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Abstract: In this paper, we consider the numerical solution of the optimal control problems of
the elliptic partial differential equation. Numerically tackling these problems using the finite
element method produces a large block coupled algebraic system of equations of saddle point
form. These systems are of large dimension, block, sparse, indefinite and ill conditioned.
The solution of such systems is a major computational task and poses a greater challenge for
iterative techniques. Thus they require specialised methods which involve some preconditioning
strategies. The preconditioned solvers must have nice convergence properties independent of
the changes in discretisation and problem parameters. Most well known preconditioned solvers
converge independently of mesh size but not for the decreasing regularisation parameter. This work
proposes and extends the work for the formulation of preconditioners which results in the optimal
performances of the iterative solvers independent of both the decreasing mesh size and the regulation
parameter. In this paper we solve the indefinite system using the preconditioned minimum residual
method. The main task in this work was to analyse the 3 × 3 block diagonal preconditioner
that is based on the approximation of the Schur complement form obtained from the matrix
system. The eigenvalue distribution of both the proposed Schur complement approximate and
the preconditioned system will be investigated since the clustering of eigenvalues points to the
effectiveness of the preconditioner in accelerating an iterative solver. This is done in order to create
fast, efficient solvers for such problems. Numerical experiments demonstrate the effectiveness and
performance of the proposed approximation compared to the other approximations and demonstrate
that it can be used in practice. The numerical experiments confirm the effectiveness of the proposed
preconditioner. The solver used is robust and optimal with respect to the changes in both mesh size
and the regularisation parameter.

Keywords: elliptic optimal control problems; partial differential equations (PDEs); saddle
point problem; block preconditioners; Schur complement; preconditioned minimum residual
method (PMINRES)
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1. Introduction

The partial differential equation constrained optimisation problems have over the years become
an active research area that has arisen in many application areas that include finance, medicine,
modern science and engineering. We refer to [1,2] on their theoretical and also to [3–5] on their
numerical developments. These problems are numerically and analytically challenging to solve.
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The most clear challenge is that the resulting linear algebraic system is very large such that the only
viable way is to get the solution iteratively using specialised methods. The formulation of the linear
optimisation problem involves the objective function to minimise subject to the constraints defined by
the underlying modelling partial differential equation in a bounded domain Ω ⊂ R2 with boundary
∂Ω. Consider the following elliptic distributed PDE-optimal control problem

min(u,y) J(y, u) :=
1
2
‖ y− yd ‖2

L2(Ω) +
δ

2
‖ u ‖2

L2(Ω) (1)

subject to the constraints

−∆y = f + u in Ω
y = g on ∂Ω

(2)

with y the state variable, yd the desired state known over the domain Ω̄ and u the control variable on
the right hand side. The parameter δ is called the regularisation parameter which measures the cost
of the control and is supplied and positive. The size of the regularisation parameter is important in
the performances of the iterative solvers. The optimal value of the regularisation parameter δ is 10−2;
see [6,7]. The performance of iterative solvers with the decreasing parameter is the central theme of
this study. The solution of the state variable y must satisfy the PDE over Ω and must be as close as
possible to the desired state yd so that the objective function can be minimised.

The optimal control problem Equations (1) and (2) has a unique solution (y, u) characterised by
the following optimality system called the Karush–Kuhn–Tucker (KKT) system [8,9]. The first order
optimality system of the PDE-optimal control problems consists of a state equation, an adjoint equation
and the control equation which is a saddle point problem as given below

−∆p = y− yd, in Ω p = 0 on ∂Ω adjoint equation (3)

−∆y = f + u, in Ω y = g on ∂Ω state equation (4)

−δu = p in Ω control equation (5)

The optimality system is achieved through the Lagrange multiplier method which partitions the
model problem into three equations, namely, the state y, control u and the adjoint, p which form the
saddle point problem. For the numerical solution of the elliptic optimal control problem we apply the
finite element method to the system ((3)–(5)) to get the linear saddle point problem. The finite element
method is the most popular technique for the numerical solution of the PDE-constrained optimisation
problems; see [5–7] and many more. The finite element method results in the coupled linear algebraic
system which has to be solved by the appropriate solvers. The resulting discrete KKT system is M O K

O δM −M
K −M O


 y

u
p

 =

 b
0
d

 (6)

where K ∈ Rn×n is a stiffness matrix, and that and the mass matrix M ∈ Rn×n are both symmetric
and positive definite. The vector b = Myd ∈ Rn is the finite element projection of the desired state yd,
and d ∈ Rn contains the terms arising from the boundaries of the finite element of the state y.

