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Abstract: Construction of conservation laws of differential equations is an essential part of the
mathematical study of differential equations. In this paper we derive, using two approaches, general
formulas for finding conservation laws of the Black-Scholes equation. In one approach, we exploit
nonlinear self-adjointness and Lie point symmetries of the equation, while in the other approach we
use the multiplier method. We present illustrative examples and also show how every solution of the
Black-Scholes equation leads to a conservation law of the same equation.
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1. Introduction

An important study of mathematical models described by differential equations concerns
construction of the inherent conservation laws of equations. This is because of the many uses
of conservation laws, which include characterisation of the conserved physical quantities of the
phenomenon being modelled. In some cases, conservation laws are used to investigate integrability,
existence, uniqueness, and stability of solutions of differential equations. In the case of partial
differential equations (PDEs), conservation laws can also be used to search for potential symmetries,
which in turn lead to new solutions of the equations via admitted nonlocal symmetries. Therefore,
construction of conservation laws of the Black-Scholes equation [1], arguably the most famous equation
in financial mathematics, represents an important aspect of the study of the Black-Scholes market.

A number of methods have been developed for constructing conservation laws of PDEs [2–15].
Lie symmetry analysis [16–22] is central to some of the routines used in these methods, in particular
to those that have been applied on the Black-Scholes equation before. Edelstein and Govinder [23],
in the process of finding potential symmetries of the Black-Scholes equation, use the approach of Kara
and Mahomed [10] to find conservation laws of the equation via the admitted Lie point symmetries.
Hashemi [24] also uses Lie point symmetries of the Black-Scholes equation to compute conservation
laws of the equation via Ibragimov’s new conservation theorem [4,14].

In this paper, we augment the work by Edelstein and Govinder [23] and Hashemi [24]. We use
two methods to construct general formulas for finding conservation laws of the Black-Scholes equation.
In the first method, we employ the general conservation theorem by Ibragimov [4,14] by means of
which conservation laws for a system of equations consisting of the given system and its adjoint are
obtained. The second method used is the direct method proposed by Anco and Bluman in 1996 [3,5].
This method essentially reduces the construction of conservation laws to solving a system of linear
determining equations similar to that for finding Lie point symmetries. An explicit formula is then
derived which yields a conservation law for each solution of the determining system. Using this
method we characterise conservation laws of the Black-Scholes equation in terms of solutions of the
associated adjoint equation. Furthermore, we construct a mapping between the Black-Scholes equation
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and the associated adjoint equation so that every solution of the Black-Scholes equation yields a
conservation law of the equation. Mathematica [25] is used to perform all the calculations reported in
this paper.

In its simplest form, the Black-Scholes equation is a (1 + 1) linear parabolic equation,

ut +
1
2 σ2x2uxx + rxux − ru = 0, (1)

where u = u(x, t) is the fair option price depending on the current value of the underlying asset x and
time t. The parameters σ and r are the market volatility of the underlying asset price and the interest
rate, respectively.

The paper is organised as follows. In Section 2, we present relevant preliminaries. In Section 3,
we exploit nonlinear self-adjointness of the Black-Scholes equation to derive a general formula
for constructing conservation laws of the quation. In Section 4, we derive a general formula for
constructing conservation laws of the Black-Scholes via the direct method. We provide illustrative
examples in Section 5. An equivalence transformation between the Black-Scholes equation and its
adjoint equation is derived in Section 6. Finally, we give concluding remarks in Section 7.

2. Preliminaries

Consider a system of m PDEs of r-th order

Fα(x, u, . . . , u(r)) = 0, α = 1, . . . , m, (2)

where x = (x1, . . . , xn) is an independent variable set and u = (u1, . . . , um) is a dependent variable
set, with u(i) denoting all i-th x derivatives of u. The summation convention for repeated indices is
assumed unless otherwise stated. The formal Lagrangian, introduced in [4], associated to the system
of Equations (2), is given by the expression

L = vβFβ(x, u, . . . , u(r)), (3)

where v = (v1, . . . , vm) are new dependent variables, v = v(x). The system of adjoint equations to (2)
is defined by

