2 + 4k + 2, k ≥ 1 (8)

i.e., for odd n, (7) does not give primitive triples, and upon dividing (8) by two, we find:

a = 2k + 1, b = 2k2 + 2k, c = 2k2 + 2k + 1, k ≥ 1.

However, this is the same as (4). Thus, in conclusion, the primitive triples obtained from (7)
include those given by (4).
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The following interesting table gives Pythagorean triples obtained from (7) by letting n = 2× 10,
2× 102, 2× 103, 2× 104.

a b c
40 399 401

400 39999 40001
4000 3999999 4000001

40000 399999999 400000001

We note that (7) for n = k + 1, k ≥ 1 becomes a = 2(k + 1), b = k(k + 2), c = k2 + 2k + 2. Thus, if
k ≥ 1,

1
k
+

1
k + 2

=
a
b

,

where a and b are reduced, will yield a primitive Pythagorean triple with c =
√

a2 + b2. As an example,
for k = 2, we have (1/2) + (1/4) = (3/4). Thus, a = 3, b = 4, and c =

√
32 + 42 = 5.

2. Characterization

Unfortunately, even (7) does not provide all Pythagorean triples, and it was not until Euclid
of Alexandria (around 325–265 BC) in his Elements (Book X, Lemma I; also see Lemma II after
Proposition 28) formalized the following statement (fabricated in geometric language): Let u and v be
any two positive integers, with u > v, then the three numbers:

a = u2 − v2, b = 2uv, c = u2 + v2 (9)

form a Pythagorean triple. This seems to be the first regressively proven complete integer solution of in
indeterminate equation. If in (9), a > b, we interchange a and b (if in addition, u and v are of opposite
parity—one even and the other odd—and they are coprime, i.e., they do not have any common factor
other than one, then (a, b, c) is a primitive Pythagorean triple).

It is easy to verify that the numbers a, b, and c as given by Equation (9) satisfy the equation
a2 + b2 = c2:

a2 + b2 = (u2 − v2)2 + (2uv)2

= u4 − 2u2v2 + v4 + 4u2v2

= u4 + 2u2v2 + v4

= (u2 + v2)2 = c2.

The integers u and v, or simply (u, v) in the formula (9), are called the generating numbers
or generators of the triple (a, b, c). Neugebauer claims that this sufficiency part was known to
the Babylonians.

From (9), the following relations are immediate:

u =

√
c + a

2
, v =

√
c− a

2
,

u
v

=
c + a

b
,

c− b = (u− v)2,
1
2
(c− a) = u2.

Diophantus in his Arithmetica (Claude Gaspard Bachet de Méziriac (1581–1638) made it fully
available in Greek and Latin in 1621) also arrived at the solution (9) of (1) by using the following
reasoning. In (1), let b = ka− c, where k is any rational number. Then, it follows that:

c2 − a2 = b2 = (ka− c)2 = k2a2 − 2kac + c2,
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which leads to:
−a2 = k2a2 − 2kac,

or
−a = k2a− 2kc.

Thus, we have:

a =
2k

k2 + 1
c,

which gives:

b = ka− c =
k2 − 1
k2 + 1

c.

Let k = u/v, with u and v integers (we can assume that u > v), so that:

a =
2uv

u2 + v2 c, b =
u2 − v2

u2 + v2 c.

Now, we set c = u2 + v2, to obtain a = 2uv, b = u2 − v2, c = u2 + v2.
Bhaskara II or Bhaskaracharya (working 486) also gave a tentative partial solution of (1), which in

number theory is considered an exciting result.
The converse, i.e., showing that any Pythagorean triple is necessarily of the form (9), is more

difficult. The earliest record for some special cases of the proof of the converse can be found in the
solutions of Problems 8 and 9 of Book II of the Arithmetica of Diophantus. Next, the converse was
discussed in the works of Arab mathematicians around the Tenth Century. The details of the Arab’s
work was available to the well-traveled Fibonacci (Leonardo of Pisa, around 1170–1250). It seems
the first explicit, rigorous proof of the converse was given in 1738, by C.A.Koerbero (Dickson [7],
Vol. 2). In 1901, Leopold Kronecker (1823–1891) gave the first proof that all positive integer solutions
of a2 + b2 = c2 are given without duplication by a = 2uvk, b = (u2 − v2)k, c = (u2 + v2)k, where
u, v, and k are positive integers such that u > v, u and v are not both odd, and u and v are relatively
prime. In what follows, we shall discuss a simplified and extended version of a known proof (see, e.g.,
Burton [8]) of Euclid’s Proposition and its converse.

Step 1. If (a, b, c) is a primitive Pythagorean triple, then gcd(a, b) = 1. Here, gcd(a, b) denotes the
greatest common divisor of a and b. For, if gcd(a, b) = d, then d|c (d divides c), so that d is a
common divisor of a, b, and c, and consequently, (a, b, c) is not a primitive Pythagorean triple.

Step 2. If (a, b, c) is a Pythagorean triple, then gcd(a, b) = 1 implies gcd(b, c) = 1 and gcd(a, c) = 1.
For, if b and c have a common divisor, say d 6= 1, then d is also a divisor of a, and consequently,
d is a common divisor of a and b, which is not possible. Hence, gcd(b, c) = 1. The proof for
gcd(a, c) = 1 is similar.

Step 3. If (a, b, c) is a primitive solution of (1), then exactly one of a and b must be even, and c must
be odd. For, if a and b are both even, then c must also be even; and consequently, a, b, c will
have a common divisor other than one. If a and b are both odd, say, a = 2m + 1, b = 2n + 1,
then a2 + b2 = 2[2(m2 + n2 + m + n) + 1] = 2(2t + 1), which is impossible since no perfect
square can be of the form 2(2t + 1). Thus, exactly one of a and b must be odd, and the other
must be even. Furthermore, then, a2 + b2 must be odd, and so, c must be odd (By virtue of
this step, there exists no primitive Pythagorean triple all of whose numbers a, b, c are prime.
There are primitive Pythagorean triples in which c and one of a or b is prime, for example,
(3, 4, 5), (5, 12, 13), (11, 60, 61). It is not known if there exist infinitely many such triples.).

Step 4. If p, q, r are integers such that p2 = qr, and gcd(q, r) = 1, then q and r must be perfect squares.
In fact, writing out the prime factorizations of q and r, we have:

q = qa1
1 qa2

2 · · · qs
as , r = rb1

1 rb2
2 · · · rt

bt .
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Since gcd(q, r) = 1, therefore no prime can occur in either decomposition. Since p2 = qr and
since prime factorization is unique, therefore,

p2 = qa1
1 qa2

2 · · · qs
as rb1

1 rb2
2 · · · rt

bt ,

where q1, q2, · · · , qs, r1, r2, · · · , rt are distinct primes. Since p2 is a perfect square, it is necessary
that a1, a2, · · · , as, b1, b2, · · · , bt must be all even, and consequently, q and r must be perfect
squares. Similarly, it follows that if pn = qr and gcd(q, r) = 1, then q and r must be of
the nth power. We note that Step 4 can also be proven by induction on p. For p = 1 and
p = 2, it is trivially true (Professor Cuthbert Calculus (French: Professeur Tryphon Tournesol)
meaning “Professor Tryphon Sunflower”, is a fictional character in The Adventures of Tintin.
He discovered an amusing proof of Step 4 while he was in jail for having failed the president’s
son. The prisoners were put in a long row of cells. At first, all the doors were unlocked, but
then, the jailor walked by and locked every second door. He walked again and stopped at
every third door, locking it if it was unlocked, but unlocking if it was locked. On the next
round, he stopped at every fourth door, locking it if it was unlocked, unlocking if it was locked,
and so on. Professor Tournesol soon realized that the qth cell would be unlocked in the end just
in case q had an odd number of divisors. Now, if d divides q, then so does q|d, and it would
seem that the divisors of q come in pairs. Unless . . . “what if d = q|d?,” thought the professor,
“then the divisor d does not pair off with another, and d = q|d just in case q is a square.”).

Step 5. If (a, b, c) is a primitive solution of (1) and a is odd (similar arguments hold if a is even), then
there must exist positive integers u and v such that u > v with gcd(u, v) = 1, and exactly one
of u and v being odd, such that a = u2 − v2, b = 2uv, c = u2 + v2. Since a is odd, by Step 3, b
must be even. Let b = 2p, for some p. From b2 = c2 − a2, we have:

4p2 = (c + a)(c− a). (10)

Now, (c + a) and (c − a) are both even (for by Step 3, a and c are both odd). Let us put
c + a = 2q, c− a = 2r, i.e., c = q + r, a = q− r. Then, from (10), we have p2 = qr. Next, we
shall show that q and r are relatively prime. For, if d is a common divisor of q and r, then d
must also be a common divisor of c and a, and therefore also a divisor of b. Thus, a, b, c will
have a common divisor d. Since the solution (a, b, c) is a primitive solution, we must have
d = ±1, i.e., q and r must be relatively prime. Thus, by Step 4 (from Professor Tournesol’s
discovery), q and r must be perfect squares. Let q = u2, r = v2 for some integers u and v,
which are taken to be positive. Then, c = u2 + v2, a = u2 − v2, b2 = c2 − a2 = 4u2v2, so that
b = 2uv. It is clear that gcd(u, v) = 1, for if gcd(u, v) = d, then d will be a divisor of a, b, and c.
Furthermore, u and v cannot be both odd or both even, for in either case, c will be even, and
this will contradict the result in Step 3.

Step 6. If a = u2 − v2, b = 2uv, c = u2 + v2 where u and v are positive integers such that u > v,
gcd(u, v) = 1 and exactly one of u and v is odd, then (a, b, c) is a primitive solution of (1).
By actual substitution, we find that:

a2 + b2 = (u2 − v2)2 + 4u2v2 = (u2 + v2)2 = c2,

so that (a, b, c) is a solution. To show that (a, b, c) is a primitive solution, assume to the contrary
that p is an odd prime that divides both a and c. This implies p|c + a and p|c− a, i.e., p divides
both 2u2 and 2v2. Since p is odd, it follows that p divides both u2 and v2. Since p is a prime, it
must divide both u and v. However, gcd(u, v) = 1 implies that this is impossible. Thus, the only
possible common divisor that a and c may have must be a power of two. However, this is also
not possible because a must be odd. Thus, gcd(a, c) = 1, and (a, b, c) is a primitive solution.

Summing the above steps, we find that (9) generates all primitive Pythagorean triples.
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The following proof (see Beauregard and Suryanarayan [9] and Joyce [10]) of the converse of
Euclid’s statement is short and elementary.

If (a, b, c) is a primitive Pythagorean triple, then by Step 1, gcd(a, b) = 1, so we can always choose
a to be odd. Now, from (1), it follows that:

1 =
( c

b
+

a
b

) ( c
b
− a

b

)
.

Thus, the two terms on the right are rational and reciprocals of each other. Let the first one be u/v
in lowest terms, then the second is v/u, i.e.,

c
b
+

a
b

=
u
v

and
c
b
− a

b
=

v
u

.

Solving these equations, we get:

c
b

=
u2 + v2

2uv
and

a
b

=
u2 − v2

2uv
. (11)

Since gcd(u, v) = 1, both u and v cannot be even. If they both are odd, then u2 − v2 will have
four as the minimum possible factor, whereas 2uv will have two as the maximum possible factor,
and this will imply that a is even, which contradicts our assumption that a is odd. Thus, one of u
and v must be odd, and the other should be even. Hence, u2 ± v2 both must be odd, and obviously,
u > v. In conclusion, both fractions in (11) are fully reduced and hence lead to Euclid’s formula
a = u2 − v2, b = 2uv, c = u2 + v2.

The Pythagorean triple (13500, 12709, 18541) in Row 4, Table 2, can be obtained by letting
u = 125, v = 54 in (9). It is interesting to note that the corresponding u and v for each row in
Table 2 have no prime factors other than 2, 3, and 5 (the prime divisors of the Babylonian scale
60), and v < 60. For u = n + 1, v = n, n ≥ 1, Formula (9) reduces to (4). Indeed, then we have
u2 − v2 = 2n + 1, 2uv = 2n2 + 2n, u2 + v2 = 2n2 + 2n + 1. For u = n, v = 1, n ≥ 2, Formula (9)
reduces to (7). Indeed, then we have 2uv = 2n, u2 − v2 = n2 − 1, u2 + v2 = n2 + 1. In general, (9) gives
infinitely many primitive Pythagorean triples in which the hypotenuse exceeds one of the legs by 2v2.

Table 3 gives primitive Pythagorean triples with c ≤ 1000, sorted by increasing c.
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Table 3. Pythagorean triples.