The finite element discretisation produces a large scale linear algebraic system of Equation (6)
which is indefinite and has poor spectral properties. The numerical solution of such problems is
a computational uphill task and has a lot of challenges such that constructing robust and efficient
solvers has preoccupied the computational scientific community for decades. The linear algebraic
indefinite system is parameter dependent such that the condition number grows when the mesh size
and the regularisation parameter approach zero. The well known Krylov and multigrid iterative
solvers perform poorly for such systems. In recent years, much effort has been devoted in developing
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specialised iterative solvers using suitable preconditioners [3,6,7,10–12] and appropriate smoothers
for the multigrid solvers [8,9,13–17]. For the development of the efficient multigrid solvers for the
distributed optimal control problems, we refer to ([8,9,15,16,18,19]. Several preconditioned strategies
have been developed and evolved that accelerate the iterative solvers. These are the block diagonal
preconditioner [6,20–22] for the minimum residual (MINRES) solver [23,24], and for the generalised
minimal residual (GMRES) method, block triangular preconditioners with nonstandard inner
products for the conjugate gradient method [7,10,21,22,25] and the constraint preconditioner [7,11,21].
The preconditioners were also developed for the two by two reduced block linear system and three
by three block system to solve the optimal control problems of the Stokes [10,26,27], parabolic [28,29]
and convection diffusion [30] equations. In most cases the application of preconditioners shows
robustness and efficiency with the decreasing mesh size but not with the decreasing regularisation
parameter. In this study, we focus on the improvement of the block diagonal preconditioner to enhance
the performance of the MINRES solver. The MINRES was developed by [31] and widely used for
PDE-constrained optimisation problems. The aim of this paper is to present preconditioners based
on the Schur complement approach that seek to achieve an efficient solution of the linear system
arising from the discretisation of the PDE- optimal control problems. We give particular attention
to preconditioning techniques that achieve robust performances in the MINRES solver with respect
to both decreasing mesh size and the regularisation parameter. As the mesh size approaches zero,
the dimensions of the problem increase. A mesh-independent performance is always achieved for such
systems, but the small values of the regularisation parameter pose a great challenge to the iterative
solvers. As the regularisation parameter decreases, the performance of the iterative solver deteriorates,
but it improves for large values.

The optimal performance of the preconditioner depends on applying an appropriate
approximation of the (1,1) and (3,3)-block entries of the preconditioner. For the preconditioners
based on the Schur complement, the (3,3) Schur complement remains one of the challenges to finding
a suitable approximation to achieve robustness in terms of parameter changes. The Schur complement
approximation developed in [6] and widely used in literature displays optimal performance
for large values of the regularisation parameter, but the performance of it deteriorates as the
parameter approaches zero. In [21,23] another Schur complement approximation was developed
for PDE-constrained optimisation problems which gives convergence of the appropriate iterative
method in a number of steps which are independent of the value of the regularisation parameter.
The preconditioned iterative solver displays optimal performance for small values of the regularisation
parameter. The main contribution of this work is to present a different form of the Schur compliment
approximation to achieve an optimal performance of the MINRES solver in terms of iterative counts
that are independent of the decreasing mesh size and the regularisation parameter. The clustering of
the eigenvalues points to the good convergence properties of the preconditioned solver. We remove the
dependency on the regularisation parameters within the preconditioned matrix as in [21]. We derive
and investigate the clustering of the eigenvalues for the Schur compliment approximate and the
preconditioned system. The numerical experiments’ outcomes of the proposed approximation
are compared with the existing approximations of the Schur complement preconditioner to show
its efficiency.

This paper is organised as follows. In Section 2 we preview the block diagonal preconditioner
and investigate the eigenvalue distribution. In Section 3, we discuss our proposed approximation
for the Schur complement and investigate the eigenvalue distribution of the preconditioned
system. In Section 4 we present the numerical experiments to demonstrate how well the proposed
approximation works and the conclusion is given.

2. Analysis of the Block Diagonal Preconditioner

We consider the preconditioning strategies for solving the saddle point problem, Equation (6).
The optimal performance of the preconditioned Krylov subspace methods such as MINRES, GMRES
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and conjugate gradient rely more on the distribution of the eigenvalues of the coefficient matrix. It is
well known in numerical analysis that the spectral radius must be bounded by one to guarantee
convergence of the iterative solvers. The coefficient matrix of the system (6) is known to be large,
sparse and indefinite with poor spectral properties. This section aims to outline the block diagonal
preconditioner that involves the mass matrix and a Schur complement form. We consider a block
diagonal preconditioner for the 3× 3 block coefficient matrix of the Equation (6). For the 2× 2 block
preconditioners we refer to [7,22] and the references therein. The block diagonal preconditioner is
given by

Q :=

M O O
O δM O
O O S

 (7)

where S := KM−1K + 1
δ M is the Schur complement form. A good preconditioner must fulfil the

assumptions that it is easy to invert, and the linear system Qx = b associated with it is easy to solve
for any vector b. The approximation of the (3,3) block entry poses more challenges and difficulties.
One possible widely used approach as in [6,21,24] is to get the approximation of S by discarding the
term 1

δ M to obtain QS1 = KM−1K by dropping a term with δ−1M with an argument such that for all
very small values of δ the term KM−1K will be dominating. The application of the preconditioner with
the approximation QS1 = KM−1K has the shortfall that the iterative solver converges independently
of the decreasing mesh size only but not in the decreasing regularisation parameter δ. To demonstrate
this we need to give the eigenvalue bounds for Q−1

S1
S as derived in [6,21]. We now use the following

results, which are Theorems (3.4) and (3.5) in [6] and used by [21,24].