F∗α (x, u, v, . . . , u(r), v(r)) =
δL
δuα

= 0, α = 1, . . . , m, (4)

where δ/δuα is the Euler operator

δ

δuα
=

∂

∂uα
+ ∑(−1)rDi1 , . . . , Dir

∂

∂uα
i1,...,ir

, α = 1, . . . , m, (5)

and Di is the total derivative operator with respect to xi defined by

Di =
∂

∂xi + uα
i

∂

∂uα
+ uα

ij
∂

∂uα
j
+ · · ·+ uα

ii1i2 ...in
∂

∂uα
i1i2 ...in

+ · · · . (6)

Definition 1. The system of m differential Equations (2) is said to be nonlinearly self-adjoint if the adjoint
Equations (4) are satisfied for all solutions u of the original system (2) upon a substitution

vα = ϕα(x, u, u(1), . . .), α = 1, . . . , m, ϕα 6≡ 0. (7)

We are now able to obtain the explicit formulas for conservation laws of any nonlinearly
self-adjoint Equation (2) that admits symmetries. We shall, however, omit a discussion of Lie symmetry
analysis as this is well-documented in many standard books [16–22].
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Theorem 1. Every infinitesimal Lie point, Lie-Bäcklund and non-local symmetry

X = ξ i(x, u, u(1), . . .)
∂

∂xi + ηα(x, u, u(1), . . .)
∂

∂uα
, (8)

of the system (2) leads to a conservation law

Di

(
Ci
)
= 0 (9)

that is constructed by the formula

Ci = Lξ i + Wα

[
∂L
∂uα

i
− Dj

(
∂L

∂uα
ij

)
+ DjDk

(
∂L

∂uα
ijk

)
− · · ·

]

+ Dj (Wα)

[
∂L

∂uα
ij
− Dk

(
∂L

∂uα
ijk

)
+ · · ·

]

+ DjDk (Wα)

[
∂L

∂uα
ijk
− · · ·

]
+ · · · , (10)

where Wα = ηα − ξ iuα
j and L is the formal Lagrangian (3), written in the symmetric form in the

mixed derivatives.

An alternate method for constructing conservation laws, that circumvents Noether’s theorem is
the direct/multiplier method [5]. In this method we exploit the fact that every admitted nontrivial
conservation law arises from multipliers on the Equation (2). Multipliers for the PDE system (2) are a
set of functions {Λβ(x, u, u(1), . . .)} satisfying.

ΛβFβ = DiCi, (11)

where (11) holds identically for arbitrary function u(x1, x2, . . . , xn). It follows therefore that the
conservation law DiCi = 0 holds for all solutions of the system of PDEs (2).

Theorem 2. A set of multipliers {Λβ} yields a conservation law of the given system of differential Equations (2)
if and only if the equations

δ

δuα

(
ΛβFβ

)
= 0, α = 1, . . . , m (12)

hold for arbitrary functions u1(x), . . . , um(x).

The set of Equation (12) are the linear determining equations for multipliers associated with
conservation laws admitted by the given system (2). Once the multipliers are computed, the conserved
vectors are derived systematically using (11).

3. Conservation Laws of the Black-Scholes Equation via Nonlinear Self-Adjointness

The Black-Scholes equation admits 6 + ∞ Lie point symmetries [26] and, being a linear equation,
is nonlinearly self-adjoint [15]. The equation is therefore amenable to Ibragimov’s method for
constructing conservation laws. Every symmetry of the Black-Scholes equation gives rise to a
conservation law of the equation. We follow the theory outlined in Section 2 to construct the
adjoint equation of the Black-Scholes Equation (1). According to (3) the formal Lagrangian for the
Equation (1) is

L = v
[
ut +

1
2 σ2x2 uxx + rxux − ru

]
, (13)
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from which we derive the adjoint equation of the Black-Scholes equation as defined in (4):

vt + 2 D v− 1
2 x
[

x σ2 vxx − 2
(

r− 2 σ2
)

vx

]
= 0, (14)

where
D = r− σ2/2.