(3, 4, 5) (5, 12, 13) (8, 15, 17) (7, 24, 25)
(20, 21, 29) (12, 35, 37) (9, 40, 41) (28, 45, 53)
(11, 60, 61) (16, 63, 65) (33, 56, 65) (48, 55, 73)
(13, 84, 85) (36, 77, 85) (39, 80, 89) (65, 72, 97)
(20, 99, 101) (60, 91, 109) (15, 112, 113) (44, 117, 125)
(88, 105, 137) (17, 144, 145) (24, 143, 145) (51, 140, 149)
(85, 132, 157) (119, 120, 169) (52, 165, 173) (19, 180, 181)
(57, 176, 185) (104, 153, 185) (95, 168, 193) (28, 195, 197)
(84, 187, 205) (133, 156, 205) (21, 220, 221) (140, 171, 221)
(60, 221, 229) (105, 208, 233) (120, 209, 241) (32, 255, 257)
(23, 264, 265) (96, 247, 265) (69, 260, 269) (115, 252, 277)
(160, 231, 281) (161, 240, 289) (68, 285, 293) (136, 273, 305)
(207, 224, 305) (25, 312, 313) (75, 308, 317) (36, 323, 325)
(204, 253, 325) (175, 288, 337) (180, 299, 349) (225, 272, 353)
(27, 364, 365) (76, 357, 365) (252, 275, 373) (135, 352, 377)
(152, 345, 377) (189, 340, 389) (228, 325, 397) (40, 399, 401)
(120, 391, 409) (29, 420, 421) (87, 416, 425) (297, 304, 425)
(145, 408, 433) (84, 437, 445) (203, 396, 445) (280, 351, 449)
(168, 425, 457) (261, 380, 461) (31, 480, 481) (319, 360, 481)
(44, 483, 485) (93, 476, 485) (132, 475, 493) (155, 468, 493)
(217, 456, 505) (336, 377, 505) (220, 459, 509) (279, 440, 521)
(92, 525, 533) (308, 435, 533) (341, 420, 541) (33, 544, 545)
(184, 513, 545) (165, 532, 557) (276, 493, 565) (396, 403, 565)
(231, 520, 569) (48, 575, 577) (368, 465, 593) (240, 551, 601)
(35, 612, 613) (105, 608, 617) (336, 527, 625) (100, 621, 629)
(429, 460, 629) (200, 609, 641) (315, 572, 653) (300, 589, 661)
(385, 552, 673) (52, 675, 677) (37, 684, 685) (156, 667, 685)
(111, 680, 689) (400, 561, 689) (185, 672, 697) (455, 528, 697)
(260, 651, 701) (259, 660, 709) (333, 644, 725) (364, 627, 725)
(108, 725, 733) (216, 713, 745) (407, 624, 745) (468, 595, 757)
(39, 760, 761) (481, 600, 769) (195, 748, 773) (56, 783, 785)
(273, 736, 785) (168, 775, 793) (432, 665, 793) (555, 572, 797)
(280, 759, 809) (429, 700, 821) (540, 629, 829) (41, 840, 841)
(116, 837, 845) (123, 836, 845) (205, 828, 853) (232, 825, 857)
(287, 816, 865) (504, 703, 865) (348, 805, 877) (369, 800, 881)
(60, 899, 901) (451, 780, 901) (464, 777, 905) (616, 663, 905)
(43, 924, 925) (533, 756, 925) (129, 920, 929) (215, 912, 937)
(580, 741, 941) (301, 900, 949) (420, 851, 949) (615, 728, 953)
(124, 957, 965) (387, 884, 965) (248, 945, 977) (473, 864, 985)
(696, 697, 985) (372, 925, 997)

3. Properties, Patterns, Extensions, and Problems

After the publication of Euclid’s Elements (Book X, Proposition 29), hundreds of professional, as
well as non-professional mathematicians have tried to find the properties/patterns of Pythagorean
triples, alternatives to Euclid’s formula (9), different forms of the generators (u, v), and Pythagorean
triples with specified properties. This has led to many interesting number-theoretical results, as well
as several innocent looking problems, which are still waiting for their solutions. Dickson [7], in his
three-volume history of number theory, gave a twenty-five-page account of what was achieved in the
field of Pythagorean triangles during more than two millennia and up to Leonhard Euler (1707–1783)
and modern times. The inspiration of this modern development was provided by the father of
modern number theory Pierre de Fermat (1601–1665), who in his marginal notes stated without
proof many theorems involving these integers. Later, these theorems were proven and intensified
by great mathematicians such as Euler, Joseph Louis Lagrange (1736–1813), Karl Friedrich Gauss
(1777–1855), and Joseph Liouville (1809–1882). In the following, we present some elementary results to
this introductory branch of number theory.
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P1. From (9), it follows that in a Pythagorean triangle (see Figure 1):

sin θ =
2uv

u2 + v2 = y (say), cos θ =
u2 − v2

u2 + v2 = x (say), tan θ =
2uv

u2 − v2 .

Further, from the half-angle formula tan θ/2 = sin θ/(1 + cos θ), we have tan(θ/2) = v/u.
We also note that y = (v/u)(x+ 1). Thus, if we draw a unit circle in the xy-plane with the origin at (0, 0)
and a straight line from the point (−1, 0) with slop v/u, then P = ((u2− v2)/(u2 + v2), 2uv/(u2 + v2))

is the other point of intersection of the line and the circle; see Figure 2.

Figure 2

(−1, 0)

P

P2. From (9) it follows that (c− a)(c − b)/2 = u2(u − v)2, i.e., (c− a)(c− b)/2 is always a perfect square.
This is only a necessary condition but not a sufficient one, (see Posamentier [36], p. 156). For example,
consider the triple (4, 8, 12) for which (c− a)(c− b)/2 = 42, but it is not a Pythagorean triple. We also note
from this simple observation that (3, 4, 7) cannot be a Pythagorean triple.

P3. If P is the perimeter of a primitive Pythagorean triangle (a, b, c), then P is even and P |ab. Indeed, we
have P = a+ b+ c = u2 − v2 + 2uv + u2 + v2 = 2u(u+ v), and ab = (u2 − v2)(2uv) = 2u(u+ v)v(u − v) =
P [v(u− v)]. Thus, in particular, the perimeter P divides 2A, where A = (1/2)ab is the area of the triangle.
Fermat proved that A can never be a square number (see P37), later it was shown that it cannot be twice
the square number (see Carmichael [10,11]).

P4. In a primitive Pythagorean triple (a, b, c), either a or b is divisible by 3. For this, first we note that any
numberm can be written either as 3k, 3k+1, or 3k+2. But, since (3k+2)2 = 9k2+12k+4 = 3(3k2+4k+1)+1
is of the form 3h+ 1, no integer m2 can be written in the form 3k + 2, hence all integers squared are of the
form 3k, or 3k + 1. Thus, if in (9) either u2 or v2 happens to be of the form 3k (this is to say, if either 3|u2

or 3|v2), then 3|u or 3|v, in which case 3|2uv. Now assume that both u2 and v2 take the form 3k + 1; to be
specific, let u2 = 3k + 1 and v2 = 3h+ 1. Then, we have u2 − v2 = (3k + 1)− (3h+ 1) = 3(k − h). Hence,
3|u2 − v2. In conclusion, in a primitive Pythagorean triple (a, b, c) exactly one of the integers is divisible by
3. As an example, see any triple in Table 77.3.

P5. In a primitive Pythagorean triple (a, b, c), either a or b is divisible by 4. In (9), u and v are of opposite
parity-one even and the other odd, and hence 4|2uv. In conclusion, in a primitive Pythagorean triple (a, b, c)
exactly one of the integers is divisible by 4. As an example, see any triple in Table 77.3.

P6. In a primitive Pythagorean triple (a, b, c), one side is divisible by 5. For this, first we note that any
number m can be written either as 5k, 5k + 1, 5k + 2, 5k + 3, or 5k + 4. But, m2 can be written only as
5k, 5k+1, or 5k+4. Thus, if in (9) either u2 or v2 happens to be of the form 5k (this is to say, if either 5|u2

or 5|v2), then 5|u or 5|v, in which case 5|2uv. Now assume that both u2 and v2 take the form 5k + 1; to be
specific, let u2 = 5k + 1 and v2 = 5h+ 1. Then, we have u2 − v2 = (3k + 1)− (3h+ 1) = 5(k − h). Hence,
5|u2 − v2. Similarly, if u2 = 5k + 4 and v2 = 5h+ 4, then 5|u2 − v2. Finally, if u2 = 5k+ 4 and v2 = 5h+ 1,
then u2 + v2 = 5(k + h + 1), and this implies that 5|(u2 + v2). In conclusion, in a primitive Pythagorean
triple (a, b, c) exactly one of the integers is divisible by 5. As an example, see any triple in Table 77.3.

From P4-P6 it follows that in every primitive Pythagorean triple (a, b, c), the product ab is divisible by 12,
and the product abc is divisible by 60. The smallest and best known Pythagorean triple (3, 4, 5) shows that
this observation is the best possible, see (MacHale and van den Bosch [30]). Further, out of three divisors
3, 4, 5 one of the numbers a, b, c may have any two of these divisors, e.g., (8, 15, 17), (7, 24, 25), (20, 21, 29), or
even all three as in (11, 60, 61). It is not known if there are two distinct Pythagorean triples having the same
product. The existence of two such triples corresponds to a nonzero solution of a Diophantine equation.

P7. In a primitive Pythagorean triple (a, b, c) none of the sides can be of the form 4n+ 2, n ≥ 1. Since u
and v are of different parity a = u2 − v2 is of the form 4k ± 1, k ≥ 1, b = 2uv is of the form 4k, k ≥ 1, and

10

Figure 2. Geometric interpretation of Pythagorean triples.

P2. From (9) it follows that (c− a)(c− b)/2 = u2(u− v)2, i.e., (c− a)(c− b)/2 is always a perfect
square. This is only a necessary condition, but not a sufficient one (see Posamentier [11], p. 156).
For example, consider the triple (4, 8, 12) for which (c− a)(c− b)/2 = 42, but it is not a Pythagorean
triple. We also note from this simple observation that (3, 4, 7) cannot be a Pythagorean triple.

P3. If P is the perimeter of a primitive Pythagorean triangle (a, b, c), then P is even and P|ab. Indeed,
we have P = a + b + c = u2 − v2 + 2uv + u2 + v2 = 2u(u + v) and ab = (u2 − v2)(2uv) = 2u(u +

v)v(u− v) = P[v(u− v)]. Thus, in particular, the perimeter P divides 2A, where A = (1/2)ab is the
area of the triangle. Fermat proved that A can never be a square number (see P37); later, it was shown
that it cannot be twice the square number (see Carmichael [12,13]).

P4. In a primitive Pythagorean triple (a, b, c), either a or b is divisible by three. For this, first we
note that any number m can be written either as 3k, 3k + 1, or 3k + 2. However, since (3k + 2)2 =

9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 is of the form 3h + 1, no integer m2 can be written in the form
3k + 2; hence, all integers squared are of the form 3k or 3k + 1. Thus, if in (9) either u2 or v2 happens to
be of the form 3k (that is to say, if either 3|u2 or 3|v2), then 3|u or 3|v, in which case 3|2uv. Now, assume
that both u2 and v2 take the form 3k + 1; to be specific, let u2 = 3k + 1 and v2 = 3h + 1. Then, we have
u2 − v2 = (3k + 1)− (3h + 1) = 3(k− h). Hence, 3|u2 − v2. In conclusion, in a primitive Pythagorean
triple (a, b, c), exactly one of the integers is divisible by three. As an example, see any triple in Table 3.

P5. In a primitive Pythagorean triple (a, b, c), either a or b is divisible by four. In (9), u and v are of
opposite parity-one even and the other odd, and hence 4|2uv. In conclusion, in a primitive Pythagorean
triple (a, b, c) exactly one of the integers is divisible by four. As an example, see any triple in Table 3.

P6. In a primitive Pythagorean triple (a, b, c), one side is divisible by five. For this, first we note that any
number m can be written either as 5k, 5k + 1, 5k + 2, 5k + 3, or 5k + 4. However, m2 can be written only
as 5k, 5k + 1, or 5k + 4. Thus, if in (9), either u2 or v2 happens to be of the form 5k (that is to say, if either
5|u2 or 5|v2), then 5|u or 5|v, in which case 5|2uv. Now, assume that both u2 and v2 take the form 5k + 1;
to be specific, let u2 = 5k + 1 and v2 = 5h + 1. Then, we have u2− v2 = (3k + 1)− (3h + 1) = 5(k− h).
Hence, 5|u2 − v2. Similarly, if u2 = 5k + 4 and v2 = 5h + 4, then 5|u2 − v2. Finally, if u2 = 5k + 4 and
v2 = 5h + 1, then u2 + v2 = 5(k + h + 1), and this implies that 5|(u2 + v2). In conclusion, in a primitive
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Pythagorean triple (a, b, c) exactly one of the integers is divisible by five. As an example, see any triple
in Table 3.

From P4–P6, it follows that in every primitive Pythagorean triple (a, b, c), the product ab is
divisible by 12, and the product abc is divisible by 60. The smallest and best known Pythagorean
triple (3, 4, 5) shows that this observation is the best possible; see MacHale and van den Bosch [14].
Further, out of three divisors 3, 4, 5, one of the numbers a, b, c may have any two of these divisors,
e.g., (8, 15, 17), (7, 24, 25), (20, 21, 29), or even all three as in (11, 60, 61). It is not known if there are two
distinct Pythagorean triples having the same product. The existence of two such triples corresponds to
a nonzero solution of a Diophantine equation.

P7. In a primitive Pythagorean triple (a, b, c), none of the sides can be of the form 4n + 2, n ≥ 1. Since
u and v are of different parity, a = u2 − v2 is of the form 4k± 1, k ≥ 1, b = 2uv is of the form 4k, k ≥ 1,
and c = u2 + v2 is of the form 4k± 1, k ≥ 1.