Theorem 1 ([6]). For the problem Equation (6) in Ω ∈ R2 with the degree of approximation Qm or Pm with
m ≥ 1 the following bounds hold:

α1h2 ≤ vT Mv
vTv

≤ α2h2 (8)

where α1 and α2 are real constants independent of h but dependent on m.

Theorem 2 ([6]). For the problem Equation (6) in Ω ∈ R2 with the degree of approximation Qm or Pm with
m ≥ 1 the following bounds hold:

θ1h2 ≤ vTKv
vTv

≤ θ2 (9)

where θ1 and θ2 are real constants independent of h but dependent on m.

Theorem 3. The eigenvalues of Q−1
S1

S are bounded as λ(Q−1
S1

S) ∈ [ 1
δ α̃h4 + 1, 1

δ θ̃h4 + 1] where α̃ and θ̃ are
independent of h and but dependent on δ.

Proof of Theorem 3. To find the eigenvalue distribution of Q−1
S1

S, let ω be the eigenvalue, and then

Q−1
S1

Sy = ωy

(KM−1K)−1(KM−1K +
1
δ

M)y = ωy

(Iδ + K−1MK−1M)y = ωδy

(K−1M)2y = δ(ω− 1)y

Let υ be an eigenvalue of K−1M then the eigenvalue of (K−1M)2 is υ2. This means that υ2 =

δ(ω− 1)
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(K−1M)2y = υ2y

(K−1M)y = υy

My = υKy

⇒ υ = yT My
yTKy = yT My

yTy ·
yTy

yTKy . By using Theorems 1 and 2, there exist positive constants α̃ and θ̃

independent of mesh size; we have

α̃h2 ≤ yT My
yTKy

≤ θ̃

This implies that we have

α̃h4 ≤ δ(ω− 1) ≤ θ̃

1
δ

α̃h4 ≤ ω− 1 ≤ 1
δ

θ̃

1
δ

α̃h4 + 1 ≤ ω ≤ 1
δ

θ̃ + 1

Thus, it follows that there exist constants α̃ and θ̃ independent of the mesh size such that

1
δ

α̃h4 + 1 ≤ yTSy
yTQS1 y

≤ 1
δ

θ̃ + 1

It is clear that QS1 has no dependence on δ but the eigenvalue lower and upper bounds are
dependent on δ. The eigenvalue bounds demonstrated by the Theorem 3 above show that the
parameter δ determines the clustering and distribution of eigenvalues. This clearly shows that if δ is
too small the eigenvalues are not clustered and QS1 will not be a better approximation. This entails
that large values of δ, QS1 are a perfect approximation. The current research seeks to construct
an approximation whose performance does not rely on both the mesh size and the regularisation
parameter. The following theorem in [6] gives the eigenvalue distribution of the preconditioned
coefficient matrix with preconditioner Q1 with the approximation for the Schur complement form
QS1 where

Q1 :=

M O O
O δM O
O O KM−1K

 (10)

Theorem 4 ([7,24]). For Q1 approximation, let the preconditioner Q1 be defined by Equation (10). Assume
that λ is an eigenvalue of the preconditioned matrix Q−1

1 K. Then λ = 1 or λ satisfies the following bound:

1 +
1
2δ

α2
1

θ2
2

h4 ≤ λ ≤ 1 +
1
2δ

α2
1

θ2
2

For the proof and details we refer to [7,24] and references therein.

3. Proposed Schur Complement Preconditioner Approximation

The above Theorem 4 has demonstrated that applying the preconditioner with the Schur
complement approximation QS1 results in performance and convergence of the preconditioned
iterative solver that are independent of the discretisation mesh size and dependent on the regularisation
parameter. It is expected that the convergences of the Krylov methods such as MINRES and GMRES
are independent of the mesh size. The crucial task is to develop an efficient preconditioner that gives
close eigenvalue bounds of the preconditioned system. The scientific literature on preconditioning
optimal control systems includes classical Schur complement based approximations. In [21] we see
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the extension of the preconditioner whose effects are independent of the regularisation parameter.
This was also used in [24]. The main task of this section is to briefly discuss the approximation in [21]
and the one we propose in this work, which has the same clustering and distribution of eigenvalues
and produces a preconditioned iterative solver that is not sensitive to the changes and decreasing
regularisation parameter. The following approximation for S was developed in [21]