The Black-Scholes equation, being a linear equation, is nonlinearly self-adjoint [15].
The trivial substitution

v = ϕ(x, t),

where ϕ is any solution of the adjoint Equation (14) obviously solves the adjoint equation for any
solution of the Black-Scholes equation. According to Theorem 1 this leads to the following result:

Proposition 1. Every infinitesimal symmetry generator

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
, (15)

of the Black-Scholes equation gives rise to a conservation law,

Dt

(
C1
)
+ Dx

(
C2
)
= 0, (16)

where

C1 = ξ1L + W
∂L
∂ut

(17)

C2 = ξ2L + W
[

∂L
∂ux
− Dx

(
∂L

∂uxx

)]
+ Dx (W)

∂L
∂uxx

, (18)

with
W = η −

(
ξ1ut + ξ2ux

)
, L = v

[
ut +

1
2 σ2x2 uxx + rxux − ru

]
,

and v is any solution of the adjoint Equation (14).

4. Conservation Laws of the Black-Scholes Equation via the Direct Method

We will exploit the well-known fact that for any linear PDE system, each solution of its adjoint
system yields a conservation law of the system [21]. According to (12) a multiplier Λ of a conservation
law of the Black-Scholes equation satisfies the equation

δ

δu

[
Λ
(

ut +
1
2 σ2x2 uxx + rxux − ru

)]
= 0. (19)

If we take Λ to be a first-order differential function Λ(x, t, u, ux, ut), it is easy to show that Λ is a
multiplier of the Black-Scholes Equation (1) if and only if

Λ(x, t, u, ux, ut) = v(x, t), (20)

where v is any solution of the adjoint Equation (14). This is arrived at by expanding Equation (19) and
solving the resulting set of determining equations for the multiplier.
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Furthermore, it is not hard to show that if Λ = v(x, t) is a solution of the adjoint Equation (14),
then

Λ
(

ut +
1
2 σ2x2 uxx + rxux − ru

)
= Dt [u v + f ] + Dx

[
σ2x2

2
(v ut − u vx) +

(
r− σ2

)
u x v + g

]
, (21)

where f = f (t, x) and g = g(t, x) are any functions satisfying

ft + gx = 0.

The leads to the following result:

Proposition 2. The tuple C =
(
C1, C2), where

C1 = u v, (22)

C2 =
σ2x2

2
(v ut − u vx) +

(
r− σ2

)
u x v, (23)

is a conserved vector of the Black-Scholes equation provided that v is a solution of the adjoint Equation (14).

Therefore, any solution of the adjoint Equation (14) leads to a conservation law of the
Black-Scholes equations.

5. Illustrative Examples

In this section we provide examples of conservation laws of the Black-Scholes equation constructed
via Propositions 1 and 2. Before we do this, however, we present results of basic Lie symmetry analysis
of the Black-Scholes equation and the adjoint equation. We present the admitted Lie point symmetries
and associated invariant solutions.

5.1. Lie Point Symmetries and Invariant Solutions of the Equations (1) and (14)

Lie point symmetries of the Black-Scholes Equation (1) and the associated adjoint equation
are easily obtained. Using Program Lie [27], for example, we determine that symmetries of the
Black-Scholes equation are

X1 = ∂t, X2 = x∂x,
X3 = 2t∂t + (ln x + Dt)x∂x + 2rtu∂u,
X4 = σ2tx∂x + (ln x− Dt)u∂u,
X5 = 2σ2t2∂t + 2σ2tx ln x∂x + [(ln x− Dt)2 + 2σ2rt2 − σ2t]u∂u,
X6 = u∂u, Xφ = φ(x, t)∂u,

(24)

where φ is any solution of the Black-Scholes equation. Similarly, Lie point symmetries of the associated
adjoint Equation (14) are
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Y1 = ∂t, Y2 = x ∂x,

Y3 =

[
(3 σ2−2 r) t

2 − ln x
]

x∂x − 2 t ∂t + 4 D t v∂v,

Y4 = σ2 t x ∂x − v
(
(3 σ2−2 r) t

2 + ln x
)

∂v,

Y5 = 2 σ2 t x ln x ∂x + 2 σ2 t2∂t +

[
σ2 t +

(
r2 + r σ2) t2

+
(

σ2 t
2 + ln x

)2
− 2

(
r− σ2) t ln x

]
v ∂v,

Y6 = v ∂v, Yφ = ϕ(x, t)∂v,

(25)

where ϕ is any solution of the adjoint Equation (14). Using Lie point symmetries of the Black-Scholes
equation and those of the associated adjoint equation, we construct invariant solutions of these two
equations via the usual routine [16,17,19,22]. These solutions are given in Tables 1 and 2, respectively.