P8. From P3, it follows that P = A, i.e., the perimeter of a Pythagorean triangle and its area are the
same if and only if 2u(u + v) = u(u + v)v(u− v), which is the same as v(u− v) = 2. Thus, either (i)
v = 2, u− v = 1, or (ii) v = 1, u− v = 2. The case (i) gives u = 3, v = 2 and leads to the Pythagorean
triple (5, 12, 13), whereas the case (ii) implies u = 3, v = 1 and gives the Pythagorean triple (6, 8, 10).
Thus, there is only one primitive Pythagorean triangle (5, 12, 13) for which P = A.

P9. There exist primitive Pythagorean triangles having the same perimeter P = 2u(u+ v). The first two
primitive Pythagorean triangles with the same perimeter 1716 are (364, 627, 725) and (195, 748, 773).
Next, two primitive Pythagorean triangles (340, 1131, 1181) and (51, 1300, 1301) correspond to the
same perimeter 2652. Other parameters that have more than one primitive Pythagorean triangle are
3876, 3960, 4290, 5244, 5700, 5720, 6900, 6930, 8004, 8700, 9300, 9690, 10010, 10788, 11088, 12180, 12876,
12920, 13020, 13764, 14280, 15252, 15470, 15540, 15960, 16380, 17220, 17480, 18018, 18060, 18088, 18204,
19092,19320, 20592, 20868, · · · . The first three primitive Pythagorean triangles with the same
perimeter 14280 are (3255, 5032, 5993), (168, 7055, 7057), and (119, 7080, 7081). The next perimeter
is 72930 with three primitive Pythagorean triangles (18480, 24089, 30361), (7905, 32032, 32993), and
(2992, 34905, 35033). Four primitive Pythagorean triangles having a common perimeter also exist. For
a perimeter less than 106, there exist only seven quads. The smallest value of the perimeter, for which
a quad is possible, is 317460.

P10. Fermat gave a simple method to find pairs of Pythagorean triangles with equal areas. If (a, b, c)
is a primitive Pythagorean triple, then the legs of the Pythagorean triangle having u = c2, v = 2ab
as generators will be u2 − v2 = c4 − 4a2b2 = (b2 − a2)2, 2uv = 4abc2, and hypotenuse u2 + v2 =

c4 + 4a2b2. The area of this triangle is 2abc2(b2 − a2)2. Furthermore, the area of the Pythagorean
triangle having legs 2ca(b2 − a2), 2cb(b2 − a2), and hypotenuse 2c2(b2 − a2), i.e., pa, pb, pc where
p = 2c(b2 − a2) is 2c2ab(b2 − a2)2. Taking a = 3, b = 4, c = 5, we find that the Pythagorean
triangles (49, 1200, 1201) and (210, 280, 350) have the same area, namely 29400. Notice that the triple
(210, 280, 350) is not primitive. The smallest two primitive Pythagorean triples having the same
common area 210 are (20, 21, 29) and (12, 35, 37). Some other primitive Pythagorean triples having
the same area are (60, 91, 109), (28, 195, 197) with common area 2730; (95, 168, 193), (40, 399, 401) with
common area 7980; and (341, 420, 541), (132, 1085, 1093) with common area 71610.

Three Pythagorean triangles having the same area can also be found. It is easy to see that if
p, q, r, s are four numbers in arithmetic progression, then the Pythagorean triangles corresponding to
generators (i) u = rs, v = pq, (ii) u = r(r + q), v = p(r− q), (iii) u = q(r + q), v = s(r− q) will all have
the same area (r2s2 − p2q2)pqrs. For example, let us take p = 1, q = 2, r = 3, s = 4. Then, respectively,
we have:

(A) u = rs = 12, v = pq = 2, a = u2 − v2 = 140, b = 2uv = 48, c = u2 + v2 = 148;
(B) u = r(r + q) = 15, v = p(r− q) = 1, a = u2 − v2 = 224, b = 2uv = 30, c = u2 + v2 = 226;
(C) u = q(r + q) = 10, v = s(r− q) = 4, a = u2 − v2 = 84, b = 2uv = 80, c = u2 + v2 = 116.
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Three Pythagorean triangles obtained from (A), (B), (C) are (48, 140, 148), (30, 224, 226), (80, 84,
116). They all have a common area 3360. Notice that none of these triples is primitive. Another
construction for three Pythagorean triangles having the same area was suggested by Beiler [15]:
Take three sets of generators as (u1 = u2 + uv + v2, v1 = u2 − v2), (u2 = u2 + uv + v2, v2 =

2uv + v2), and (u3 = u2 + 2uv, v3 = u2 + uv + v2). Then, the right triangle generated by each
triple (u2

i − v2
i , 2uivi, u2

i + v2
i ) has common area A = uv(2u + v)(u + 2v)(u + v)(u− v)(u2 + uv + v2).

In particular, for u = 2, v = 1, the three Pythagorean triangles are (40, 42, 58), (24, 70, 74), and
(15, 112, 113), and the common area is 840. Three primitive Pythagorean triples that have the same
area are (4485, 5852, 7373), (3059, 8580, 9109), (1380, 19019, 19069) with the area 13123110. This was
discovered by Shedd [16] in 1945. Sets of four Pythagorean triangles with equal area are also known;
the one having the smallest area is (111, 6160, 6161), (231, 2960, 2969), (518, 1320, 1418), (280, 2442, 2458)
with area 341880 (see Beiler [15], p. 127, and Guy [17], pp. 188–190). In general, Fermat proved that
for each natural number n, there exist n Pythagorean triangles with different hypotenuses and the
same area.

P11. Pythagorean triangles whose areas consists of a single digit include (3, 4, 5) (area of six) and
(693, 1924, 2045) (area of 666666) (see Wells [18], p. 89).

P12. For u = 149, v = 58, we get a Pythagorean triple (17284, 18837, 25565), the area of the triangle
corresponding to which is 162789354, a number using all nine digits 1, 2, · · · , 9. Many such triples
are known. Another such triple is (26767, 68544, 73585) obtained by letting u = 224 and v = 153,
the corresponding area being 917358624.

P13. There are Pythagorean triples for which the area of the corresponding triangle is represented by a
number using all ten digits. One such triple is (6660, 443531, 443581) obtained by letting u = 666 and
v = 5. The corresponding area is 1476958230. Another such triple is (86995, 226548, 242677) obtained
by putting u = 406 and v = 279, the corresponding area being 9854271630.

P14. In 1643, Fermat wrote a letter to Pére Marin Mersenne (1588–1648) in which he posed the problem
of finding a Pythagorean triangle (a, b, c) whose hypotenuse and sum of the legs were squares of
integers, i.e., find integers p and q such that c = p2 and a + b = q2. By using Fermat’s method of
infinite descent (The earliest uses of the method of infinite descent appear in Euclid’s Elements, Book
VII, Proposition 31. In this method, one assumes the existence of a solution, which is related to one or
more integers, and shows the existence of another solution, which is related to smaller one or more
integers, and this process infinitely continues. This leads to a contradiction.), it is found that the values
u = 2150905, v = 246792 give a desired solution. In fact, we find:

a = u2 − v2 = 4565486027761, b = 2uv = 1061652293520

and
c = u2 + v2 = 4687298610289 = 21650172, x + y = 5627138321281 = 23721592.

There exist infinitely many such Pythagorean triples, but the above values are the smallest possible.

P15. Two triples are called siblings if they have a common hypotenuse, e.g., (16, 63, 65), (33, 56, 65)
and (13, 84, 85), (36, 77, 85) in Table 3. If we search among larger hypotenuses, we may find larger
sets of siblings, e.g., there are four primitive triples with hypotenuses 1105: (47, 1104, 1105), (264,
1073, 1105), (576, 943, 1105), (744, 817, 1105). The hypotenuse 32045 has eight primitive triples: (716,
32037, 32045), (2277, 31964, 32045), (6764, 31323, 32045), (8283, 30956, 32045), (15916, 27813, 32045),
(17253, 27004, 32045), (21093, 24124, 32045), (22244, 23067, 32045). A twin Pythagorean triple is a
Pythagorean triple (a, b, c) for which two values are consecutive integers. In the following table (see
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http://oeis.org/A101903), we present the number of twin Pythagorean triples, denoted as a(n) with
hypotenuse less than 10n, n ≤ 24.

n a(n) n a(n) n a(n) n a(n)
1 1 2 7 3 24 4 74
5 228 6 712 7 2243 8 7079
9 22370 10 70722 11 223619 12 707120

13 2236083 14 7071084 15 22360697 16 70710696
17 223606818 18 707106802 19 2236067999 20 7071067836
21 22360679800 22 70710678145 23 223606797778 24 707106781216

P16. Let Nh(n) and Np(n) denote the number of primitive Pythagorean triangles whose hypotenuses
and perimeters do not exceed n, respectively. In 1900, Derrick Norman Lehmer (1867–1938) proved that:

lim
n→∞

Nh(n)
n

=
1

2π
and lim

n→∞

Np(n)
n

=
ln(2)

π2 .

From (9), hypotenuse = c = u2 + v2 < n implies that u and v must lie in the positive quarter
of the circle with radius

√
n. Further, since u > v, u, v must lie below the line u = v; see Figure 2.

The area of this segment is nπ/8. Ernesto Cesaro (1859–1906) in 1880 showed that the probability of
gcd(u, v) = 1 is equal to 6/π2. Further, the probability of both u and v not being odd conditioned to
the coprime is 2/3. Thus, we have:

Nh(n) '
nπ

8
× 6

π2 ×
2
3
=

n
2π

.

Similarly, we can show that Np(n) ' (n ln 2)/π2. From these approximations, it follows that
Nh(1000) ' 159.15 and Np(1000) ' 70.23. From Table 3, actual computation gives Nh(1000) = 158
and Np(1000) = 71. In 2002, Benito and Varona [19] proved that the number Na,b(n) of primitive
Pythagorean triangles (a, b, c) such that both the legs a and b do not exceed n is:

Na,b(n) =
4 ln(1 +

√
2)

π2 n + O(
√

n).

On counting, we find that the exact value of Na,b(1000) = 358, whereas the above formula gives
Na,b(1000) ' 357.

P17. Since (u + vi)2 = (u2 − v2) + i(2uv), it follows from (9) that the square of any complex number
u + vi (where u, v are coprime positive integers with u > v) yields the legs of a primitive Pythagorean
triangle. Thus, for example, (4 + 3i)2 = 7 + 24i gives a = 7 and b = 24, and from (1), we have
72 + 242 = 252, i.e., (7, 24, 25) is a Pythagorean triple.

P18. There are Pythagorean triples (not necessarily primitive) each side of which is a Pythagorean
triangular number tn = n(n + 1)/2, for example (t132, t143, t164) = (8778, 10296, 13530). It is not known
whether infinitely many such triples exist.

P19. Consider any two integers u and v such that u > v > 0. Then, from the four integers {u −
v, v, u, u + v} known as the Pythagorean triangle generator, we can always calculate a Pythagorean
triangle. For this, we take the product of the outer two integers, i.e., (u− v)(u + v) = u2 − v2, which
gives one leg, then we take twice the product of the middle two integers, i.e., 2uv, which gives the
another leg, and then take the the sum of squares of the inner two integers, i.e., u2 + v2, which gives
the hypotenuse of the triangle. For example, for u = 2, v = 1, we have {1, 1, 2, 3}, and from this,
we can easily calculate the primitive Pythagorean triple (3, 4, 5). If we take u = 3, v = 1, then we
have {2, 1, 3, 4}, and we get the triple (6, 8, 10), which is not primitive. Now, recall that Fibonacci

http://oeis.org/A101903
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numbers (first introduced by Pingala around 500 BC) are generated from the recurrence relation (due
to Albert Girard 1595–1632) Fk+2 = Fk+1 + Fk, F1 = 1, F2 = 1. The first few Fibonacci numbers are
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657. Now, we
choose two consecutive Fibonacci numbers v = Fk+1 and u = Fk+2 and, from the recurrence relation,
note that u− v = Fk+2 − Fk+1 = Fk and u + v = Fk+2 + Fk+1 = Fk+3, and hence, {Fk, Fk+1, Fk+2, Fk+3}
forms a Pythagorean triangle generator. This leads to the relation (see Dujella, [20]):

(FkFk+3)
2 + (2Fk+1Fk+2)

2 = (F2
k+1 + F2

k+2)
2, k ≥ 1. (12)

Now, from a well known identity F2
k+1 + F2

k+2 = F2k+3 (see Burton [8]), (12) can be better written as:

(FkFk+3)
2 + (2Fk+1Fk+2)

2 = F2
2k+3, k ≥ 1. (13)

As an illustration, for {F6 = 8, F7 = 13, F8 = 21, F9 = 34}, Relation (12) gives:

(8× 34)2 + (2× 13× 21)2 = (132 + 212)2,

which is the same as:
2722 + 5462 = (169 + 441)2 = 6102 = F2

15.

It does not give a primitive Pythagorean triple (272, 546, 610). However, for {5, 8, 13, 21}, Relation
(12) leads to:

(105)2 + (208)2 = 2332,

which gives a primitive Pythagorean triple (105, 208, 233).
In conclusion, (12), or equivalently (13), furnishes primitive, as well as non-primitive Pythagorean

triples. Further, it does not provide all primitive Pythagorean triples.

