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Abstract: In this work, we consider elastic wave propagation in fractured media. The mathematical
model is described by the Helmholtz problem related to wave propagation with specific interface
conditions (Linear Slip Model, LSM) on the fracture in the frequency domain. For the numerical
solution, we construct a fine grid that resolves all fracture interfaces on the grid level and
construct approximation using a finite element method. We use a discontinuous Galerkin method
for the approximation by space that helps to weakly impose interface conditions on fractures.
Such approximation leads to a large system of equations and is computationally expensive. In this
work, we construct a coarse grid approximation for an effective solution using the Generalized
Multiscale Finite Element Method (GMsFEM). We construct and compare two types of the multiscale
methods—Continuous Galerkin Generalized Multiscale Finite Element Method (CG-GMsFEM) and
Discontinuous Galerkin Generalized Multiscale Finite Element Method (DG-GMsFEM). Multiscale
basis functions are constructed by solving local spectral problems in each local domains to extract
dominant modes of the local solution. In CG-GMsFEM, we construct continuous multiscale basis
functions that are defined in the local domains associated with the coarse grid node and contain
four coarse grid cells for the structured quadratic coarse grid. The multiscale basis functions
in DG-GMsFEM are discontinuous and defined in each coarse grid cell. The results of the
numerical solution for the two-dimensional Helmholtz equation are presented for CG-GMsFEM and
DG-GMsFEM for different numbers of multiscale basis functions.

Keywords: generalized multiscale finite element method; multiscale method; helmholtz equation;
fractured media

1. Introduction

Understanding the complex processes in fractured media is necessary in many real world
applications, for example, in exploring and developing hydrocarbon reservoirs. Fractured media are
characterized by a complex fracture distribution and presence of the fractures at multiple scales [1,2].
Moreover, fractures are characterized as thin and long interfaces. Numerical methods for the solution
of the problems in fractured media are being actively developed in recent years. In Reference [3] the
authors developed finite difference schemes for modeling wave propagation in a fractured medium.
Fractured media are derived when the fracture interfaces are aligned with the boundaries of the
finite-difference grid. For flow problems in fractured media, the multiscale finite volume method
on unstructured grids for discrete fracture model (MS-DFM) is presented in Reference [4]. The use

Computation 2020, 8, 63; doi:10.3390/computation8030063 www.mdpi.com/journal/computation

http://www.mdpi.com/journal/computation
http://www.mdpi.com
http://www.mdpi.com/2079-3197/8/3/63?type=check_update&version=1
http://dx.doi.org/10.3390/computation8030063
http://www.mdpi.com/journal/computation


Computation 2020, 8, 63 2 of 13

of unstructured grids requires rather complicated grid generators and significantly increases the
run time, also, its use is undesirable when the number of fractures is large. In Reference [5] the
author proposed an approach called Chimera Grid Approach. This technique avoids the use of
curvilinear or unstructured grids, replacing them with a set of arbitrary rotated rectangular grids.
In Reference [6], the authors proposed an approach to modeling the propagation of seismic waves
in a medium containing subvertical fractured inhomogeneities using the grid-characteristic method
on structural grids without constructing additional grids. To simulate wave propagation in fractured
media, the discontinuous Galerkin (DG) method is widely used. The main disadvantage of the
DG method is the excessive use of memory due to a large number of degrees of freedom. But in
Reference [7] the authors propose an Enriched Galerkin finite element method (EGM) for elastic wave
propagation. EGM formulated by enriching the conforming continuous Galerkin finite element method
with piecewise constant functions.