Table 1. Invariant solutions of the Black-Scholes Equation (1).

Symmetry Associated Invariant Solution

X1 u(x, t) = k1 x + k2 x−
2 r
σ2

X2 u(x, t) = k1 er t

X3 u(x, t) = er t
[
k1 + k2 Erfi

(
D t−ln x√

2
√

t σ

)]
X4 u(x, t) = k1

xD/σ2√t
exp

{
(D+σ2)

2
t

2 σ2 + ln2 x
2 σ2t

}
X5 u(x, t) = t−

1
2 e

(D2+2 r σ2) t

2 σ2 x
ln x−2 D t

2 t σ2
[
k1 + k2 ln(x1/t)

]
Table 2. Invariant solutions of the adjoint Equation (14).

Symmetry Associated Invariant Solution

Y1 v(x, t) = x−2 (k1 + k2 xL) , L = 2 r+σ2

σ2

Y2 v(x, t) = k1 e−2 D t

Y3 v(x, t) = e−2 D t
[
k1 + k2 Erf(

√
2 ln x−8 J S t

2 S
√

t
)
]

, J = 2 r−3 σ2

8
√

2 S

Y4 v(x, t) = k1√
t

x
2 r−3 σ2

2 σ2 − ln x
2 σ2 t exp

{
− (2 r+σ2)

2
t

8 σ2

}
Y5 v(x, t) = 1√

t
x

2 r−3 σ2

2 σ2 − ln x
2 σ2 t exp

{
− (2 r+σ2)

2
t

8 σ2

} [
k1 + k2 ln(x1/t)

]

5.2. Construction of Conservation Laws of the Black-Scholes Equation via Proposition 1

Consider symmetries (24) of the Black-Scholes equation.

Example 1. Using X1 = ∂x, we have that ξ1 = 0 and ξ2 = 1. Therefore we obtain, from (17) and (18), that

C1 = u vt

+ Dx

[
θ(t) +

(
r− σ2

)
u x v +

1
2

σ2 x2 (v ux − u vx)

]
, (26)

C2 =
1
2

σ2 x2 (utvx − utxv)−
(

r− σ2
)

x v ut, (27)

where θ is an arbitrary function. Transferring the terms Dx (· · · ) form C1 to C2 (following Ibragimov [15])
we obtain

C1 = u vt, (28)

C2 = θ′(t) +
(

r− σ2
)

u x vt +
1
2

σ2 x2 (ux vt − u vtx) . (29)
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Using the solution
v = k1 e−2 D t, with k1 = 1, (30)

for example (from Table 1), and setting θ ≡ 0, we obtain

C1|(30) = −2 D u e−2 D t, (31)

C2|(30) = 2 D e−2 D t
[(

σ2 − r
)

u x− 1
2

σ2 ux x2
]

. (32)

Example 2. Using X1 = x ∂x, we have that ξ1 = 0 and ξ2 = x. Therefore

C1 = −ux x v, (33)

C2 =

[
(ut − r u) x +

1
2

σ2 ux x2
]

v +
1
2

σ2 x3 vx. (34)

Using solution (30), for example, we obtain

C1|(30) = −e−2 D t ux x, (35)

C2|(30) = e−2 D t x
(

ut − r u +
1
2

σ2 ux x
)

. (36)

5.3. Construction of Conservation Laws of the Black-Scholes Equation via Proposition 2

Consider invariant solutions of the adjoint equations given in Table 2.

Example 3. Using the invariant solution v(x, t) = x2 r/σ2−1 + 1/x2 that arises from Y1, we obtain from (22)
and (23) that

C1 = u
(

x2 r/σ2−1 + 1/x2
)

, (37)

C2 =
1
2

σ2 ux

(
x2 r/σ2+1 + 1

)
− u

(
1
2

σ2 x2 r/σ2 − r
x

)
. (38)

Example 4. Using the invariant solution v(x, t) = e−2 D t that arises from Y2, we obtain from (22) and
(23) that

C1 = e−2 D t u, (39)

C2 = e−2 D t
[(

r− σ2
)

u x +
1
2

σ2 x2 ux

]
. (40)

6. Every Solution of the Black-Scholes Equation Gives Rise to a Conservation Law of
the Equation

In both Propositions 1 and 2, the constructed conservation laws involve solutions of the adjoint
equation. We can avoid making reference to the adjoint equation in the constructed conservation laws
if we exploit the equivalence between the Black-Scholes equation and the associated adjoint equation,
which is done via an equivalence transformation.