P20. To find Pythagorean triangles with all three sides’ consecutive integers, let p be a positive integer.
From (9), we have either (i) 2uv = p, u2 − v2 = p + 1, u2 + v2 = p + 2 or (ii) u2 − v2 = p, 2uv =

p + 1, u2 + v2 = p + 2. Clearly, (i) implies that (u2 − v2) + (u2 + v2) = 2u2 = 2p + 3, which is
impossible. Next, (ii) implies that 2u2 = 2p + 2, i.e., u2 = p + 1. Furthermore, we have 2uv = p + 1,
and hence, u2 = 2uv, i.e., u = 2v. Now, since u and v are relatively prime, we must have u = 2, v = 1,
and hence, a = u2 − v2 = 3, b = 2uv = 4, c = u2 + v2 = 5. In conclusion, (3, 4, 5) is the only
primitive Pythagorean triple with the three sides’ consecutive integers. This fact can also be seen as
follows: If (a, a + 1, a + 2) is a Pythagorean triple, then a2 + (a + 1)2 = (a + 2)2, which is the same
as a2 − 2a− 3 = (a− 3)(a + 1) = 0, and hence, a = 3. Similarly, it follows that the only Pythagorean
triangles with sides in arithmetic progression are those with sides 3n, 4n, 5n, n = 1, 2, 3, · · · .

P21. To find Pythagorean triangles in which the hypotenuse exceeds the larger leg by one, we shall
show that Formula (4) generates all such Pythagorean triangles. Since (9) generates all primitive
Pythagorean triangles, either (i) u2 + v2 = u2 − v2 + 1 or (ii) u2 + v2 = 2uv + 1. However, (i) leads
to 2v2 = 1, which is impossible. Now, (ii) is the same as (u− v)2 = 1, which implies that u = v + 1.
Letting v = n, then u = n + 1. Putting this u and v in (9), we obtain (4). Thus, there are infinite such
Pythagorean triangles.

In Dudley’s book [21], page 127, the following problem was given: Prove that if the sum of
two consecutive integers is a square, then the smaller is the leg and the larger the hypotenuse of a
Pythagorean triangle. His obvious solution was k + (k + 1) = m2 implying that k2 + m2 = (k + 1)2.
However, the question is for what integers k and m, k + (k + 1) = m2. From P21, we notice that the
only choice is k = 2n2 + 2n and m = (2n + 1).

P22. To find Pythagorean triangles with consecutive legs, from (9), it is necessary that either (i)
u2 − v2 = 2uv + 1 or (ii) 2uv = u2 − v2 + 1. In Case (i), it follows that (u− v)2 = 2v2 + 1, which is
the same as (u− v)2 − 2v2 = 1. Similarly, Case (ii) leads to the equation (u− v)2 − 2v2 = −1. Thus,
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in Case (i), we need to find integer solutions of the equation x2 − 2y2 = 1, whereas in Case (ii) of the
equation, x2 − 2y2 = −1. In the literature, these equations are mistakenly known as Pell’s equation.
In fact, the English mathematician John Pell (1611–1685) has nothing to do with these equations.
Euler mistakenly attributed to Pell a solution method that had in fact been found by another English
mathematician, William Brouncker (1620–1684), in response to a challenge by Fermat. In reality, second
order indeterminate equations, of the form Nx2 + 1 = y2 where N is an integer, were first discussed by
Brahmagupta (born 30 BC). For their solution, he employed his “Bhavana” method and showed that
they have infinitely many solutions. Unfortunately, it has been recorded that Fermat was the first to
assert that it has infinitely many solutions. His celebrated work Brāhmasphutasiddhānta was translated
into English by Henry Thomas Colebrooke (1765–1837). We shall use the inductive method to show
that all solutions of these equations can be generated by the recurrence equations:

xn+1 = 3xn + 4yn

yn+1 = 2xn + 3yn, n ≥ 1.
(14)

For this, we assume the existence of the minimal solution (known as the fundamental solution)
(x1, y1) of the concerned equation and assume that (xn, yn) is also a solution, then it follows that:

x2
n+1 − 2y2

n+1 = (3xn + 4yn)
2 − 2(2xn + 3yn)

2 = x2
n − 2y2

n,

and this shows that (xn+1, yn+1) is also a solution of the equation. For the equation x2 − 2y2 = 1, the
minimal solution (by inspection) is (3,2), and the next three solutions obtained from (14) are (17,12),
(99,70), and (577,408). Similarly, for the equation x2 − 2y2 = −1, the minimal solution of (1,1) and
the next three solutions generated from (14) are (7,5), (41,29), and (239,169). In the following table,
we use these eight values to record u(= x + y), v(= y), u2 − v2, 2uv, u2 + v2 and the corresponding
Pythagorean triples. From the table, it is clear that the numbers are increasing very rapidly, but still,
such triples are infinite.

u v u2 − v2 2uv u2 + v2 (a, b, c)
2 1 3 4 5 (3, 4, 5)
5 2 21 20 29 (20, 21, 29)

12 5 119 120 169 (119, 120, 169)
29 12 697 696 985 (696, 697, 985)
70 29 4059 4060 5741 (4059, 4060, 5741)

169 70 23661 23660 33461 (23660, 23661, 33461)
408 169 137903 137904 195025 (137903, 137904, 195025)
985 408 803761 803760 1136689 (803760, 803761, 1136689)

Upon scanning the data in Table 3, we notice that triples satisfying c− b = 1 are more dense than
those satisfying b− a = 1. The fact that there are infinitely many Pythagorean triples of this type can
also be shown rather easily: If (a, a + 1, c) happens to be a Pythagorean triple, so is (3a + 2c + 1, 3a +
2c + 2, 4a + 3c + 2). Indeed, we have:

(3a + 2c + 1)2 + (3a + 2c + 2)2 = 18a2 + 8c2 + 5 + 24ac + 18a + 12c
= 9(a2 + (a + 1)2) + 8c2 + 24ac + 12c− 4
= 17c2 + 24ac + 12c− 4 = (4a + 3c + 2)2.

Diophantus set the problem of finding a number p such that both 10p + 9 and 5p + 4 are squares.
Letting 10p + 9 = x2 and 5p + 4 = y2, we get the same equation x2 − 2y2 = 1, for which the minimal
solution (which gives the nonzero solution) is (17, 12). Solving the equations 10p + 9 = 172 and
5p + 4 = 122, we find x = 28.
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P23. Diophantus as a problem asked to find a Pythagorean triangle in which the hypotenuse minus each
of the legs is a cube. His answer was (40, 96, 104), which leads to the required primitive Pythagorean
triple (5, 12, 13). From (9), we note that we need to find the solutions of the equations c− a = p3, c− b =

q3, where p and q are some positive integers. However, since c− a = 2v2 and c− b = (u− v)2 from
the equation c− a = 2v2 = p3, we must have v = 2, and now from the equation c− b = (u− v)2 =

(u− 2)2 = q3, it follows that u− 2 = k3 or u = k3 + 2, where k is any positive integer. Thus, the required
members of all Pythagorean triples are a = (k3 + 2)2 − 22, b = 22(k3 + 2), c = (k3 + 2)2 + 22, k ≥ 1
with c − a = 23 and c − b = (k2)3. For k = 1, 2, 3, we get the triples (5, 12, 13), (40, 96, 104), and
(116, 837, 845), i.e., we get primitive, as well as non-primitive Pythagorean triples.

P24. To find primitive Pythagorean triangles, one of whose legs is a perfect square, we need to solve
the equation (x2)2 + b2 = c2, which is the same as x4 = (c + b)(c− b). We recall that (c, b) = 1 and
c is always odd, so there are two possible cases to consider: (i) b is even; and (ii) b is odd. In Case
(i), equation x4 = (c + b)(c− b) holds provided there exist odd integers p and q such that p > q and
c + b = p4, c− b = q4 (see Step 4 above), and hence:

c =
p4 + q4

2
, b =

p4 − q4

2
, a = x2 = p2q2.

We present some desired triples in the following table.

p q a b c
3 1 9 = 32 40 41
5 1 25 = 52 312 313
5 3 225 = 152 272 353
7 1 49 = 72 1200 1201

Clearly, there exist infinitely many Pythagorean triples whose odd member is a perfect square.
In Case (ii), we can choose c + b = 23s4, c− b = 2t4, where t is odd. These relations give:

c = 22s4 + t4, b = 22s4 − t4, a = x2 = 22s2t2.

Using these relations, we compute some Pythagorean triples in the following table.

s t a b c (a, b, c)
1 1 4 = 22 3 5 (3, 4, 5)
2 1 16 = 42 63 65 (16, 63, 65)
3 1 36 = 62 323 325 (36, 323, 325)
4 1 64 = 82 1023 1025 (64, 1023, 1025)
4 3 576 = 242 943 1105 (576, 943, 1105)

Clearly, there exist infinitely many Pythagorean triples whose even member is a perfect square.

P25. To find primitive Pythagorean triangles whose hypotenuse is a perfect square, we need to deal
with the equation a2 + b2 = (z2)2, which is the same as (a + ib)(a− ib) = z4. Now, since gcd(a, b) = 1,
there exist integers p and q such that (p, q) = 1 and a + ib = (p + iq)4 also a− ib = (p− iq)4. Next,
comparing the real and imaginary parts, we find:

a = |p4 + q4 − 6p2q2| and b = 4pq|p2 − q2|;

here, the modulus sign is taken without loss of generality (we need a2 and b2). Then, we also have:

c = (p + iq)2(p− iq)2 = (p2 + q2)2.

We present some required triples in the following table.
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p q a b c (a, b, c)
2 1 7 24 25 = 52 (7, 24, 25)
3 2 119 120 169 = 132 (119, 120, 169)
4 1 161 240 289 = 172 (161, 240, 289)
4 3 527 336 625 = 252 (336, 527, 625)
5 1 476 480 676 = 262 (119, 120, 169)
5 2 41 840 841 = 292 (41, 840, 841)
5 3 644 960 1156 = 342 (161, 240, 289)
5 4 1519 720 1681 = 412 (1519, 720, 1681)

Note that in the above table, p = 3, q = 2 and p = 5, q = 1 give the same primitive Pythagorean
triple. The same holds for p = 4, q = 1 and p = 5, q = 3.

P26. To find primitive Pythagorean triangles Lp(n) whose one leg n > 0 is given, there are two cases to
consider: (i) n is odd, then u2 − v2 = n; or (ii) n is even, then 2uv = n. The number of integer solutions
of these equations depends on the prime factorization of n. Let n = 2s ps1

1 · · · p
sk
k , where p1, p2, · · · , pk

are distinct primes. If s = 0, n is odd and u > v, then n can be factored as a product of two relatively
prime factors in 2k−1 ways. Corresponding to each such way, u2 − v2 = n has exactly one solution in
positive integers, and hence, there will be 2k−1 solutions. If s = 1, then n is an odd multiple of two,
and the equation 2uv = n does not have any solution in integers because 2uv is a multiple of four.
If s ≥ 2 and u > v, then the number of ways in which n can be factored into a pair of relatively prime
factors is 2(k+1)−1, i.e., 2k, and therefore, there are 2k solutions of 2uv = n with u > v. Summarizing
these arguments, we have the following result: If n is of the form 4p + 2, then Lp(n) = 0 (see P7). If n
is not of this form, then Lp(n) = 2q−1, where q is the number of distinct primes occurring in the prime
factorization of n. As examples, consider the cases n = 60, 65, 75, 86. Since 60 = 22× 3× 5, the number
of primes occurring in the factorization is q = 3, and so, there are 23−1, i.e., four primitive Pythagorean
triangles having 60 as a leg. From Table 3, these triples are (11, 60, 61), (60, 91, 109), (60, 221, 229), and
(60, 899, 901). Since 65 = 5× 13, q = 2, and so, there are 22−1 = 2 primitive triangles having 65 as a leg.
These triples are (65, 72, 97) and (65, 2112, 2113). Since 75 = 3× 52, q = 2, and so, there are 22−1 = 2
primitive Pythagorean triangles having 75 as a leg. These triples are (75, 308, 317) and (75, 2812, 2813).
Since 86 = 4(21) + 2, there are no primitive Pythagorean triangles having 86 as a leg.

In a similar way (see Beiler [15]), we can find the number of primitive Pythagorean triangles
Hp(n) having n as a hypotenuse. We factorize n as:

n = 2a0
(

pa1
1 · · · pas

s
) (

qb1
1 · · · q

bt
t

)
,

where p′s are of the form 4r− 1 and q′s are of the form 4r + 1. Then,

Hp(n) =

{
2t−1 if s = 0 and a0 = 0
0 otherwise.

As an example, we consider 65, 75, 325, and 389. Since 65 = (4 + 1)(4× 3 + 1), s = 0, a0 =

0, and t = 2, so Hp(65) = 22−1 = 2. From Table 3, these triples are (16, 63, 65) and (33, 56, 65).
Since 75 = (4− 1)(4 + 1)2, s = 1, a0 = 0, so Hp(75) = 0. Since 325 = (4 + 1)2(4× 3 + 1), s = 0, a0 = 0
and t = 2, so Hp(325) = 2. From Table 3, these triples are (36, 323, 325) and (204, 253, 325). Since
389 = (4× 97 + 1), s = 0, a0 = 0 and t = 1, so Hp(389) = 1. From Table 3, this triple is (189, 340, 389).