S = (K +
1√
δ

M)M−1(K +
1√
δ

M)− 2√
δ

K

which reduces to

S = (K +
1√
δ

M)M−1(K +
1√
δ

M)− 2√
δ

K ≈ (K +
1√
δ

M)M−1(K +
1√
δ

M) := QS2

by discarding the much smaller term 2√
δ
K which is a smaller O(δ

−1
2 ) term than O(δ−1) shown Section 2

above. To get eigenvalue bounds for Q−1
S2

S, we follow the same derivation and use the Theorems 1–3
above. The preconditioner involving the Schur complement approximation QS2 is given as follows

Q2 :=

M O O
O δM O
O O (K + 1√

δ
M)M−1(K + 1√

δ
M)

 (11)

There has been development of similarly structured Schur complement approximations to QS2

whose eigenvalue bounds are the same but differ in computational complexities. We have QSc =

(K + 1
i
√

δ
M)M−1(K − 1

i
√

δ
M) which is complex based developed by Choi and others in [32]. In this

paper we propose and analyse a robust approximation for S which has the same eigenvalue bounds
but a different eigenvalue distribution within the interval for QS2 as the approximation QS3 which is
expected to accelerate the numerical solution. Our proposed approximation for the Schur complement
is also derived from QS1 by writing

S = KM−1K + δ−1M

= (
√

δK)(δM)−1(
√

δK) + (δM)−1 + 2
√

δ
−1

K− 2
√

δ
−1

K

= [(
√

δK)(δM)−1(
√

δK) + δ−1K] + [(δM)−1 + δ−1K]− 2
√

δ
−1

K

=
√

δK[(δM)−1(
√

δK) + δ−1 I] + δ−1[
√

δK + M]− 2
√

δ
−1

K

=
√

δK[((δM)−1(
√

δK) + δ−1M−1M] + δ−1[
√

δK + M]− 2
√

δ
−1

K

=
√

δK(δM)−1[
√

δK + M] + δ−1[
√

δK + M]− 2
√

δ
−1

K

= [
√

δK(δM)−1 + δ−1 I][
√

δK + M]− 2
√

δ
−1

K

= [
√

δK(δM)−1 + δ−1MM−1][
√

δK + M]− 2
√

δ
−1

K

= [
√

δK + M](δM)−1[
√

δK + M]− 2
√

δ
−1

K

which similarly reduces to

S = (
√

δK + M)(δM)−1(
√

δK + M)− 2√
δ

K ≈ (
√

δK + M)(δM)−1(
√

δK + M) = QS3

by discarding a O(δ−
1
2 ) term this means that the error committed grows much slower. To motivate

our choice of the Schur complement approximation, we illustrate the properties of the preconditioned
Schur complement and the preconditioned system. We now discuss the derivation of the eigenvalue
distribution of Q−1

S3
S by following the same derivation in [21].
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Theorem 5. The eigenvalues of Q−1
S3

S satisfy the following bounds σ(Q−1
S3

S) ∈ [ 1
2 , 1] independent of both

mesh size h and regularisation parameter δ

Proof of Theorem 5. QS3 is invertible since M is symmetric and positive definite. Let σ be an
eigenvalue of Q−1

S3
S corresponding to eigenvector y; then

Q−1
S3

Sy = σy

Sy = σQS3 y

(KM−1K +
1
δ

M)y = σ(
√

δK + M)(δM)−1(
√

δK + M)y

(KM−1K +
1
δ

M)y = σ(KM−1K +
1
δ

M +
2√
δ

K)y

(I +
1
δ

K−1MK−1M)y = σ(I +
1
δ

K−1MK−1M +
2√
δ

K−1M)y

(δI + K−1MK−1M)y = σ(δI + K−1MK−1M + 2
√

δK−1M)y

(δI + (K−1M)2)y = σ(
√

δI + K−1M)2y

(
√

δI + K−1M)−2(δI + (K−1M)2)y = σy

Let ν be the eigenvalue of K−1M; then

(
√

δ + ν)−2(δ + ν2)y = σy

This means that σ = (δ+ν2)

(ν+
√

δ)2 is an eigenvalue of Q−1
S3

S. Now since K−1M is similar to the real

and symmetric matrix M
1
2 K−1M

1
2 , it is diagonalisable; this means that it describes all the eigenvalues

of Q−1
S3

S. It is known that a fraction of the form v2+w2

(v+w)2 is bounded between 1
2 and 1. Hence,

υ = (δ+ν2)

(ν+
√

δ)−2 = (
√

δ
2
+ν2)

(ν+
√

δI)−2 which takes the form v2+w2

(v+w)2 . Thus, 1
2 ≤ σ ≤ 1. By this we conclude

that σ(Q̂−1
S3

S) ∈ [ 1
2 , 1] is clustered and not dependent on the mesh size h and the regularisation

parameter δ.