In this work, we consider elastic wave propagation in fractured media. The Linear Slip Model
(LSM) is used to simulate the influence of the fracture on the distribution of the seismic field, where the
stress components are proportional to the displacement [1,2]. LSM requires constructing a fine
grid that resolves all fracture interfaces on the grid level, which leads to a very large system of
equations. To construct a suitable mathematical model for seismic wave propagation, multiscale
methods or homogenization techniques are used. Homogenization or effective media theories replace
a heterogeneous rock with an equivalent homogeneous rock, where the corresponding properties
are calculated under the static-deformation regimes. An overview and comparison of the existing
effective media theories for fractured formations is presented in Reference [8]. The authors consider
a three-dimensional formulation and use direct finite-element simulations in order to calculate the
effective properties of the fractured media. Direct computational studies provide an independent
verification of theoretical predictions and can be used to examine realistic fracture models that
violate the conventional assumptions, where fractures have notoriously irregular shape and can
form interconnected networks. On the other hand, this approach is computationally expensive for
complex fracture distributions. Moreover, the errors of the homogenization methods depend on the
coarse-grid mesh.

In the multiscale methods, a central research problem is constructing the coarse grid
approximation for faster results, where multiscale basis functions are computed on a fine grid to capture
the influence of fractures and other heterogeneity [9–14]. We consider seismic waves in fractured
media and construct multiscale basis functions for coarse grid simulations in the two-dimensional
formulation [15–19]. These multiscale basis functions can capture the influence of the fractures on
a coarse grid and reduce the number of unknowns in calculations. Multiscale basis functions are
constructed using the solution of the local spectral problem on a fine grid in each coarse grid cell.
In our previous work, we presented GMsFEM for elastic wave propagation in time domain in fractured
media [15,20].

In this paper, we construct two types of multiscale spaces to solve the Helmholtz equation
for fractured media. The numerical implementation is based on the global projection approach to
construct a coarse-grid approximation. The local spectral problems that we used for selecting the
dominant modes are frequency-independent. The presented method has much in common with
classical homogenization methods and, therefore, the applicability is limited by low frequencies.
We present numerical results and consider several test cases with different fracture configurations.
Numerical simulations show that the method is accurate for complex cases and can significantly reduce
the dimension of the system.

The work is organized as follows—in Section 2, we provide the mathematical model of the
Helmholtz problem in fractured media and construct a fine grid approximation using the finite element
method in Section 3. In Section 4, we present a coarse grid approximation using the Generalized
Multiscale Finite Element Method (GMsFEM) algorithm, where we describe constructing of the two
types of multiscale basis functions—(1) Continuous Galerkin Generalized Multiscale Finite Element
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Method (CG-GMsFEM) with continuous multiscale basis functions and (2) Discontinuous Galerkin
Generalized Multiscale Finite Element Method (DG-GMsFEM) with discontinuous multiscale basis
functions. Finally, numerical results are presented in Section 5.

2. Problem Formulation

We consider a problem in a fractured medium. Let Ω ⊂ Rd is the bounded computational
domain and γ ⊂ Rd−1 is the fracture interface, d = 2 (see Figure 1 for illustration). The elastic wave
propagation is described by Helmholtz equation in the computational domain Ω [21,22]

− div σ(u)−ω2ρu = f , x ∈ Ω, (1)

where ω is the frequency, σ is the stress tensor, ρ is the density and f is the source function.
We have linear elastic stress-strain constitutive relation

σ(u) = 2µε(u) + λ div u I , ε(u) =
1
2
(grad u + (grad u)T), (2)

where I is the unit tensor, λ and µ are the Lame parameters.

Figure 1. Illustration of the computational domain Ω (grey color) and fractures γ (red color).

In this paper, we focus on the two-dimentional formulation of the problem. Since the problem is
considered in fractured media, for numerical simulations of the elastic wave equation, the linear-slip
model (LSM) is applied on the fracture interface γ [23,24]. Namely, we assume the fractures have a
vanishing width across which the traction is considered continuous. Following the linear-slip model,
we have a linear relation between the traction vector and the magnitude of the discontinuity in the
displacement field as follows

[u] = Zσn, x ∈ γ, (3)

where [u] is the jump of the displacement field at the fracture, σn is the traction vector at the surface
of the fracture γ and Z is the fracture compliance matrix. In the two-dimensional isotropic case,
the compliance matrix is diagonal and positive definite

Z =

[
z1 0
0 z2

]
,

where z1 and z2 are the normal and tangential compliance. In the numerical simulations we will use a
scalar fracture compliance, with z = z1 = z2 and Z = zI , where I is the identity matrix [23,24].

