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Abstract: The method of discretization is used to solve nonlinear equations involving Banach space
valued operators using Lipschitz or Hölder constants. But these constants cannot always be found.
That is why we present results using ω− continuity conditions on the Fréchet derivative of the
operator involved. This way, we extend the applicability of the discretization technique. It turns
out that if we specialize ω− continuity our new results improve those in the literature too in the
case of Lipschitz or Hölder continuity. Our analysis includes tighter upper error bounds on the
distances involved.
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1. Introduction

Let X, Y stand for Banach spaces, D ⊆ X be a convex set and L(X, Y) denote the space of bounded
linear operators acting between X and Y.

We are interested in generating a sequence approximating a solution x∗ of equation

F(x) = 0. (1)

Here F : D ⊂ X → Y is differentiable according to Fréchet. We resort to iterative methods to
approximate x∗, since closed form solutions are found only in special cases.

The Newton-Kantorovich method (NKM) defined for x0 ∈ D and all n = 0, 1, 2, . . . by

xn+1 = xn − F′(xn)
−1F(xn), (2)

is without a doubt the most popular iterative method generating a sequence {xn} such that
limn−→∞ xn = x∗. Local as well as semi-local convergence results on NKM can be found in [1–28],
and the references therein. If the Banach space is infinite dimensional, then to find the solution x∗ is a
great challenge even if NKM is used. However, for instance, in line with the approach first-optimize-
and -then-discretize the Newton method is often utilized in the context of optimal control of ODEs
or PDEs constrained optimization, see, e.g., [17,19,26] and references therein. That is why, we first
discretize Equation (1), then solve the finite dimensional problem. Therefore, we define the discretized
NKM (DNKM) as follows x(0) ∈ D, for i = 0, 1, 2, . . .

x(i+1)
n = x(i)n − An(x(i)n )F(x(i)n ), (3)
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where An : D −→ L(Y, X) is an approximation to F′(x(i)n )−1. There is a plethora of discretization
studies based on Lipschitz or Hölder constants [1,2,10,11,14]. But there are problems in the literature,
where these constants cannot be found (see Example 3.3). Hence, the applicability of the aforemen-
tioned results is limited. That is why we present results using ω− continuity conditions on the Fréchet
derivative of the operator involved. This way, we extend the applicability of the discretization tech-
nique. It turns out that if we specialize ω− continuity our new results improve those in the literature
too in the case of Lipschitz or Hölder continuity. Our analysis includes tighter upper error bounds on
the distances involved.

The rest of the study contains the convergence of DNKM in Section 2 and the examples in
Section 3.

2. Convergence of DNKM

It is convenient for the local convergence of DNKM to develop some real functions and parameters.
Let T = [0, ∞). Let ω0 : T −→ T be continuous and nondecreasing function.

Suppose that equation
ω0(t)− 1 = 0, (4)

has a least positive solution denoted by r0. Set T0 = [0, r0).
Let f , ω : T0 −→ T and cn : T0 × T0 −→ T be continuous and nondecreasing functions for all

n = 0, 1, 2, . . . .
Suppose equation

hn(t) = 0 (5)

has a least zero ēn ∈ (0, r0) for all n = 0, 1, 2, . . . , where

hn(t) = 3cn(t, t) +
2(1 + f (t))2

∫ 1
0 ω((1− τ)t)dτ

1−ω0(t)
− 1.

Notice that this hypothesis implies

0 ≤ cn <
1
3

for all n = 0, 1, 2, . . . . (6)

We denote by U(x, a), Ū(x, a) the open and closed balls in X, with center x ∈ X and of radius
a > 0. Set ρ = sup{t ≥ 0 : Ū(x∗, t) ⊆ D}.

The following conditions (H) shall be used in our local convergence analysis of DNKM:

(H1) F : D −→ Y is differentiable, and there exists a simple solution x∗ of Equation (1).
(H2) There exists continuous and nondecreasing function ω0 : T −→ T such that for all x ∈ D

‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ ω0(‖x− x∗‖).