The actual application of the preconditioner QS3 in actual computations involving solving two
subsystems to accelerate the convergence of Krylov subspace iteration process can be implemented as:

Algorithm 1. Application of Preconditioner QS3 .
Let L =

√
δK + M and w be any given vector; we can compute the vector v and QS3 v = w, that is,

LM−1Lv = w, using the following procedures:

1. Ly = w solve for y;
2. M−1Lv = y; we have My = u;
3. Lv = u solve for v.

Since M and K are sparse, L is sparse too, and an added bonus for QS3 and QS2 is that they
maintain δ-dependency and their bounds are fairly good. The preconditioner involving the Schur
complement approximation QS3 is given as follows.

Q3 :=

M O O
O δM O
O O (

√
δK + M)(δM)−1(

√
δK + M)

 (12)
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We now derive the eigenvalues distribution of the preconditioned coefficient matrix Q−1
3 K with

the modified approximation for the Schur complement form. We will use Proposition (2) in [7] which
extends Theorem 4.

Theorem 6 ([7]). The eigenvalues of the preconditioned system Q−1
3 K where K :=

M O K
O δM −M
K −M O

 and

Q3 =

M O O
O δM O
O O Q−1

S3

 are in the interval µ(Q−1
3 K) ∈ [ 1−

√
5

2 , 1−
√

3
2 ] ∪ 1∪ [ 1+

√
3

2 , 1+
√

5
2 ]

Proof of Theorem 5. Let σ be the eigenvalue of Q−1
S3

S and µ be an eigenvalue of Q−1
3 K corresponding

to the eigenvector v = {v1, v2, v3}. We want to find the eigenvalues bounds for Q−1
3 K. We use a

different approach from the one in [21]. We have

Q−1
3 =

M−1 O O
O (δM)−1 O
O O Q−1

S3


The preconditioned coefficient matrix

Q−1
3 K =

M−1 O O
O (δM)−1 O
O O Q−1

S3


M O K

O δM −M
K −M O


=

 I O M−1K
O I −(δ)−1 I

Q−1
S3

K −Q−1
S3

M O


We consider the eigenvalue problem

Q−1
3 Kv = µv I O M−1K

O I −(δ)−1 I
Q−1

S3
K −Q−1

S3
M O


v1

v2

v3

 = µ

v1

v2

v3


It follows that,

v1 + M−1Kv3 = µv1 (13)

v2 +
1
δ

Iv3 = µv2 (14)

Q−1
S3

Kv1 −Q−1
S3

Mv2 = µv3 (15)

1. If µ = 1 from Equations (13) and (14) we have M−1Kv3 = 0 and 1
δ Iv3 = 0, then v3 = 0. Therefore,

the corresponding eigenvector is

v =

v1

v2

0

 , ∀
(

v1

v2

)
6= 0
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2. If µ 6= 1 from Equations (13) and (14) we have

v1 =
1

µ− 1
M−1Kv3 (16)

v3 =
1

δ(µ− 1)
v3 (17)

Substituting Equations (16) and (17) into Equation (15), we get

Q−1
S3

K
(

1
µ− 1

M−1Kv3

)
−Q−1

S3
M
(

1
δ(µ− 1)

v3

)
= µv3

Q−1
S3

KM−1Kv3 −
1
δ

Q−1
S3

Mv3 = µ(µ− 1)v3

Q−1
S3

(KM−1Kv3 −
1
δ

M)v3 = µ(µ− 1)v3

Q−1
S3

Sv3 = µ(µ− 1)v3

Therefore µ satisfies Q−1
S3

Sv3 = µ(µ− 1)v3 with the corresponding eigenvector

v =


1

µ−1 M−1Kv3
1

δ(µ−1)v3

v3

 , ∀v3 6= 0

Since σ is the eigenvalue of Q−1
S3

S, then we have µ(µ− 1) = σ which is

µ2 − µ− σ = 0 (18)

Solving Equation (18) we get

µ =
1±
√

1 + 4σ

2
The values of µ derived above agree with the Proposition (2) in [6] which gives the bounds

µ(Q−1
3 K) ∈

[
1−
√

1+4σm
2 , 1−

√
1+4σ1
2

]
∪ 1 ∪

[
1+
√

1+4σ1
2 , 1+

√
1+4σm
2

]
. We have that if 0 ≤ σ1 ≤ σ2 ≤ · · · ≤

σm are eigenvalues of Q−1
S3

KM−1K + 1
δ Q−1

S3
M then the other eigenvalues of Q−1

3 K are

1 +
√

1 + 4σ1

2
≤ µ ≤ 1 +

√
1 + 4σm

2
or (19)

1−
√

1 + 4σm

2
≤ µ ≤ 1−

√
1 + 4σ1

2
. (20)

Now we have

Q−1
S3

KM−1K− 1
δ

Q−1
S3

M = Q−1
S3

(KM−1K +
1
δ

M) = Q−1
S3

S
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This means that the eigenvalues of Q−1
S3

KM−1K − 1
δ Q−1

S3
M are the eigenvalues of Q−1

S3
S.