In the computations we use the first order absorbing boundary condition, because the energy of
waves needs to be absorbed in artificial boundaries in order to avoid spurious reflections caused by
the finite computational domain [25]
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iρωAu = −σn, x ∈ ∂Ω, (4)

where

A =

[
n1 n2

−n2 n1

] [
cp 0
0 cs

] [
n1 −n2

n2 n1

]
.

Here n = (n1, n2) is the outward normal to the boundary and cp =
√
(λ + 2µ)/ρ, cs =

√
µ/ρ are

the S- and P-wave velocities. We will impose this absorbing condition in the variational formulation of
the problem.

3. Fine Grid Approximation

We use the Interior Penalty Discontinuous Galerkin (IPDG) finite element method for the fine-grid
approximation. IPDG method allows for discontinuities in the displacement field to simulate fractures
with the linear-slip model [26–28]. We construct a fine grid for fracture domain Ω that resolve fracture
interface γ on the grid level.

Let Th be a triangulation of the computational domain Ω and h be the fine mesh size. We define Γh
as the set of all the interior faces between the elements Th, Γc ⊂ Γh be the subset of all faces, where the
displacement field is continuous and Γγ ⊂ Γh be the subset of facet that represent fractures, Γb is a
subset of faces on the boundary and Γh = Γc ∪ Γγ ∪ Γb. Let e ∈ Γh be the edge between the elements ι1
and ι2, then the average {·} and jump [·] of a vector function u on e are given by

{u} =
(

u |ι1 + u |ι2
)

/2, [u] = u |ι1 − u |ι2 .

The variational formulation of the elastic wave equation using the interior penalty discontinuous
Galerkin method in fractured media is defined as follows: find u ∈ V such that

∑
ι∈Th

∫
ι
(σ(u), ε(v)) dx− ∑

ι∈Th

∫
ι
ρ ω2 u v dx + i ∑

e∈Γb

∫
e

ρ ω A u v ds

− ∑
e∈Γc

∫
e
{τ(u)} [v] ds− ∑

e∈Γc

∫
e
{τ(v)} [u] ds + ∑

e∈Γc

ζ

hι

∫
e
{λ + 2µ} [u] [v] ds

+ ∑
e∈Γ f

∫
e

Z−1 [u] [v] ds = ∑
ι∈Th

∫
ι

f v dx,

(5)

where ζ is the penalty parameter, τ(u) = σn is the traction vector, V is a suitable finite dimension
function space. Here u is the complex valued function and u = ∑j ujφj, φj are linear basis functions for
the fine scale approximation.

By definition of the following bilinear and linear forms

m(u, v) = ∑
ι∈Th

∫
ι
ρ u v dx, b(u, v) = ∑

e∈Γb

∫
e

ρ A u v ds, l(v) = ∑
ι∈Th

∫
ι

f v dx, (6)

aDG(u, v) = ∑
ι∈Th

∫
ι
(σ(u), ε(v)) dx + ∑

e∈Γ f

∫
e

Z−1 [u] [v] ds

− ∑
e∈Γc

∫
e
{τ(u)} [v] ds− ∑

e∈Γc

∫
e
{τ(v)} [u] ds + ∑

e∈Γc

ζ

hι

∫
e
{λ + 2µ} [u] [v] ds,

(7)

we obtain the following formulation

aDG(u, v)−ω2 m(u, v) + i ω b(u, v) = l(v). (8)
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We can write the complex valued problem in matrix form

(Kh −ω2Mh + iωBh)U = Fh, (9)

where Kh is the stiffness matrix, Mh is the mass matrix and Bh is the boundary mass matrix.