Set D0 = D ∩U(x∗, r0), provided r0 exists and is given by (4).
(H3) There exist continuous and nondecreasing function ω : T0 −→ T such that for all x, y ∈ D0

‖F′(x∗)−1(F′(y)− F′(x))‖ ≤ ω(‖y− x‖).

(H4) Least zeros ēn ∈ (0, r0) of functions hn given in (5) exist for all n = 0, 1, 2, . . . .
(H5) Ū(x∗, r) ⊆ D, where r = min{ρ, r0}.
(H6)

sup
x,y∈U(x∗ ,r)

‖(I − An(x)F′(x))(I − An(y))F′(y)‖ ≤ cn(‖x− x∗‖, ‖y− x∗‖)

(H7)
sup

x∈U(x∗ ,r)
‖I − An(x)F′(x)‖ ≤ f (‖x− x∗‖),
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where functions cn and f are defined previously, and
(H8) The initial function x(0)n chosen from the ball Ū(x∗, en) is such that the first iterate x(1)n ∈ Ū(x∗, en),

where en = min{r, ēn}.

Next, we present the main result for DNKM. In particular, we show that DNKM converges to x∗
as long as the approximation An fullfills the set of conditions (H).

Theorem 1. Suppose that conditions (H) hold. Then, sequence {x(i)n } is well defined, remains in U(x∗, en),
and converges to x∗, so that

‖x(i)n − x∗‖ ≤ en(1− cn)
i −→ 0 as i −→ ∞, (7)

where cn = cn(r, r).

Proof. Let x ∈ U(x∗, r). Using (H1), (H2), and the definition of r0, we have

‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ ω0(‖x− x∗‖) ≤ ω0(r) < 1,

by the Banach on lemma on invertible operators [29] F′(x)−1 ∈ L(Y, X) and

‖F′(x)−1F′(x∗)‖ ≤
1

1−ω0(‖x− x∗‖)
. (8)

We need some estimates. Let Bn = I − An(x)F′(x). In view of (H7) and (8), we get

‖An(x)‖ ≤ 1 + ω(‖x− x∗‖)
1−ω0(‖x− x∗‖)

. (9)

Set

Tn(x(i)n ) := An(x(i)n )
∫ 1

0
(F′(x(i)n + τ(x∗ − x(i)n ))− F′(x(i)n ))dτ(x(i)n − x∗).

Then, by DNKM, we can write

x(i+1)
n − x∗ = I − An(x(i)n )F′(x(i)n )(x(i)n − x∗) + Tn(x(i)n − x∗),

x(i+1)
n − x∗ = Bn(x(i)n )(x(i)n − x∗) + Tn(x(i)n )(x(i)n − x∗),

and
x(i)n − x∗ = Bn(x(i−1)

n )(x(i−1)
n − x∗) + Tn(x(i−1)

n )(x(i−1)
n − x∗).

Hence, we obtain

x(i+1)
n − x∗ = Bn(x(i)n )(Bn(x(i−1)

n )(x(i)n − x∗) + Tn(x(i−1)
n )(x(i−1)

n − x∗))

+Tn(x(i)n )(x(i)n − x∗). (10)

Suppose that for all i = 1, 2, . . . , x(i−1)
n , x(i)n ∈ U(x∗, en). Then, by (H3) we have

‖
∫ 1

0
F′(x∗)−1(F′(x(i)n + τ(x∗ − x(i)n ))− F′(x(i)n ))dτ(x∗ − x(i)n )‖ ≤ ω(‖x(i)n − x∗‖)‖x(i)n − x∗‖. (11)
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Using (10), (11) and (H4)–(H8), we obtain in turn that

‖x(i+1)
n − x∗‖ ≤ ‖Bn(x(i)n )Bn(x(i−1)

n )(x(i−1)
n − x∗)‖

+‖Bn(x(i)n )Tn(x(i)n )(x(i)n − x∗)‖
≤ cn(‖x(i)n − x∗‖, ‖x(i−1)

n − x∗‖)‖x(i−1)
n − x∗‖

+ f (‖x(i)n −x∗‖)(1+ f (‖x(i−1)
n −x∗‖))ω(‖x(i−1)

n −x∗‖)‖x(i−1)
n −x∗‖

1−ω0(‖x
(i−1)
n −x∗‖)