From Theorem 5 we have σ(Q−1
S3

S) ∈ [ 1
2 , 1]. Let σ1 = 1

2 and σm = 1; substituting in
Equations (19) and (20) we get

1 +
√

1 + 4σ1

2
≤ µ ≤ 1 +

√
1 + 4σm

2

1 +
√

1 + 4( 1
2 )

2
≤ µ ≤ 1 +

√
1 + 4(1)
2

1 +
√

3
2

≤ µ ≤ 1 +
√

5
2

and

1−
√

1 + 4σm

2
≤ µ ≤ 1−

√
1 + 4σ1

2

1−
√

1 + 4(1)
2

≤ µ ≤
1−

√
1 + 4( 1

2 )

2
1−
√

5
2

≤ µ ≤ 1−
√

3
2

Therefore the eigenvalues of the preconditioned coefficient matrix are

µ = 1

1 +
√

3
2

≤ µ ≤ 1 +
√

5
2

1−
√

5
2

≤ µ ≤ 1−
√

3
2

The Theorem 6 above clearly shows that the eigenvalues of the preconditioned coefficient matrix
are clustered and are independent of both the mesh size and the regularisation parameter. The iterative
solver is expected to converge with changes in the problem parameters and discretisation parameter.
In the next section we carry out numerical tests to verify the theoretical findings and compare the
performance of the MINRES solver with the block diagonal preconditioner associated with the three
approximations for the Schur complement form.

4. Numerical Results

In this section we present the results of the numerical experiments for solving the problem
(Equation (6)) using the block diagonal preconditioned MINRES method. The main task here is to
demonstrate the effectiveness of preconditioner in accelerating the MINRES solver. In this study the
numerical experiments began with the Q1 finite element discretisation of the state y, the adjoint p and
the control u equations using uniform grids. All simulations and implementations were performed
on a Windows 10 platform with Intel R© CoreTM i5-3230M CPU@2.6 GHz 6.00 GB speed Intel R© using
Matlab 7 programming language. We used the IFISS matlab package developed in [33] to generate a
discrete linear algebraic system. The values of the mesh size h and the dimensions of M, K and K are
shown in Table 1 below
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Table 1. Mesh sizes and corresponding sizes of the matrices.

Mesh Size (h) 2−3 2−4 2−5 2−6 2−7 2−8 2−9

size of M(n) 81 289 1089 4225 16,641 66,049 26,3169
size of K(n) 81 289 1089 4225 16,641 66,049 263,169

size of K(3n) 243 867 3267 12,675 49,923 198,147 789,507

The exact solutions for the distributed optimality system and Ω = (−1, 1)2 ⊂ R2 are

yexact =
1

1 + 4δπ4 sin(πx1) sin(πx2) (21)

uexact = 2π2yexact (22)

yd = sin(πx1) sin(πx2) (23)

We give a thumbnail outline of the main task of the paper in the application of the approximation
of the Schur complement preconditioner QS3 . The main dominant operations in the application of
our proposed block diagonal preconditioner Q3 are 10 fixed Chebyshev semi iterations [6,12,29] for
the mass matrix M in the (1,1) and (2,2) blocks; the (3,3) block is approximated by two cycles of the
algebraic multigrid methods for

√
δK + M. This means in total we have two Chebyshev and two

algebraic multigrid iterations with two pre and post-smoothing steps of the Jacobi method; similarly
for QS1 and QS2 . We test for four regularisation parameters δ = 10−3, δ = 10−5, δ = 10−7 and δ = 10−9.

We solve the linear algebraic system of saddle point form Equation (6) using the MINRES with the
block diagonal preconditioners Q1 (Equation (10)), Q2 (Equation (11)) and Q3 (Equation (12)) with
the three different preconditioner approximations for the Schur complement form S. Then we compare
the performance of the block diagonal preconditioned MINRES method with the three preconditioner
approximations for the Schur complement in terms of the number of iterations, CPU time, L2 error
and the value of the objective function. The numerical solution produced by the MINRES with the
preconditioner associated with the three Schur complement approximations is the same. Figure 1 gives
the snapshots of the numerical solution,
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Figure 1. Numerical Solution of the state y and control u at h = 2−6 and δ = 10−5.