4. Multiscale Method on the Coarse Grid

In this section, we describe construction of the multiscale basis functions and coarse grid
approximation [10,15,17,29–31]. For construction of the coarse grid approximation, we will use a
projection approach and define a projection matrix R. We consider two types of the multiscale
basis functions: (1) CG-GMsFEM with continuous multiscale basis functions and (2) DG-GMsFEM
with discontinuous multiscale basis functions in coarse cells. By the algorithmic point of view,
the differences between two considered methods are concentrated on the definition of the local
domains and construction of the multiscale basis functions. After construction, we collect multiscale
basis functions into the projection matrix R. Therefore, we will define construction of the two projection
matrices RCG and RDG.

The main steps of the multiscale method is similar for both approaches (CG-GMsFEM and
DG-GMsFEM). We have following steps in the multiscale computational algorithm:

1. construction of the coarse grid and local domains;
2. construction of the multiscale basis functions by the solution of the local eigenvalue problem in

each local domains;
3. construction of the projection matrix R (from fine grid to coarse grid) using computed multiscale

basis functions;
4. construction of the fine grid system and projection to the coarse grid using matrix R;
5. solution of the reduced order model and reconstruction of the fine grid solution.

We start with definition of the coarse grid. Let TH be the coarse grid partitioning of the domain
Ω, TH = ∪Nc

i=1Ki with mesh sizes H � h > 0, where Ki is the coarse cell and Nc is number of
coarse cells. We note that, the coarse grid edges are conforming with the fine grid. In this work,
we use a structured coarse grid with quadrilateral coarse cells. In general, shape of the coarse grid
can be complex (unstructured coarse grid) and can be constructed, for example, using traditional
mesh partitioning.

Next, we define local domains. We have

• for CG-GMsFEM, the local domain ωi are defined as a coarse neighborhood that contains four
coarse grid quadrilateral cells around coarse grid node, where i = 1, . . . , Nv and Nv is the number
of the coarse grid nodes (see Figure 2 for illustration);

• for DG-GMsFEM, the local domain is the coarse grid cell Ki, where i = 1, . . . , Nc and Nc is the
number of the coarse grid cells.

After that, we solve local eigenvalue problems in each local domains in order to construct the
multiscale basis functions and using them we define a projection matrices RCG and RDG. The form of
the eigenvalue problems will be presented later for CG-GMsFEM and DG-GMsFEM.

Finally, the multiscale reduced order discrete system can be calculated by projecting the fine-scale
matrices onto the coarse grid with the global projection matrix R = RCG or R = RDG

(KH −ω2MH + iωBH)UH = FH , (10)

where UH is the complex valued solution on multiscale space, MH and KH are the coarse-scale mass
and stiffness matrices, and BH is the coarse-scale boundary mass matrix

MH = RMhRT , KH = RKhRT , BH = RBhRT , FH = RFh. (11)
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After calculation of the coarse-scale solution UH , we can recover the fine-scale solution by
Ums = RTUH .

Figure 2. Coarse grid and local domains illustration for CG-GMsFEM and DG-GMsFEM. Fractures are
depicted in red color. Structured 20× 20 coarse grid (black color). Unstructured fine grid (green color)
with triangular elements that conformed with fractures.

Next, we consider construction of multiscale basis functions based on two approaches—continuous
Galerkin method and discontinuous Galerkin method.

4.1. Multiscale Basis Functions for CG-GMsFEM

In CG-GMsFEM, the local domain ωi is obtained by the combining all the coarse cells around one
vertex of the coarse grid. To construct the multiscale basis functions, we start with the solution of the
following local eigenvalue problem in ωi

aCG(φ
ωi , v) = η s(φωi , v), ∀v ∈ Vh(ωi), (12)

where
s(φωi , v) =

∫
ωi

ρ φωi v ds.