Proposition 3. If u = U(x, t)) is any solution of the Black-Scholes Equation (1), then

v = W(x, t) =
x

D
σ2−1+ 2 D−ln x

2 σ2 t U
(

x1/t, 1/t
)

√
t exp [Ω (t + 1/t)]

, Ω =

(
D + σ2)2

2 σ2 (41)

is a solution of the adjoint Equation (14).
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Proof. We note that the Black-Scholes Equation (1), which we reproduce here in the new variables τ,
z and w = w(τ, z),

wτ +
1
2 σ2z2wzz + rzwz − rw = 0 (42)

and the associated adjoint Equation (14) are both evolutionary parabolic PDEs admitting 6 to ∞ Lie
point symmetries. Therefore, Equation (42) is reduceable to the adjoint Equation (14) via an equivalence
transformation of the form [26]

z = α(x, t), τ = β(t), w = ϕ(x, t, u), αx βt ϕu 6= 0, (43)

for some functions α, β and ϕ. Writing the Black-Scholes Equation (42) in terms of the variables x,
t and u via (43) we obtain

1
2

σ2α2

[
αx
(
uxx φu + ux

2 φuu + 2 ux φxu + φxx
)
− (αxx (ux φu + φx))

αx3

]

+
αx
(
ut φu + φy

)
−
(
αy (ux φu + φx)

)
αx βy

+ rα

[
ux φu + φx

αx

]
− rφ = 0, (44)

where ′ denotes the differentiation with respect to t. Comparing this equation with the adjoint
Equation (14) and equating the respective coefficients, we arrive at the following system of
determining equations:

φuu = 0 (45)

x2 αx
2 + α2 βy = 0 (46)(

r− 2 σ2
)

x +
σ2 α2 αxx βy

2 αx3 +
αy − r α βy

αx
−

σ2 α2 βy φxu

αx2 φu
= 0 (47)

σ2 α2 αxx βy φx + 2 (αx)
2 (αy − r α βy

)
φx − σ2 α2 αx βy φxx

+ 2 (αx)
3
[
r φ βy +

(
2 r− σ2

)
u φu − φy

]
= 0. (48)

The general solution of the determining Equations (45)–(48) is found after lengthy calculations
to be

α =
(

eλ1 xλ2
) 1

λ2
2 (y+λ3) (49)

β =
1

λ2
2 (y + λ3)

(50)

ϕ = λ4 u
√

y + λ3 exp

(2 r + σ2)2
(

λ2
−2 + (y + λ3)

2
)

8 σ2 (y + λ3)


×
(

eλ1 xλ2
)−2 r+σ2+λ1+(−2 r+3 σ2) λ2 (y+λ3)+λ2 ln x

2 σ2 λ2
2 (y+λ3) (51)

where λ1, λ2, λ3 and λ4 are arbitrary constants. Setting λ1 = λ3 = 0 and λ2 = λ4 = 1, we obtain

z = x
1
t , τ =

1
t

, w = u eΩ (1/t+t)
√

t x(1−D/σ2)+ ln x−2 D
2 σ2 t , (52)

from which Proposition 3 follows.
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7. Concluding Remarks

Two approaches have been employed in this paper to establish general characterizations of
conservation laws of the Black-Scholes equation. In one approach the self-adjointness of the
Black-Scholes equation was exploited following a method due to Ibragimov [4], while in the other
approach the direct method, proposed by Anco and Bluman [3], was used. We have provided
illustrations of how infinitely many conservation laws of the Black-Scholes equation may be determined
easily from the derived general characterizations of conservation laws of the equation. Furthermore,
we have constructed an equivalence transformation between the Black-Scholes equation and its adjoint
equation, which provides a correspondence between every solution of the Black-Scholes equation and
a conservation law of the equation.

Funding: The author thanks the Directorate of Research Development and Innovation of Walter Sisulu University
for financial support rendered towards publication of this article.
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