We now present the eigenvalue distribution of the Q−1
S1

S, Q−1
S2

S, Q−1
S3

S.
The Table 2 shows the largest and the smallest eigenvalues of the Schur complement

S, Q−1
S1

S, Q−1
S2

S, Q−1
S3

S. The values in Table 2 clearly show the effects of the preconditioner

approximation on the spectral properties of the Schur complement. The eigenvalues of Q−1
S1

S are

clearly dependent on the parameter δ; and the eigenvalues of Q−1
S2

S, Q−1
S3

S are bounded between 1
2

and 1 though their distribution and are different independent of the parameter δ. This confirms
the theoretical results and is clearly shown on the figures below. Figure 2 shows the distribution of
eigenvalues for different values of regularisation parameter.
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Table 2. Maximum and minimum eigenvalues for the Schur complement S and preconditioned Schur
complement with preconditioners QS1 , QS2 , QS3 for different values of δ at h = 2−4.

S Q−1
S1

S Q−1
S2

S Q−1
S3

S

δ min max min max min max min max

10−3 15.8 4.03 × 103 1.004 1001 0.5002 0.9594 0.5002 0.9594
10−5 1.3 × 103 1 × 105 1.005 1 × 105 0.5000 0.9937 0.500 0.9979
10−7 2.21 × 104 1 × 107 5.49 1 × 107 0.5643 0.9940 0.7740 1
10−9 1.8 × 106 1 × 109 449.9 1 × 109 0.9139 0.9979 1 1
10−15 1.8 × 1012 1 × 1015 4.5e+8 1 × 1015 0.9999 1 1 1

Figure 2 gives the eigenvalue distribution of Q−1
S1

S, Q−1
S2

S, Q−1
S2

S for different values of the

regularisation parameter at h = 2−4. Figure 2a,d,g gives the eigenvalue distribution of Q−1
S1

S;

Figure 2b,e,h shows the eigenvalue distribution of Q−1
S2

S; and Figure 2c,f,i shows the eigenvalue

distribution of Q−1
S3

S for different values of δ at h = 2−4. The eigenvalues are sorted form the smallest

to the largest. The most important observation is that the eigenvalue distribution of Q−1
S1

S is widely
spread out as the regularisation parameter decreases. This agrees with the theoretical findings that
the eigenvalues depends on the regularisation parameter. Hence the preconditioner approximation
performance is not independent of δ and deteriorates for small values of δ. We also observe that
for the approximations QS2 and QS3 the eigenvalue distribution falls with the interval that is given
theoretically for the different values of the regularisation parameter. This entails that the clustering of
the eigenvalues shown in the Figure 2 above points to the fast convergence of the iterative solver for
all the values of the regularisation parameter.

We now give the numerical experiment results from our MINRES iterative solver preconditioned
with the block diagonal preconditioner associated with the three approximations. Since the numerical
solutions are the same, we concentrate on the performance in terms of the number of iterations and
the CPU time in seconds for comparison purposes.

It is clear from Table 3 that all these preconditioners associated with the approximations
QS1 , QS2 , QS3 are robust with respect to mesh size h, but the approximation QS1 is not robust with
respect to the regularisation parameter. The preconditioners associated with approximations QS2 , QS3

performed efficiently for all the values of h and δ, with QS3 performing slightly better.
The results in Tables 3 and 4 demonstrate the practical applicability of the preconditioners

explained theoretically in Sections 2 and 3 and the theoretical prowess of the three approximations
of the Schur complement form using the eigenvalue distribution. Tables 3 and 4 give the number of
iterations and the CPU time taken by the MINRES preconditioned by block diagonal preconditioners
Equations (10)–(12) with different values of mesh size and the regularisation parameter, and we
compare the effectiveness of the three preconditioners with approximations for the Schur compliment
preconditioner. The results clearly show that the preconditioner with QS1 displays mesh-independent
convergence but fails on the decreasing values of the regularisation parameter δ. The number of
iterations and CPU time increase as δ→ 0. This agrees with the poor eigenvalue distribution of Q−1

S1
S

and that of Q1K. The number of iterations and CPU times produced by the preconditioners associated
with QS2 and QS3 are competitive and exhibited parameters h and δ independent of convergence, while
both h and δ approached zero. The number of iterations of QS2 and QS3 decreased by the decrease of δ,
as expected, and those of QS3 decreased further. The results show that these preconditioners are also
robust to the mesh size h and the regularisation parameter δ. This agrees with the theoretical results
that the eigenvalues are more clustered and distributed more independently of the parameters h and
δ than those of Q−1

S1
S; see Figure 2. The results of our numerical experiments clearly show that the

preconditioners with the approximations QS3 and QS2 are very effective in improving the MINRES in
solving elliptic control problems. When compared to other preconditioner approximations in terms
of iteration count and computational time, QS3 slightly outperformed them. The preconditioners



Computation 2020, 8, 68 13 of 16

are more effective with our new approximation, producing more favourable results. We now give
the results including the cost functional at 2−6 for different values of the objective function for the
approximation QS3 and there are the same outputs with the other approximations.
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Figure 2. Ordered eigenvalue distributions of Q−1
S1

S[a, d, g], Q−1
S2

S[b, e, h] and Q−1
S3

S[c, f , i] for δ =

1× 10−3, δ = 1× 10−5 and δ = 1× 10−7 with h = 2−4.