Combining the above results, we can find the total number of ways in which a given n may
be either a leg or hypotenuse of a primitive Pythagorean triangle as Tp(n) = Lp(n) + Hp(n). As an
example, we consider 325. Since 325 = 52 × 13 = (4 + 1)2(4× 3 + 1), it follows that Lp(325) = 2 and
Hp(325) = 2, and hence, Tp(325) = 2+ 2 = 4. Indeed, the triples are (228, 325, 397), (325, 52812, 52813),
(36, 323, 325), and (204, 253, 325).
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If n = 2m, m ≥ 2, then Lp(2m) = 1 and Hp(2m) = 0. To find the unique primitive Pythagorean
triangle whose one leg is 2m, from (9), it follows that b = 2uv = 2m or uv = 2m−1. Thus, from
Step 4 and the fact that u > v, we have u = 2m−1 and v = 1. Hence, the members of the required
triple are 22(m−1) − 1, 2m, 22(m−1) + 1, which for p = 2 and p = 3, respectively, give the primitive
Pythagorean triples as (3, 22, 5) and (23, 15, 17). Now, we shall show that there are exactly m− 2, m ≥ 3
non-primitive triangles whose one leg is 2m. Clearly, for a non-primitive triple, the members are:

a = d(u2 − v2), b = d(2uv), c = d(u2 + v2), d ≥ 2.

If 2m = d(u2 − v2), then from the fact that u > v, and u and v are of different parity (u2 − v2) ≥ 3
and odd. Thus, it is necessary that d = 2mD, D ≥ 1. However, then 2m = 2mD(u2 − v2), which
means 1 = D(u2 − v2). However, this is impossible. Similarly, we can show that 2m 6= d(u2 + v2).
Thus, the only possibility left is 2m = d(2uv) or 2m−1 = d(uv), which implies that there exists some
2k = d, 0 ≤ k ≤ m− 1. However, the cases k = 0 and k = m− 1 can be ruled out. Indeed, for k = 0,
it gives d = 1, but we have d ≥ 2; and the fact that uv is even assures that k cannot be m − 1. In
conclusion, we have uv = 2m−k−1, 1 ≤ k ≤ m− 2, which implies that u = 2m−k−1, v = 1. This leads to
the following members of the non-primitive triples:

2m, 2k(22(m−k−1) − 1), 2k(22(m−k−1) − 1), k = 1, 2, · · · , m− 2.

For m = 4, two non-primitive triples are (24, 30, 34), (12, 24, 20), and for m = 5, three non-primitive
triples are (25, 126, 130), (25, 60, 68), (24, 25, 40). This corrects a minor error in the work of Zelator [22]
(also see [23]) and supplements the conclusion of Problem 5 on page 240 in the book of Burton [8].

P27. In a triangle, we can draw a circle touching all three sides, and this circle is called in-circle with
the radius as in-radius denoted as r and the center as the in-center. The in-radius of a Pythagorean
triangle (a, b, c) satisfies (see Burton [8], page 239) the relation r(a + b + c) = 2∆ = ab (two formulae
for r in terms of the sides a, b, c were known to Liu Hui; see Nine Chapters on the Mathematical Arts).
In this relation, substituting a = k(u2 − v2), b = k(2uv), c = k(u2 + v2) (here, k > 0 is an integer), we
get r = k(u− v)v, which shows that the in-radius of a Pythagorean triangle is an integer. The number
of distinct primitive Pythagorean triangles having a common in-radius r depends on the number of
distinct prime divisors of r. If the prime factorization of r contains n distinct odd primes, then there
exist 2n distinct primitive Pythagorean triangles having a common in-radius r (see Robbins [24] and
Omland [25]). For example, we consider u = 985, v = 408, k = 1, so that r = 577× 408, whose prime
factors are 23 × 3× 17× 577, and hence, there exist exactly 8(= 23) distinct primitive Pythagorean
triangles having in-radius 577× 408. One of such triples is (803760, 803761, 1136689).

In addition, the total number N(r) of distinct Pythagorean triangles (not necessarily primitive)
having a given in-radius r can be determined by writing down the prime factorization of r. It is also
known that if r = 2s ps1

1 ps2
2 · · · , psn

n , where p1, p2, · · · , pn are distinct odd primes, then:

N(r) = (s + 1)(2s1 + 1) · · · (2sn + 1).

For r = 577× 408 = 23 × 3× 17× 577, N(r) = (3 + 1)(2 + 1)(2 + 1)(2 + 1) = 108.

P28. It is possible to construct Pythagorean triples (not necessarily primitive) by factoring c into
smaller factors, each of which is itself a sum of two squares. For this, we need the following well
known result from elementary number theory (see Burton [8] and Grosswald [26]): A positive integer
c is representable as the sum of two squares if and only if each of its prime factors of the form
4k + 3 occurs to an even power (this theorem supplements Fermat’s theorem: an odd prime p is
uniquely expressible as a sum of two squares if and only if p is of the form 4k + 1). For example,
5 = 12 + 22, 10 = 32 + 12, 17 = 42 + 12, 18 = 32 + 32; however, the numbers 3, 6, 7, 11, 19 cannot
be written as the sum of two squares. We further note that 50 is the smallest number that can be
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written as a sum of two squares in two ways, namely 50 = 72 + 12 = 52 + 52; the next such integer is
65 = 12 + 82 = 42 + 72.

For the given a, b, c, and d real numbers, we shall also need the following Diophantus identities
(these identities are also known in the literature as Brahmagupta–Fibonacci identities):

(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad− bc)2 (15)

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad + bc)2. (16)

These equalities can be proven directly by squaring the right sides or using the fact:

|a∓ bi|2|c + di|2 = |(ac± bd) + i(ad∓ bc)|2.

Now, we consider the number:

493 = 17× 29 = (12 + 42)(22 + 52) (17)

for which Equalities (15) and (16) give:

493 = (1× 2 + 4× 5)2 + (1× 5− 4× 2) = 222 + 32 (18)

and:
493 = (1× 2− 4× 5)2 + (1× 5 + 4× 2) = 182 + 132. (19)

Equalities (18) and (19), in view of (15) and (16), respectively, give:

4932 = (32 + 222)(132 + 18)2 = (3× 13 + 22× 18)2 + (3× 18− 22× 13)2 = 4352 + 2322

and:

4932 = (32 + 222)(132 + 18)2 = (3× 13− 22× 18)2 + (3× 18 + 22× 13)2 = 3572 + 3402.

This gives the Pythagorean triples (232, 435, 493) and (340, 357, 493), which are not primitive.
In fact, dividing these triples, respectively, by 29 and 17, we get the primitive Pythagorean triples
(8, 15, 17) and (20, 21, 29).

Notice that we also have:

4932 = 172 × 292 = (82 + 152)× (202 + 212)

= (8× 20 + 15× 21)2 + (8× 21− 15× 20)2 = 4752 + 1322,

and:
4932 = (8× 20− 15× 21)2 + (8× 21 + 15× 20)2 = 1552 + 4682.

This gives the primitive Pythagorean triples (132, 475, 493) and (155, 468, 493) (see Table 3).

P29. In 1934, Berggren [27] introduced three matrices with the same values in each position, but
differing in sign Ai, i = 1, 2, 3, where:

A1 =




1 2 2
−2 −1 −2

2 2 3


 , A2 =




1 2 2
2 1 2
2 2 3


 , A3 =



−1 −2 −2

2 1 2
2 2 3
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and showed that from a given primitive Pythagorean triple (a0, b0, c0), three new primitive Pythagorean
triples (ai, bi, ci), i = 1, 2, 3 can be generated by:

(ai, bi, ci) = (a0, b0, c0)Ai, i = 1, 2, 3. (20)

He also showed that by using these three matrices, all primitive Pythagorean triples can be
generated from the triple (a0, b0, c0) = (3, 4, 5). A simple calculation shows that with this triple
(a0, b0, c0), (20) gives (5, 12, 13), (21, 20, 29), which we have agreed to write as (20, 21, 29), and (15, 8, 17),
which we have agreed to write as (8, 15, 17). Now, if we take (a0, b0, c0) = (5, 12, 13), then (20) generates
(7, 24, 25), (48, 55, 73), (28, 45, 53). Thus, (7, 24, 25) = (3, 4, 5)A1 A1. In fact, Hall [28] and Roberts [29]
proved that (a, b, c) is a primitive Pythagorean triple if and only if (a, b, c) = (3, 4, 5)U, where U is a
finite product of the matrices A1, A2, A3. In other words, the triple (3, 4, 5) is the parent of all primitive
Pythagorean triples.

P30. In 2008, Price [30] found three new matrices:

A′1 =




2 −2 −2
1 2 1
−1 2 3


 , A′2 =




2 2 2
1 −2 −1
1 2 3


 , A′3 =




2 2 2
−1 2 1

1 2 3




and showed that like (20):
(ai, bi, ci) = (a0, b0, c0)A′i, i = 1, 2, 3. (21)

also produce all primitive Pythagorean triples. However, the three new triples obtained from (21) may
not be the same as calculated from (20). As an example, we find that from (a0, b0, c0) = (3, 4, 5), (21)
produces the new triples (5, 12, 13), (8, 15, 17), and (7, 24, 25). Further, with (a0, b0, c0) = (5, 12, 13), (21)
gives (9, 40, 41), (12, 35, 37), and (11, 60, 61).

P31. In 1994, Saunders and Randall [31] established the following three new matrices:

B1 =

(
2 1
−1 0

)
, B2 =

(
2 1
1 0

)
, B3 =

(
1 0
2 1

)

and showed that from a given generator (u, v) of the Pythagorean triple, three new generators that
preserve coprimeness and opposite parity can be obtained by:

(Ui, Vi) = (u, v)Bi, i = 1, 2, 3.

For this, it suffices to show that each (U1, V1) = (2u− v, u), (U2, V2) = (2u + v, u), (U3, V3) =

(u + 2v, v) generates the Pythagorean triple, i.e., (ai = U2
i − V2

i , bi = 2UiVi, ci = U2
i +

V2
i ), i = 1, 2, 3 are Pythagorean triples. In particular, for u = 2, v = 1, we have (U1, V1) =

(3, 2), (U2, V2) = (5, 2), (U3, V3) = (4, 1), and these respectively generate Pythagorean triples
(5, 12, 13), (20, 21, 29), (8, 15, 17).

P32. Consider the famous tournament problem, which was posed to Fibonacci by Master John of
Palermo, a member of the entourage of the Holy Roman Emperor Frederick II: Find a number x such
that both x2 + 5 and x2 − 5 are squares of rational numbers, i.e.,

x2 + 5 = a2 and x2 − 5 = b2. (22)

We will see that the solution requires Pythagorean triples. We express x, a, and b as fractions with
a common denominator:

x =
x1

d
, a =

a1

d
, b =

b1

d
.
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Substituting these values in Equation (22) and multiplying throughout by d2, we get the equations:

x2
1 + 5d2 = a2

1, x2
1 − 5d2 = b2

1. (23)

Subtracting the second equation from the first, we obtain:

10d2 = a2
1 − b2

1 = (a1 + b1)(a1 − b1).

Since the left-hand side is even, both a1 and b1 must be even or odd. In either case, a1 − b1 is an
even integer, say a1 − b1 = 2k, from this, it follows that a1 + b1 = 5d2/k. Now, solving the last two
equations, we find:

a1 =
5d2

2k
+ k, b1 =

5d2

2k
− k.

Substituting these expressions in (23), we get:

x2
1 + 5d2 =

(
5d2

2k
+ k
)2

=

(
5d2

2k

)2

+ 5d2 + k2,

x2
1 − 5d2 =

(
5d2

2k
− k
)2

=

(
5d2

2k

)2

− 5d2 + k2,

which on addition yields the single condition:

(
5d2

2k

)2

+ k2 = x2
1.

Thus, the three numbers 5d2/2k, k, and x1 form a primitive Pythagorean triple and hence can be
written as:

5d2

2k
= u2 − v2, k = 2uv, x1 = u2 + v2,

where the positive integers u and v are such that u > v, u and v are of opposite parity, and they are
coprime. Now, to eliminate k, we take the product of the first two of these equations, to obtain:

5d2 = 4uv(u2 − v2).

Clearly, we need integers u and v, which will make the right-hand side of this equation five times
a perfect square. For this, we set u = 5, so that the condition reduces to:

d2 = 4v(52 − v2).

Evidently, the right-hand side becomes a square when v = 4 :

d2 = 4 · 4(52 − 42) = 16 · 9 = 122.

These values for u and v lead to:

x1 = u2 + v2 = 52 + 42 = 41.