For definition of the multiscale basis functions, we select the first M eigenvectors φ
ωi
1 , φ

ωi
2 , . . . ,

φ
ωi
M corresponding to the first M smallest eigenvalues η1 ≤ η2 ≤ . . . ≤ ηM. In order to construct

continuous multiscale space, we multiply eigenvectors to the partition of unity functions χi in local
domain ωi and define local projection matrices RCG,i (i = 1, . . . , Nv) as follows

RCG,i =
[
ψ

ωi
1 , ψ

ωi
2 , . . . , ψ

ωi
M
]T , (13)

where ψ
ωi
j = χiφ

ωi
j (j = 1, . . . , M) and χi is the piece-wise bi-linear shape function on the coarse grid

that equals to 1 at the coarse vertex xi, equals to 0 at all other coarse vertices.
The global projection matrix defined as follows

RCG = (RCG,1, RCG,2, . . . , RCG,Nv). (14)

4.2. Multiscale Basis Functions for DG-GMsFEM

In contrast to the continuous Galerkin method, the discontinuous Galerkin approach treats local
domain as a coarse cells Ki. For DG-GMsFEM, we construct two local multiscale spaces (boundary and
interior) by solution of the local eigenvalue problems on each coarse grid cell Ki ∈ TH . Boundary and
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interior basis functions are both defined in the local domain Ki up to fine grid resolution, φ
Ki ,α
j ∈ Vh(Ki),

j = 1, . . . Mα, α = b, o (indices b and o refer to the boundary and internal basis, respectively). Multiscale
basis functions differ by the definition of the local spectral problem.

To construct the boundary multiscale basis functions, we solve following spectral problem in Ki:

aDG(φ
Ki ,b, v) = ηb sb(φKi ,b, v), ∀v ∈ Vh(Ki), (15)

where
sb(φKi ,b, v) =

∫
∂Ki

ρ φKi ,b v ds.

To construct a boundary multiscale basis functions, we select the first Mb eigenvectors φ
Ki ,b
1 , φ

Ki ,b
2 ,

. . . , φ
Ki ,b
Mb

corresponding to the first Mb smallest eigenvalues ηb
1 ≤ ηb

2 ≤ . . . ≤ ηb
Mb

, and define following
local projection matrix

Rb
DG,i =

[
φ

Ki ,b
1 , φ

Ki ,b
2 , . . . , φ

Ki ,b
Mb

]T
. (16)

The interior multiscale basis functions are defined to capture interior eigenmodes for Ki and use
following spectral problem to identify the important modes

aDG(φ
Ki ,o, v) = ηoso(φKi ,o, v), (17)

where
so(φKi ,o, v) =

∫
Ki

ρ φKi ,o v ds,

with homogeneous Dirichlet boundary conditions.
We select the first Mo eigenvectors φ

Ki ,o
1 , φ

Ki ,o
2 , . . . , φ

Ki ,o
Mo

corresponding to the first Mo smallest
eigenvalues ηo

1 ≤ ηo
2 ≤ . . . ≤ ηo

Mo
. We define following local matrix

Ro
DG,i =

[
φ

Ki ,o
1 , φ

Ki ,o
2 , . . . , φ

Ki ,o
Mo

]T
. (18)

The global projection matrix defined as follows

RDG = (Rb
DG,1, Ro

DG,1, Rb
DG,2, Ro

DG,2, . . . , Rb
DG,Nv

, Ro
DG,Nv

). (19)

The complete stability and convergence analysis of the GMsFEM was presented in References [17,30].
We expect a similar behavior to the presented algorithms. The error of both multiscale methods
depends on the coarse-scale mesh size (H) and the number of multiscale basis functions (Λ = 1/λM+1)
(see Theorem 1 and 3 in Reference [17]).

5. Numerical Results

In this section, we present the numerical results for the coarse-scale approximation using
multiscale basis functions. We consider Continuous Galerkin (CG) and Discontinuous Galerkin
(DG) methods in GMsFEM. The basis functions of the multiscale space are constructed following the
procedure described above.

For numerical simulations, we use the following parameters. Computational domain is presented
in Figure 3 and have dimensions Ω = [0, Lx]× [0, Ly] with Lx = Ly = 500 [m]. In Figure 4, we show
a fine grid (green color) and coarse grid (blue color) for two test geometries with different length
of fractures:

• Geometry 1: Fine grid contains 16,077 vertices and 31,752 triangle elements.
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• Geometry 2: Fine grid contains 16,509 vertices and 32,616 triangle elements.