Table 3. Number of iterations made by MINRES solver with the block diagonal preconditioners
Q1,Q2,Q3 with Schur compliment approximated by QS1 , QS2 , QS3 for different values of h and δ,
tolerance = 10−6.

Approximation QS1 Approximation QS2 Approximation QS3

h δ δ δ

10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9

2−4 9 23 35 35 13 5 3 3 13 5 3 3
2−5 11 29 71 99 13 9 3 3 13 9 3 3
2−6 11 33 111 101 13 11 5 3 13 10 5 3
2−7 13 33 133 107 15 11 7 5 15 10 5 3
2−8 17 33 139 103 15 11 7 5 15 10 5 3
2−9 17 39 147 191 17 11 11 7 17 11 5 5
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Table 4. CPU time taken by MINRES solver with the block diagonal preconditioners Q1,Q2,Q3 with
Schur complement approximated by QS1 , QS2 , QS3 for different values of h and δ, tolerance = 10−6.

Approximation QS1 Approximation QS2 Approximation QS3

h δ δ δ

10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9 10−3 10−5 10−7 10−9

2−4 0.14 0.266 0.297 0.166 0.188 0.109 0.078 0.078 0.081 0.063 0.078 0.047
2−5 0.283 0.581 1.317 1.457 0.312 0.25 0.141 0.156 0.297 0.325 0.11 0.109
2−6 0.594 1.297 4.168 3.579 0.625 0.530 0.500 0.556 0.510 0.381 0.272 0.532
2−7 2.169 5.171 17.27 15.59 2.54 2.00 1.48 1.64 2.42 2.05 1.45 1.531
2−8 10.58 21.79 78.92 60.50 10.59 8.43 5.97 5.54 8.64 7.47 4.95 4.02
2−9 47.4 100.2 220 347.8 46.7 35.5 33.3 25.1 46.8 35.2 30.1 21.2

The results in Table 5 show the behaviour of the cost functional for different values of the
regularisation parameter δ. It is well known that the δ determines how close the state approaches
the desired state yd. The results provide an interesting observations that ‖ u ‖2 stops increasing at
10−6 with J(y, u) and ‖ y− yd ‖2 decreases with the decrease by a constant factor of the decrease of
δ. This means that the optimal value of δ for the problem is 10−6, becoming very close to the desired
state, and also that the control variable ‖ u ‖ increases as δ decreases. This is clear indication that the
cost functional will be insensitive to the control variable as δ decreases.

Table 5. Numerical results using preconditioner with approximation QS3 with h = 2−6.

δ ‖ uh ‖2 ‖ uh− u ‖2 ‖ yh− y ‖2 ‖ y− yd ‖2 J(uh, yh)

10−1 1.58 × 101 7.63 × 10−4 1.56 × 10−3 3.13 × 101 4.07 × 102

10−2 1.29 × 102 4.75 × 10−4 1.28 × 10−3 2.55 × 101 4.07 × 102

10−3 4.56 × 102 3.53 × 10−4 4.50 × 10−4 8.98 × 100 1.44 × 102

10−4 6.08 × 102 7.43 × 10−4 6.03 × 10−5 1.20 × 100 1.92 × 101

10−5 6.29 × 102 7.98 × 10−4 6.30 × 10−6 1.24 × 10−1 1.98 × 10−1

10−6 6.32 × 102 8.03 × 10−4 6.29 × 10−7 1.25 × 10−2 2.0 × 10−2

10−7 6.32 × 102 8.03 × 10−4 6.26× 10−8 1.24 × 10−3 2.0 × 10−3

10−8 6.32 × 102 8.03 × 10−4 6.32× 10−9 1.24 × 10−4 2.0 × 10−4

10−9 6.32 × 102 8.03 × 10−4 6.32× 10−10 1.24 × 10−5 2.0 × 10−5

5. Conclusions

The finite element discretisation of the elliptic PDE-constrained optimisation problem produces
a large block 3× 3 linear algebraic system of saddle point form. The main task of this paper was to
present a different approach for the approximation of the Schur complement in the preconditioning
strategies to get a robust and efficient numerical solver. This was done to achieve the MINRES
solver whose performance is independent of the mesh size h and the regularisation parameter
δ. We have demonstrated both theoretically and numerically that the eigenvalues of both the
the preconditioned Schur complement and the preconditioned system involving the proposed
approximation are independent of the changes in the mesh size and the regularisation parameter.
This gives a robust numerical scheme that is independent of h and δ. We have compared numerically
the results of the preconditioners involving the proposed approximation of the Schur complement
with those that are found in the literature. Numerical results have confirmed the theoretical results
and have demonstrated that the proposed preconditioner in this paper can be used practically and can
be considered as a viable preconditioner for the problem under investigation.
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