Putting these pieces together, we get:

x =
x1

d
=

41
12

as a solution to Fibonacci’s tournament problem.
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P33. For the construction of right-angled triangles whose sides are rational numbers or rational cyclic
quadrilaterals (all vertices lie on a single circle), Brahmagupta gave the solution (9), where u and v are
unequal rational numbers. In particular, for a given rational side a, Brahmagupta’s solution is:

1
2

(
a2

n
− n

)
, a,

1
2

(
a2

n
+ n

)
, (24)

where n is a rational number different from zero. Bhāskaraand Mahāvīra (817–875) gave the solution:

2ma
m2 − 1

, a,
m2 + 1
m2 − 1

a, (25)

where m is any rational number other than ±1.
The eighth problem in the second book of the Arithmetica of Diophantus is to express 16 as a sum

of two rational squares. For this, in the identity:

[a(m2 + 1)]2 = (2am)2 + [a(m2 − 1)]2,

which follows from (25), he used a = 16/5 and m = 1/2 and obtained 16 = (16/5)2 + (12/5)2.
According to Bibhtibhushan Datta (1888–1958) (see [32]) and Puttaswamy [33], Karavindaswami’s

(nothing seems to be known about him except a summary of his mathematical work) solution is:

m2 + 2m
2m + 2

a, a,
m2 + 2m + 2

2m + 2
a, (26)

where m is any rational number other than −1. It is interesting to note that these solutions can easily be
deduced from (24). Indeed, for n = m−1

m+1 a, (24) becomes (25), whereas for n = a
m+1 , it reduces to (26).

For the given rational hypotenuse c, Mahāvīra constructed a rational right-angled triangle. His
solution is:

2mnc
m2 + n2 ,

m2 − n2

m2 + n2 c, c,

whereas Bhāskara gives the solution as:

2qc
q2 + 1

,
q2 − 1
q2 + 1

c, c,

which readily follows from Mahāvīra’s solution by putting q = m/n. These solutions were later
attributed to Fibonacci and Francois Viéte (1540–1603), respectively.

P34. For each n ≥ 1, equation cn = a2 + b2 has an infinite number of solutions. Case n = 1 has been
discussed in P28, whereas for n = 2, it is Pythagorean Relation (1). For n ≥ 3, we begin with an
arbitrary c, which can be written as the sum of two squares, i.e.,

c = p2 + q2 = |p + iq|2,

and note that:

cn = |(p + iq)n|2 =

∣∣∣∣∣
n

∑
k=0

(
n
k

)
pn−k(iq)k

∣∣∣∣∣

2

=

∣∣∣∣∣Re

(
n

∑
k=0

(
n
k

)
pn−k(iq)k

)∣∣∣∣∣

2

+

∣∣∣∣∣Im
(

n

∑
k=0

(
n
k

)
pn−k(iq)k

)∣∣∣∣∣

2

.
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In particular, we have:
c3 = (p3 − 3pq2)2 + (3p2q− q3)2

and:
c4 = (p4 − 6p2q2 + q4)2 + (4p3q− 4pq3)2.

For c = 5 = 22 + 12, the above relations, respectively, give 53 = 22 + 112 and 54 = 72 + 242.
Now, we shall show that for each n ≥ 1, equation c2 = an + b2 has an infinite number of solutions.

We assume that c and b are relatively prime and rewrite the equation as an = c2 − b2 = (c− b)(c + b).
Then, there exist integers u and v such that c− b = un and c + b = vn. Hence, c = (un + vn)/2 and
b = (vn − un)/2. In particular, if a is odd, we can choose v = a and u = 1. As a simple example,
we consider Pythagorean consecutive triangular numbers tn = n(n + 1)/2, tn−1 = (n− 1)n/2. Since
t2
n − t2

n−1 = n3, the equation c2 = a3 + b2 has an infinite number of solutions. Similarly, we can show
that for each n ≥ 1, equation c2 = a2 + bn has an infinite number of solutions.

P35. In the literature, Fermat’s claim (intellectual curiosity) of 1637, found by his son Samuel,
that the equation:

an + bn = cn (27)

has no positive integer solutions for a, b, and c if n > 2 is known as Fermat’s last theorem (“last”
because it took longer than any other conjecture by Fermat to be proven, finally by Andrew Wiles
(born 1953) in 1994). Thus, a cube cannot be written as the sum of two smaller cubes; a fourth power
cannot be written as the sum of two fourth powers, and so on. In his personal copy of Diophantus’s
Arithmetica (translated by Claude Bachet, 1581–1638), Fermat just commented that he had discovered a
“truly marvelous” proof of this fact, but the margin of the book was too narrow for him to jot it down! It
is believed that Fermat himself had a proof for n = 4, and Euler in 1753 (published in 1770) succeeded
in the more difficult case of n = 3 (this case can also be settled by using the method of infinite descent,
e.g., see Carmichael [12,13]). In the 1820s, Marie-Sophie Germain (1776–1831) showed that (27) has no
solution when abc is not divisible by n for n any odd prime less than 100; however, her method did
not help to prove the theorem in the case when one of a, b, c is divisible by n. In 1825, Legendre and
Peter Gustav Lejeune Dirichlet (1805–1859) independently succeeded in proving the theorem for n = 5.
In 1832, Dirichlet settled the theorem for n = 14, and in 1839, Gabriel Lamé (1795–1870) resolved the
problem for n = 7. For each of these cases, several alternative proofs were developed later by many
prominent mathematicians including Gauss for n = 3, but none of these proofs worked for the general
case. A significant contribution toward a proof of Fermat’s last theorem was made during 1850–1861
by the German mathematician Ernst Eduard Kummer (1810–1893). Inspired by Gauss’s proof for the
case n = 3 using algebraic integers, Kummer invented the concept of ideal numbers (different from the
ideal number 5040 due to Plato), which is destined to play a key role in the development of modern
algebra and number theory. Using this, Kummer proved that Fermat’s last theorem holds when n is a
prime number of a certain type, known as regular primes. The power of Kummer’s result is indicated
by the fact that the smallest prime that is not regular is 37. Thus, the cases n = 3, 5, 7, 11, 13, 17, 19, 23, 29,
and 31 (and many others) are disposed of all at once. In fact, the only primes less than 100 that are not
regular are 37, 59 and 67. Unfortunately, there are still infinitely many primes that are not regular. In
1908, a sensational announcement was made that a prize of 100,000 marks would be awarded for the
complete solution of Fermat’s problem. The funds for this prize, which was the largest ever offered in
mathematics, were bequeathed by a German mathematician Paul Friedrich Wolfskehl (1856–1906) to
the “Konigliche Gesellschaft der Wissenschaften in Göttingen” for this purpose. This announcement
drew so much attention that during a brief span of three years (1908–1911), over a thousand papers
containing supposed solutions reached the Committee. Unfortunately, all were wrong. Since then, the
number of papers submitted for this prize became so large that they would fill a library. The Committee
then very wisely included as one of the conditions that the article be printed, otherwise the number
would have been still larger. In 1983, Gerd Faltings (born 1954) proved a very decisive result: for
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n > 2, Equation (27) can have at most a finite number of integer solutions. In 1988, the world thought
that the Japanese mathematician Yoichi Miyaoka (born 1949), working at the Max Plank Institute
in Bonn, Germany, might have discovered the proof of the theorem. However, his announcement
turned out to be premature, as a few weeks later, holes were found in his argument that could not be
repaired. Episodes like this had indeed occurred many times in the three-and-a-half century history of
this famous problem. It is said that the famous number theorist Edmund Georg Hermann Landau
(1877–1938) had printed post cards that read, “Dear Sir/Madam: Your attempted proof of Fermat’s
Theorem has been received and is herewith returned. The mistake is on page —–, line —–.” Landau
would give them to his students to fill in the missing numbers. From 1977 to 1992, with the help of
computers, Fermat’s last theorem was verified up to n = 4, 000, 000.

A momentous occasion occurred on 23 June 1993, when Andrew Wiles, a Cambridge trained
mathematician working at Princeton University, announced the proof of the theorem. In developing
his solution scheme, Andrew Wiles employed theories from many branches of mathematics: crystalline
cohomology, Galois representation, L-functions, modular forms, deformation theory, Gorenstein
rings, etc., and relied on research findings from colleagues in France, Germany, Italy, Japan, Australia,
Columbia, Brazil, Russia, the United States, etc. However, soon after Wiles’s Cambridge announcement,
gaps in his 200-page-long proof surfaced. Fortunately, this time, with the help from his colleagues,
most notably his ex-student Richard Taylor (born 1962), Wiles finally filled these gaps after another
year hard work. In 1994, Fermat’s last theorem was finally resolved. In 1997, Andrew Wiles was
awarded the long time unclaimed award whose worth then was $40,000. However, now the world
awaits a simpler proof. Fermat’s last theorem may not seem to be a deeply earth-shattering result. Its
importance lies in the fact that it has captured the imagination of some of the most brilliant minds over
350 years, and their attempts at solving this conundrum, no matter how incomplete or futile, have led
to the development of some of the most important branches of modern mathematics. It is to be noted
that Brahmagupta and Bhaskara II had addressed themselves to some of Fermat’s problems long before
they were thought of in the west and had solved them thoroughly. They have not held a proper place
in mathematical history, nor received credit for their problems and methods of solution. Andre Weil
(1906–1998) wrote in 1984, “What would have been Fermat’s astonishment, if some missionary, just
back from India, had told him that his problem had been successfully tackled by native mathematicians
almost six centuries earlier”.

Proving Fermat’s last theorem for a given exponent n > 2 also settles it for any multiple of n.
For example, knowing that a5 + b5 = c5 is impossible in positive integers also covers the case n = 10,
since if we had x10 + y10 = z10, then a = x2, b = y2, c = z2 would satisfy the first equation. Similarly,
if we had x15 + y15 = z15, then a = x3, b = y3, c = z3 will lead to the first equation. Thus, to prove
Fermat’s last theorem in general, it suffices to prove that (27) has no positive integer solutions for n = 4
and for any value of n that is an odd prime. The case n = 4 is the only one for which a short proof
is known. For this, first we shall use Fermat’s method of infinite descent to show that there are no
positive integers a, b and c such that a4 + b4 = c2. To obtain a contradiction, suppose there are such
integers. Let us take such a triple with the product ab minimized. Then, gcd(a, b) = 1. Since a2, b2

and c are the sides of a primitive Pythagorean triangle, exactly one of a and b is even. Without loss of
generality, let us assume that a is even. By (9), there are positive integers u and v, not both odd, with
gcd(u, v) = 1, such that a2 = 2uv and b2 = u2 − v2. Since v2 + b2 = u2 and b is odd, v must be even.
Since (2v, u) = 1 and 2uv = a2, it follows that 2v and u are squares. Thus, u = p2 for some positive
integer p. Again by (9), there are positive integers s and t, not both odd, with gcd(s, t) = 1, such that
v = 2st and u = s2 + t2. Since 2v is a square, so is 2v/4 = v/2 = st. Thus, there are positive integers
x and y such that s = x2 and t = y2. The fact that u = s2 + t2 implies that x4 + y4 = p2. Moreover,
(xy)2 = st = v/2 < 2uv = a2 ≤ (ab)2, so that xy < ab. However, this contradicts the minimality of
ab. From this, it immediately follows that a4 + b4 = c4 has no solution in positive integers. Indeed, if
a0, b0, c0 is a solution of a4 + b4 = c4, then a0, b0, c2

0 is a solution of a4 + b4 = c2.
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An immediate consequence of this result is that there is no primitive Pythagorean triple all
the sides of which are squares. However, there exist Pythagorean triples (not necessarily primitive)
whose sides if increased by one are squares. For example, (99, 168, 195) = (102 − 1, 132 − 1, 142 − 1).
It is not known whether infinitely many such triples exist. We can also deduce that the equations
(a4/p4) + (b4/q4) = c2 and (1/a4) + (1/b4) = c2 do not have solutions in positive integers.

Fermat’s last theorem is a very special case of a central problem in diophantine analysis. It is
required to devise criteria to decide in a finite number of non-tentative steps whether or not a given
diophantine equation is solvable.

P36. Fermat’s method of infinite descent also applies to show that there are no positive integers a, b,
and c such that a4 − b4 = c2 (see Burton [8]).

From P35 and P36, it follows that in a Pythagorean triple (a, b, c), at most one of the members
can be a perfect square. This is clear from the fact that none of the equations x4 + y4 = z4, x4 + y4 =

z2, x4 = y4 + z2 has a solution.

P37. In P3, we mentioned that the area A = (1/2)ab of a primitive Pythagorean triangle (a, b, c) can
never be a square number. To show this, assume that (1/2)ab = u2, which is the same as 2ab = 4u2.
Adding and subtracting this relation from a2 + b2 = c2 give:

(a + b)2 = c2 + 4u2 and (a− b)2 = c2 − 4u2.

Multiplying these relations, we find:

(a2 − b2)2 = c4 − 16u4 = c4 − (2u)4,

which in view of P36 is impossible.

P38. Consider the reciprocal Pythagorean relation, i.e.,

1
a2 +

1
b2 =

1
c2 ,

where (a, b, c) is primitive (Eli Maor [34] calls this relation the little Pythagorean relation). The only
positive integer solutions of this equation are given by:

a = 2uv(u2 + v2), b = (u4 − v4), c = 2uv(u2 − v2),

where u and v are relatively prime positive integers, one of which is even, and u > v. In particular,
for u = 2, v = 1, we have 1/202 + 1/152 = 1/122.

P39. Jordanus De Nemore (around 1225–1237) found integers x, y, and z so that z2 − y2 = y2 − x2, i.e.,
z2 + x2 = 2y2, which can be written as:

(
z + x

2

)2
+

(
z− x

2

)2
= y2.