Note that, the fine grids are unstructured grids that resolve the fractures. Coarse grid is uniform
and contains 441 vertices and 400 rectangular elements.

Figure 3. Geometry 1 and 2 with 100 straight fractures. Fractures γ are depicted in red color. Domain
Ω = [0, L]2 is depicted in gray color with L = 500 m. Left: Geometry 1 with fractures length 10 m and
45◦ orientation angle. Right: Geometry 2 with fractures length 20 m and 45◦ orientation angle.

Figure 4. Computational grids for Geometry 1 and 2 with 100 straight fractures. Fractures are depicted
in red color. Structured coarse grid (black color) with 400 square cells. Unstructured fine grid (green
color) with triangular elements that conformed with fractures. Left: Geometry 1 with fractures length
10 m and 45◦ orientation angle.The fine grid contains 31,752 triangle elements. Right: Geometry 2 with
fractures length 20 m and 45◦ orientation angle. The fine grid contains 32,616 triangle elements.

We set the source term f (x) = G(x)P(θ), where P(θ) = (cos θ, sin θ) is the polar angle of the
source force vector with θ = 0 and the spatial function G(x) is defined as point source, G(x) = δ(x− x0)

with x0 = (250, 250) assigned as the center of the computational domain. We take penalty parameters
ζ = 4 and run simulations for ω = 2π f0 with f0 = 5, 10, 15. For numerical simulation, we set
following parameters µ = 28.571× 109 [Pa], λ = 23.077× 109 [Pa] and ρ = 2300 [kg/m3]. For fracture
compliance matrix Z in (3), we use z1 = z2 = 107 [m/Pa].

To compare a results, we calculate following relative errors in %

eL2 =

√∫
Ω(ums − u, ums − u) dx∫

Ω(u, u) dx
· 100%,
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eH1 =

√∫
Ω(σ(ums − u), ε(ums − u)) dx∫

Ω(σ(u), ε(u)) dx
· 100%,

where ums and u are multiscale solutions and reference solutions (fine grid solution).
In Figures 5 and 6, we present real parts Re(u) of solution for Geometry 1 and 2 with f0 = 15,

where multiscale solver constructed using DG-GMsFEM. Reference (fine-grid) solution is shown on
the top, and multiscale is on bottom. From the figures we can see that the length of fractures affect
the solution. If we take a longer crack length, then the waves are reflected more strongly. The fine
grid system that used to calculate reference solution has size DOFf = 190,512 for Geometry 1 and
DOFf = 195,696 for Geometry 2. Multiscale calculations are performed for M = 25 and the size of
coarse grid system is DOFc = 20,000 (10% from DOFf ). Note that, the degrees of freedom are defined
by the number of basis functions and the number of local domains in DG-GMsFEM and CG-GMsFEM.
We have DOFc = Nv ·M for CG-GMsFEM and DOFc = Nc · (Mo + Mb) for DG-GMsFEM, where Nv

is the number of coarse grid vertices and Nc is the number of coarse grid cells.

Figure 5. Numerical results for Geometry 1. Magnitude, X and Y components of displacement (from left
to right). First row: reference (fine-grid) solution. Second row: multiscale solution using CG-GMsFEM.
Third row: multiscale solution using DG-GMsFEM.
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Figure 6. Numerical results for Geometry 2. Magnitude, X and Y components of displacement (from left
to right). First row: reference (fine-grid) solution. Second row: multiscale solution using CG-GMsFEM.
Third row: multiscale solution using DG-GMsFEM.

Relative errors are shown in Tables 1 and 2 for two approaches proposed above and for two
geometries (Figure 3). DOFc is number of unknowns in multiscale solver, M is the number of multiscale
basis functions for CG-GMsFEM, and Mo and Mb are the numbers of multiscale interior and boundary
basis functions for DG-GMsFEM, respectively. We observe that the larger number of multiscale basis
functions can reduce errors.
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Table 1. Relative errors for Continuous Galerkin Generalized Multiscale Finite Element Method
(CG-GMsFEM) with different number of multiscale basis functions M. Left: Geometry 1. Right:
Geometry 2.