Since x2 + z2 is even, x and z must be of the same parity. This shows that (z + x)/2 and (z−
x)/2 are integers, but then, this is the same as the Pythagorean triple problem and has an infinite
number of integer solutions, namely from (9), (z− x)/2 = u2 − v2, (z + x) = 2uv, y = u2 + v2. Thus,
it follows that:

x = v2 − u2 + 2uv, y = u2 + v2, z = u2 − v2 + 2uv,

where u > v and are of different parity. As an example, for u = 6, v = 5, we have x = 49, y = 61, z = 71,
and hence, 712 − 612 = 612 − 492. We also note that (z− x)/2 = 11, (z + x)/2 = 60, and we get the
Pythagorean triple (11, 60, 61); see Table 3. If we begin with the Pythagorean triple ((z− x)/2, (z +
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x)/2, y) = (3, 4, 5), then x = 1, y = 5, z = 7, and the equality 72 − 52 = 52 − 11 holds. Similarly, for
the Pythagorean triple ((z− x)/2, (z + x)/2, y) = (8, 15, 17), we have x = 7, y = 17, z = 23, and the
relation 232 − 172 = 172 − 72 holds. In conclusion, there is a one-to-one correspondence between
Pythagorean triples and the solutions of z2 − y2 = y2 − x2.

We can also find integer solutions of the equation x2 + 2y2 = z2, where gcd(x, y, z) = 1. Since
2y2 = z2 − x2 = (z + x)(z − x), we must have z + x = 2u2, z − x = v2, which gives x = (2u2 −
v2)/2, y = uv, z = (2u2 + v2)/2, which is better written as:

x = (2u2 − v2), y = 2uv, z = (2u2 + v2).

If we let u = 7, v = 5, then x = 73, y = 70, z = 123, and this gives 732 + 2× 702 = 1232. If we
take u = 6, v = 4, then x = 56, y = 48, z = 88, which upon dividing by eight gives x = 7, y = 6, z = 11,
and we have the identity 72 + 2× 62 = 112. Finally, if we take u = 11, v = 6, then after dividing by
two, we obtain x = 103, y = 66, z = 139, and the equality 1032 + 2× 662 = 1392.

P40. The origin of De Nemore’s problem comes from Diophantus’ Problem II-19, which states: Find
three squares such that the difference between the greatest and the middle has a given ratio p : 1
to the difference between the middle and the least. If we let nonzero real numbers x, y, z such that
x2 < y2 < z2, then we need to find the solution of the equation:

z2 − y2 = p(y2 − x2), (28)

where p > 0. It is clear that if x, y, z is a solution of (28), then dx, dy, dz, d 6= 0 is also a solution. Thus,
it suffices to consider only integer solutions of (28). The case p = 1 has been discussed in P39, so we
will mainly take up the case when p 6= 1. We rewrite (28) as:

z + y
y + x

= p
y− x
z− y

= k (some nonzero real number),

which leads to the equations:

z + (1− k)y− kx = 0 and z−
(

1 +
p
k

)
y +

p
k

x = 0.

Solving these equations, we get:

x = (2k + p− k2)r, y = (p + k2)r, z = (2pk + k2 − p)r, (29)

where r is an arbitrary positive real number, and it will be chosen so that x, y, and z are integers with
gcd(x, y, z) = 1. Using (29) on both sides of (28), we find:

z2 − y2 = p(y2 − x2) = 4p(k− 1)k(k + p)r2. (30)

Thus, x2 < y2 < z2 holds provided k > 1. If k = 1 or k = 0, we have x = y = z, which is an empty
case. If 0 < k < 1, then we have x2 > y2 > z2, and in such a case, we rewrite (28) as:

x2 − y2 =
1
p
(y2 − z2). (31)

If −p < k < 0, then once again, we have x2 < y2 < z2, and hence, (28) holds. If k = −p, then
we have x = y = z, which is again an empty case. Finally, if k < −p, then we find x2 > y2 > z2, and
therefore, (31) holds.

If p = 1, r = 1, and k = n ≥ 2 is a natural number, then from (29), we find:

u = 2n, v = n2 − 1, y = n2 + 1,
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which gives Plato’s characterization of the Pythagorean triples (7). For k = 3/2, p = 1/4, from (29),
we get x = (4/4)r, y = (10/4)r, z = (11/4)r, so we choose r = 4, to obtain x = 4, y = 10, z = 11,
and from (28), we have the equality (112 − 102) = (1/4)(102 − 42). For k = 1/2, p = 2, from (29),
we get x = (23/9)r, y = (19/9)r, z = −(5/9)r, and we choose r = 9 so that x = 23, y = 19, z = −5;
and from (31), we get the equality (232 − 192) = (1/2)(192 − (−5)2). For k = −1, (29) reduces to
x = (p − 3)r, y = (p + 1)r, z = (−3p + 1)r. Thus, in particular, for p = 11/2 and r = 2, we have
x = 5, y = 13, z = −31, and from (28) follows the equality ((−31)2 − 132) = (11/2)(132 − 52).
For k = −(17/3), p = 4, and r = 9/5, (29) gives x = −71, y = 65, z = 31, and from (31), we have the
equality ((−71)2 − 652) = (1/4)(652 − 312).

Diophantus gives only one solution for p = 3, that is x2 = 25/4, y2 = 49/4, z2 = 121/4 (the
common factor 1/4 can be removed). Unfortunately, this solution cannot be obtained from (29).
Thus, (29) does not generate all solutions of (28). Extending Diophantus’ method, we assume that
y = x + a, z = x + b, b > a > 0 and x > 0, then the equation (28) gives:

x =
b2 − (p + 1)a2

2[a(p + 1)− b]
, y = x + a =

(b− a)2 + pa2

2[a(p + 1)− b]
, z = x + b =

a(p + 1)(2b− a)− b2

2[a(p + 1)− b]
, (32)

where (b/a) < (p + 1) < (b/a)2, so that x > 0. It follows that:

(x + b)2 − (x + a)2 = p((x + a)2 − x2) =
pab(b− a)

a(p + 1)− b
> 0.

For p = 3, a = 2, b = 6, from (32), we get x = 5, y = 7, z = 11, i.e., x2 = 25, y2 = 49, z2 = 121,
which is the same as Diophantus’ solution. Similarly, for p = 5, a = 3, b = 8, we get x2 = 1/4, y2 =

49/4, z = 289/4.

P41. A Heronian triangle (a, b, c) (see Carlson [35]) has integer sides whose area is also an integer.
Since in a Pythagorean triple at least one of the legs a, b must be even and the area A = ab/2 is an integer,
every Pythagorean triple is a Heronian triple; however, the converse is not true: the Heronian triple
(4, 13, 15) has the area 24, but it is not a Pythagorean triple. These triangles are named because such
triangles are related to Heron’s (Bhaskara I, born before 123 BC) formula A =

√
s(s− a)(s− b)(s− c),

where s = (a+ b+ c)/2. Finding a Heronian triangle is therefore equivalent to solving the Diophantine
equation A2 = s(s− a)(s− b)(s− c). As for Pythagorean triples, if (a, b, c) is a Heronian triple, so is
(na, nb, nc), n > 1. The Heronian triple (a, b, c) is called primitive provided a, b, c are pairwise relatively
prime. There are infinitely many primitive Heronian triples. Brahmagupta acquired the parametric
solution such that every Heronian triangle has sides proportional to:

a = v(u2 + k2), b = u(v2 + k2), c = (u + v)(uv− k2)

s = uv(u + v), A = kuv(u + v)(uv− k2),

where gcd(u, v, k) = 1, uv > k2 ≥ 1, and u ≥ v ≥ 1. The proportionality factor is generally a rational
p/q where q = gcd(a, b, c) reduces the generated Heronian triangle to its primitive and p scales up
this primitive to the required size. For example, taking u = 4, v = 2 and k = 1 produces a triangle
with a = 34, b = 20 and c = 42, which is similar to the (10, 17, 21) primitive Heronian triangle with
the proportionality factors p = 1 and q = 2. It is known that the perimeter of a Heronian triangle is
always an even number, and every primitive Heronian triangle has exactly one even side. The area
of a Heronian triangle is always divisible by six. Further, by Heron’s formula, it follows that a triple
(a, b, c) with 0 < a < b < c is Heronian if (a2 + b2 + c2)2 − 2(a4 + b4 + c4) is a nonzero perfect square
divisible by 16.
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A few primitive Heronian triangles that are not Pythagorean triples, sorted by increasing areas, are:

(4, 13, 15) with area 24, (3, 25, 26) with area 36
(9, 10, 17) with area 36, (7, 15, 20) with area 42
(6, 25, 29) with area 60, (11, 13, 20) with area 66
(13, 14, 15) with area 84, (10, 17, 21) with area 84

P42. A congruent number n is a positive integer that is equal to the area of a rational right triangle,
i.e., it is a rational solution of Equation (1), which in addition satisfies the equation (1/2)ab = A = n.
Clearly, every Pythagorean triple (primitive, as well as non-primitive) gives a congruent number, but
in view of P37, A and hence n cannot be a perfect square. Thus, 22, 32, 42, · · · cannot be congruent
numbers. If n is a congruent number, i.e., A = (1/2)ab = n, then m2n is also a congruent number for
any positive integer m; indeed, it follows from the facts that:

( a
m

)2
+

(
b
m

)2
=
( c

m

)2
and

1
2

( a
m

)( b
m

)
= B

imply B = m2n. Thus, the main interest is in square-free congruent numbers. Fermat in 1640 proved
that there is no right triangle with rational sides and area one; he also showed that two and three are
not congruent numbers. From an Arab manuscript of the 10th Century, it is known that five and six
are congruent numbers. In fact, we have:

(
20
3

)2
+

(
3
2

)2
=

(
41
6

)2
and

1
2

(
20
3

)(
3
2

)
= 5,

and the first Pythagorean triple (3, 4, 5) gives the number six. We also have:

(
7

10

)2
+

(
120

7

)2
=

(
1201
70

)2
and

1
2

(
7
10

)(
120

7

)
= 6,

and (see Conrad [36]),

(
1437599
168140

)2
+

(
2017680
1437599

)2
=

(
2094350404801
241717895860

)2
and

1
2

(
1437599
168140

)(
2017680
1437599

)
= 6,

i.e., the same congruent number can have several (may be infinite) rational right triangles. Don Bernard
Zagier (born 29 June 1951) computed the simplest rational right triangle (see Figure 3) for the congruent
number 157 (the same has also appeared in several places, e.g., Peng [37], Veljan [38], and Wiles [39])
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and

c =
224403517704336969924557513090674863160948472041

8912332268928859588025535178967163570016480830
.

While in 1986, Kramarz [26] has listed all congruent numbers up to less than 2000, to find if a given
positive integer n is congruent remains an open number-theoretic problem. The relation of this problem
to elliptic curves has been studied extensively, see Koblitz [33]. Also, its beautiful equivalent form: n is a
congruent number, if and only if,

x2 + nt2 = y2

x2 − nt2 = z2

has solutions, further, if (x, y, z, t) is a solution, then

a =
y − z

t
, b =

y + z

t
, c =
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t
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Figure 3. Congruent numbers.
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where:
a =

6803298487826435051217540
411340519227716149383203

, b =
411340519227716149383203
21666555693714761309610

and
c =

224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830

.

While in 1986, Kramarz [40] listed all congruent numbers up to less than 2000, to find if a given
positive integer n is congruent remains an open number-theoretic problem. The relation of this problem
to elliptic curves has been studied extensively; see Koblitz [41]. Furthermore, its beautiful equivalent
form: n is a congruent number, if and only if,

x2 + nt2 = y2

x2 − nt2 = z2

has solutions; further, if (x, y, z, t) is a solution, then:

a =
y− z

t
, b =

y + z
t

, c =
2x
t

is only of theoretical interset.

P43. A Pythagorean quadruple is a tuple of four integers a, b, c, and d, such that a2 + b2 + c2 = d2. A
Pythagorean quadruple (a, b, c, d) is called primitive if the greatest common divisor of its numbers
is one. The set of primitive Pythagorean quadruples for which a is odd can be generated by (see
Carmichael [12,13] and Spira [42]):

a = u2 + v2 − p2 − q2, b = 2(uq + vp), c = 2(vq− up), d = u2 + v2 + p2 + q2,

where u, v, p, q are non-negative integers with the greatest common divisor one such that u + v + p + q
is odd. Thus, all primitive Pythagorean quadruples are characterized by Henri Léon Lebesgue’s
(1875-1941) identity:

(u2 + v2 − p2 − q2)2 + (2uq + 2vp)2 + (2vq− 2up)2 = (u2 + v2 + p2 + q2)2.

As an example, for u = 1, v = 3, p = 2, q = 1, we have a = 5, b = 14, c = 2, d = 15, and hence,
(2, 5, 14, 15) is a primitive Pythagorean quadruple. Indeed, we have the identity:

22 + 52 + 142 = 152.

Besides (2, 5, 14, 15), there are 30 more primitive Pythagorean quadruples in which all entries are
less than 30 (see https://en.wikipedia.org/wiki/Pythagorean_quadruple):

(1, 2, 2, 3), (2, 10, 11, 15), (4, 13, 16, 21), (2, 10, 25, 27), (2, 3, 6, 7)
(1, 12, 12, 17), (8, 11, 16, 21), (2, 14, 23, 27), (1, 4, 8, 9), (8, 9, 12, 17)
(3, 6, 22, 23), (7, 14, 22, 27), (4, 4, 7, 9), (1, 6, 18, 19), (3, 14, 18, 23)
(10, 10, 23, 27), (2, 6, 9, 11), (6, 6, 17, 19), (6, 13, 18, 23), (3, 16, 24, 29)
(6, 6, 7, 11), (6, 10, 15, 19), (9, 12, 20, 25), (11, 12, 24, 29), (3, 4, 12, 13)
(4, 5, 20, 21), (12, 15, 16, 25), (12, 16, 21, 29), (4, 8, 19, 21), (2, 7, 26, 27)

Quadruple (a, b, c, d) can also be obtained by the simple identity:

(a2 − b2 − c2)2 + (2ab)2 + (2ac)2 = (a2 + b2 + c2)2. (33)

https://en.wikipedia.org/wiki/Pythagorean_quadruple
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For example, for a = 3, b = 2, c = 2, this identity reduces to 12 + 122 + 122 = 172. Thus, we get
back the quadruple (1, 12, 12, 17).

P44. We note that the Euler–Aida Ammei (1747–1817) identity:

(x2
0 − x2

1 − · · · − x2
n)

2 + (2x0x1)
2 + · · ·+ (2x0xn)

2 = (x2
0 + x2

1 + · · ·+ x2
n)

2 (34)

implies that the sum of n + 1 squares is the square of the sum of n + 1 squares. Identity (34) for
n = 1, x0 = u, x1 = v gives (9); for n = 2, x0 = a, x1 = b, x2 = c, it reduces to (33); and for
n = 3, x0 = a, x1 = b, x2 = c, x3 = d, it gives quintuples:

(a2 − b2 − c2 − d2)2 + (2ab)2 + (2ac)2 + (2ad)2 = (a2 + b2 + c2 + d2)2. (35)

For example, for a = 4, b = 3, c = 2, d = 1, this identity reduces to 22 + 242 + 162 + 82 = 302.
Thus, dividing this relation by 22, we get the quintuple (1, 4, 8, 12, 15).

P45. Euler in 1748 gave the following Brahmagupta–Diophantus–Fibonacci (15), (16), type four-
square identity:

(a1b1 − a2b2 − a3b3 − a4b4)
2 + (a1b2 + a2b1 + a3b4 − a4b3)

2 + (a1b3 − a2b4 + a3b1 + a4b2)
2

+ (a1b4 + a2b3 − a3b2 + a4b1)
2 = (a2

1 + a2
2 + a2

3 + a2
4)(b

2
1 + b2

2 + b2
3 + b2

4).
(36)

Clearly, as in P28, Equality (36) can be used to find new four-square identities. We also note that
for ai = bi, i = 1, 2, 3, 4, Equality (36) is the same as (35).

P46. Carl Ferdinand Degen (1766–1825) around 1818 discovered the eight-square identity:

(a1b1 − a2b2 − a3b3 − a4b4 − a5b5 − a6b6 − a7b7 − a8b8)
2

+(a1b2 + a2b1 + a3b4 − a4b3 + a5b6 − a6b5 − a7b8 + a8b7)
2

+(a1b3 − a2b4 + a3b1 + a4b2 + a5b7 + a6b8 − a7b5 − a8b6)
2

+(a1b4 + a2b3 − a3b2 + a4b1 + a5b8 − a6b7 + a7b6 − a8b5)
2

+(a1b5 − a2b6 − a3b7 − a4b8 + a5b1 + a6b2 + a7b3 + a8b4)
2

+(a1b6 + a2b5 − a3b8 + a4b7 − a5b2 + a6b1 − a7b4 + a8b3)
2

+(a1b7 + a2b8 + a3b5 − a4b6 − a5b3 + a6b4 + a7b1 − a8b2)
2

+(a1b8 − a2b7 + a3b6 + a4b5 − a5b4 − a6b3 + a7b2 + a8b1)
2

= (a2
1 + a2

2 + a2
3 + a2

4 + a2
5 + a2

6 + a2
7 + a2

8)(b
2
1 + b2

2 + b2
3 + b2

4 + b2
5 + b2

6 + b2
7 + b2

8).

(37)

Clearly, for ai = bi, i = 1, · · · , 8, Equality (37) is the same as (34) with n = 7. The equality (37)
was independently rediscovered by John Thomas Graves (1806–1870) in 1843 and Arthur Cayley
(1821–1895) in 1845. In 1898, Adolf Hurwitz (1859–1919) proved that there is no similar identity for 16
squares or any other number of squares except for 1,2,4, and 8.

P47. Srinivasa Ramanujan’s (1887–1920) identity:

(3a2 + 5ab− 5b2)3 + (4a2 − 4ab + 6b2)3 + (5a2 − 5ab− 3b2)3 = (6a2 − 4ab + 4b2)3 (38)

parameterizes the sum of three cubes into a cube, i.e., x3
1 + x3

2 + x3
3 = c3 (known as Fermat’s cubic)

whose general solution was found by Euler and Viéte. Identity (38) for a = 1, b = 0 reduces to Euler’s
equality 33 + 43 + 53 = 63 = 216 (this smallest number is known as Plato’s number), whereas for
a = 2, b = 1, it gives 173 + 143 + 73 = 203. The sum of three cubes into a cube can also be parameterized
as (see Hardy and Wright [43]):

b3(a3 + b3)3 + a3(a3 − 2b3)3 + b3(2a3 − b3)3 = a3(a3 + b3)3, (39)
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or as:
a3(a3 − b3)3 + b3(a3 − b3)3 + b3(2a3 + b3)3 = a3(a3 + 2b3)3. (40)

For a = 2, b = 1, Identities (39) and (40), respectively, reduce to 93 + 123 + 153 = 183 (which is the
same as 33 + 43 + 53 = 63) and 143 + 73 + 173 = 203 (which is the same as given by (38)).

P48. In 1769, Euler made the conjecture that:

xk
1 + xk

2 + · · ·+ xk
n = ck (41)

implies n ≥ k. This conjecture makes an effort to generalize Fermat’s last theorem, which in fact is
a special case; indeed, if xk

1 + xk
2 = ck, then 2 ≥ k. In view of Fermat’s last theorem and P48, Euler’s

conjecture holds for k = 3; however, it has been disproven for k = 4 and k = 5, and for k ≥ 6,
the answer is unknown. For the cases k = 4 and 5, the known counterexamples are:

Noam David Elkies [44] in 1986,

26824404 + 153656394 + 187967604 = 206156734

Roger Frye [45] in 1988,

958004 + 2175194 + 4145604 = 4224814

Leon Lander and Thomas Parkin [46] in 1966,

275 + 845 + 1105 + 1335 = 1445

Roger Frye in 2004,
555 + 31835 + 289695 + 852825 = 853595

The following identities support Euler’s conjecture:
R. Norrie in 1911,

304 + 1204 + 2724 + 3154 = 3534

Leon Lander, Thomas Parkin, and John Selfridge (LPS) [47] in 1967,

195 + 435 + 465 + 475 + 675 = 725

S. Sastry [48] in 1934,
75 + 435 + 575 + 805 + 1005 = 1075

LPS in 1967,
746 + 2346 + 4026 + 4746 + 7026 + 8946 + 10776 = 11416

LPS in 1967,
86 + 126 + 306 + 786 + 1026 + 1386 + 1656 + 2466 = 2516

M. Dodrill in 1999,

1277 + 2587 + 2667 + 4137 + 4307 + 4397 + 5257 = 5687

S. Chase in 2000,

908 + 2238 + 4788 + 5248 + 7488 + 10888 + 11908 + 13248 = 14098

For sixth power summations, several more identities are available at https://mathworld.wolfram.
com/DiophantineEquation6thPowers.html.

https://mathworld.wolfram.com/DiophantineEquation6thPowers.html
https://mathworld.wolfram.com/DiophantineEquation6thPowers.html


Computation 2020, 8, 62 33 of 36

P49. Euler gave a parametric solution of the equation:

x3
1 + x3

2 = x3
3 + x3

4 (42)

namely,
x1 = 1− (a− 3b)(a2 + 3b2), x2 = (a + 3b)(a2 + 3b2)− 1

x3 = (a + 3b)− (a2 + 3b2)2, x4 = (a2 + 3b2)2 − (a− 3b),

where a and b are any integers. Equation (42) has the following 10 solutions with sum < 105 (see
Guy [17]):

1729 = 13 + 123 = 93 + 103

4104 = 23 + 163 = 93 + 153

13832 = 23 + 243 = 183 + 203

20683 = 103 + 273 = 193 + 243

32832 = 43 + 323 = 183 + 303

39312 = 23 + 343 = 153 + 333

40033 = 93 + 343 = 163 + 333

46683 = 33 + 363 = 273 + 303

64232 = 173 + 393 = 263 + 363

65728 = 123 + 403 = 313 + 333

From Euler’s parametric solution of (42), we cannot find a and b to obtain the relation 1729 =

13 + 123 = 93 + 103. However, one of Ramanujan’s parametrizations:

(a2 + 7ab− 9b2)3 + (2a2 − 4ab + 12b2)3 = (2a2 + 10b2)3 + (a2 − 9ab− b2)3

with a = b = 1 does give this relation. In the literature, the number 1729 is known as the taxicab or
Hardy–Ramanujan number. For this, the story is as follows: Once, Hardy went to see Ramanujan
when he was in a nursing home and remarked that he had traveled in a taxi with a rather dull number,
1729, at which Ramanujan exclaimed, “No, Hardy, 1729 is a very interesting number. It is the smallest
number that can be expressed as the sum of two cubes (1729 = 13 + 123 = 93 + 103), and the next
such number is very large”. We are told Ramanujan was endowed with an astounding memory and
remembered the idiosyncrasies of the first 10,000 integers to such an extent that each number became
like a personal friend to him. Hardy and Wright [43] proved that there are numbers that are expressible
as the sum of two cubes in n ways for any n. For example, the numbers representable in three ways as
the sum of two cubes are:

87539319 = 1673 + 4363 = 2283 + 4233 = 2553 + 4143

119824488 = 113 + 4933 = 903 + 4923 = 3463 + 4283

143604279 = 1113 + 5223 = 3593 + 4603 = 4083 + 4233

175959000 = 703 + 5603 = 1983 + 5523 = 3153 + 5253

327763000 = 3003 + 6703 = 3393 + 6613 = 5103 + 5803

Euler also proved that there exist infinitely many solutions of the equation x4
1 + x4

2 = x4
3 + x4

4, and
its smallest solution is (see Dunham [49]):

594 + 1584 = 1334 + 1344 = 635318657.
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The following equalities are provided by Guy [17].

36 + 196 + 226 = 106 + 156 + 236 (K. Subba Rao in 1934)
366 + 376 + 676 = 156 + 526 + 656

336 + 476 + 746 = 236 + 546 + 736

326 + 436 + 816 = 36 + 556 + 806

376 + 506 + 816 = 116 + 656 + 786

256 + 626 + 1386 = 826 + 926 + 1356

516 + 1136 + 1366 = 406 + 1256 + 1296

716 + 926 + 1476 = 16 + 1326 + 1336

1116 + 1216 + 2306 = 266 + 1696 + 2256

756 + 1426 + 2456 = 146 + 1636 + 2436

In P48 and P49, the amount of effort necessary to find examples/counterexamples—even when
the effort came from computers—was then astonishing. In view of some of these equalities in 1967,
LPS made the following conjecture: If:

n

∑
i=1

xk
i =

m

∑
j=1

yk
j , (43)

where xi 6= yj are positive integers for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, then m + n ≥ k. Clearly, for m = 1,
(43) is the same as Relation (41), but then, n + 1 ≥ k.

P50. In 1844, Eugéne Charles Catalan (1814–1894) made the conjecture that eight and nine are the only
numbers that differ by one and are both exact powers 8 = 23, 9 = 32. This conjecture was proven by
Preda Mihăilescu (Born 1955) after one hundred and fifty-eight years and published two years later
in [50]. Thus, the only solution in natural numbers of the Diophantine equation xa − yb = 1 for a, b >

1, x, y > 0 is x = 3, a = 2, y = 2, b = 3. In 1931, Subbayya Sivasankaranarayana Pillai (1901–1950)
conjectured that for fixed positive integers A, B, C, the Diophantine equation Axn − Bym = C has only
finitely many solutions (x, y, m, n) with (m, n) 6= (2, 2).

4. Conclusions

In this article, we systematically and exhaustively discussed one of the most basic problems in
the field of number theory, namely Pythagorean triples. The quote of Francois Marie Arouet Voltaire
(1694–1778, one of the greatest French writers and philosophers), which has also been cited by Thomas
Stearns Eliot (1888–1965, American-British poet, Nobel Prize winner in 1948) “I am convinced that
everything has come down to us from the banks of Ganga–Astronomy, Astrology, and Spiritualism.
Pythagoras went from Samos to Ganga 2600 years ago to learn Geometry. He would not have
undertaken this journey had the reputation of the Indian science had not been established before”
suggests Pythagoras learned about his theorem and triples probably in India. We provided necessary
and sufficient conditions with detailed proofs for the construction of Pythagorean triples. This was
followed by a list of 50 properties and patterns, extensions, and some problems. It is our hope that
students and teachers of mathematics will appreciate this article and explore new directions/relations.
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