Geometry 1 Geometry 2
M DOFc eL2 (%) eH1 (%) M DOFc eL2 (%) eH1 (%)

f0 = 5 f0 = 5
5 2205 5.683 44.617 5 2205 22.032 49.143
10 4410 3.750 37.737 10 4410 3.174 37.845
15 6615 2.570 34.923 15 6615 2.944 35.137
20 8820 1.921 32.049 20 8820 3.540 32.216
25 11,025 1.591 30.422 25 11,025 3.559 30.903
50 22,050 1.187 25.187 50 22,050 2.676 25.583

f0 = 10 f0 = 10
5 2205 8.717 41.269 5 2205 25.635 47.053
10 4410 5.383 34.477 10 4410 3.9745 35.073
15 6615 3.495 31.825 15 6615 3.7782 32.420
20 8820 2.567 29.241 20 8820 3.8773 29.772
25 11,025 2.184 27.861 25 11,025 3.6346 28.403
50 22,050 1.343 23.025 50 22,050 2.4719 23.345

f0 = 15 f0 = 15
5 2205 19.997 42.195 5 2205 49.906 57.898
10 4410 8.927 32.913 10 4410 8.128 33.930
15 6615 5.217 30.303 15 6615 6.779 31.575
20 8820 2.970 27.818 20 8820 6.506 29.065
25 11,025 2.669 26.493 25 11,025 6.577 27.819
50 22,050 1.924 21.754 50 22,050 4.945 22.936

Table 2. Relative errors for Discontinuous Galerkin Generalized Multiscale Finite Element Method
(DG-GMsFEM) with different number of multiscale basis functions M = Mo = Mb. Left: Geometry 1.
Right: Geometry 2.

Geometry 1 Geometry 2
M DOFc eL2 (%) eH1 (%) M DOFc eL2 (%) eH1 (%)

f0 = 5 f0 = 5
5 4000 86.368 99.956 5 4000 86.412 99.969
10 8000 64.157 78.074 10 8000 70.890 81.704
15 12,000 34.960 53.810 15 12,000 35.100 54.556
20 16,000 13.730 41.178 20 16,000 21.538 44.009
25 20,000 7.556 33.535 25 20,000 10.007 34.752
50 40,000 2.236 16.672 50 40,000 3.516 17.245

f0 = 10 f0 = 10
5 4000 98.804 99.992 5 4000 99.136 100.004
10 8000 77.995 80.921 10 8000 87.598 86.050
15 12,000 28.137 49.248 15 12,000 31.581 50.711
20 16,000 12.443 37.775 20 16,000 19.672 40.105
25 20,000 7.534 30.598 25 20,000 9.890 31.458
50 40,000 2.069 15.541 50 40,000 3.295 16.074

f0 = 15 f0 = 15
5 4000 99.264 99.986 5 4000 99.446 99.994
10 8000 92.430 86.462 10 8000 98.481 90.507
15 12,000 42.383 52.390 15 12,000 45.749 54.527
20 16,000 20.054 38.037 20 16,000 26.519 41.610
25 20,000 11.739 30.303 25 20,000 13.800 32.069
50 40,000 3.4803 15.492 50 40,000 6.327 17.354

6. Conclusions

We construct reduced order model using Generalized Multiscale Continuous Galerkin Finite
Element Method (CG-GMsFEM) and Generalized Multiscale Discontinuous Galerkin Finite Element
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Method (DG-GMsFEM). We present numerical results for domain with fractures for two approaches to
demonstrate efficiency of presented methods. Numerical results show that the presented multiscale
methods give a good approximation of the solution and reduce the size of the system for both types of
methods (CG- and DG-GMsFEM). We observe a good reduction of the L2 errors for both methods when
the number of the multiscale basis functions increases. In order to further error reduction, we will
add an online residual-based multiscale basis function and oversampling techniques in future works.
Moreover, more complex mathematical models and multiscale methods for their solutions will be
considered in future works.
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