+ (1+ f (‖x(i)n −x∗‖))ω(‖x(i)n −x∗‖)‖x(i)n −x∗‖
1−ω0(‖x

(i)
n −x∗‖)

≤ [cn +
f (‖x(i)n −x∗‖)(1+ f (‖x(i−1)

n −x∗‖))ω(‖x(i−1)
n −x∗‖)

1−ω0(‖x
(i−1)
n −x∗‖)

+ (1+ f (‖x(i)n −x∗‖))ω(‖x(i)n −x∗‖)
1−ω0(‖x

(i−1)
n −x∗‖)

](‖x(i−1)
n − x∗‖+ ‖x(i)n − x∗‖)

≤ 1−cn
2 (‖x(i−1)

n − x∗‖+ ‖x(i)n − x∗‖)
≤ (1− cn)en,

(12)

(by the definition of hn). Then, by (6) and (12) x(i+1)
n ∈ U(x∗, en).

Remark 1. We shall provide a condition under which x(1)n ∈ U(x∗, en) provided that x(0)n ∈ U(x∗, en), where

x(1)n = x(0)n − A(0)
n F(x(0)n ).

Proposition 1. Under the conditions (H) further suppose that for all v ∈ D

(An(x(0)n )− F′(x(0)n )−1)v −→ 0 as n −→ ∞. (13)

Then, for sufficiently large n,
x(1)n ∈ U(x∗, en).

Proof. Set α = x(0) − F′(x(0))−1F(x(0)). Then, we get in turn that

α− x∗
= x(0) − x∗ − F′(x(0))−1(F(x(0))− F(x∗))

= −F′(x(0))−1
∫ 1

0
(F′(x∗ + τ(x(0) − x∗))− F′(x(0)))dτ(x(0) − x∗).

(14)

Hence, by the calculations for (12) and (14)

‖α− x∗‖ ≤
(1 + f (‖x(0) − x∗‖))ω(‖x(0) − x∗‖)

1−ω0(‖x(0) − x∗‖)
‖x(0) − x∗‖

≤ (1− cn)en ≤ en, (15)

so α ∈ U(x∗, en). Moreover, we can write

α− x(1)n = (An(x(0))− F′(x(0))−1)F(x(0)). (16)

Then, the proof is completed by (13) and (16).

Remark 2. If we consider:
Lipschitz case: We choose ω0(t) = `0t, ω(t) = `t for 0 < `0 ≤ `.
Hölder case: We set ω0(t) = `0tp and ω(t) = `tp for p ∈ (0, 1].
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Moreover, in the Lipschitz case, if An(xn) = F′(xn)−1, then cn = f = 0, (4) and (5) give `t
1−`0t − 1 = 0,

r0 = 1
`0

and ēn = 1
`+`0

. In the old cases rold
0 = 1

`1
and ēold

n = 1
2`1

. But `0 ≤ `1 and ` ≤ `1, since D0 ⊆ D,
where `1 is the Lipschitz constant on D. Then, we have

rold
0 ≤ r0

and
ēold

n ≤ ēn.

Hence, the results are extended even in the Lipschitz case.

3. Numerical Examples

Example 1. Let us consider a system of differential equations governing the motion of an object and given by

F′1(x) = ex, F′2(y) = (e− 1)y + 1, F′3(z) = 1

with initial conditions F1(0) = F2(0) = F3(0) = 0. Let F = (F1, F2, F3)
T = (ex, e−1

2 y2 + y, z)T . Let
X = Y = R3, D = Ū(0, 1), x∗ = (0, 0, 0)T . Define function F on D for w = (x, y, z)T by

F(w) = (ex − 1,
e− 1

2
y2 + y, z)T .

The Fréchet-derivative is defined by

F′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .

Notice that using the (H) conditions, we get ω0(s) = (e− 1)s, ω(s) = e
1

e−1 s.
Then, for cn = 0 = f , we have r0 = 0.5820, en = 0.2851 and for cn = 10−4 = f , we have r0 = 0.5820,

en = 0.2850.

Example 2. Let X = Y = C[0, 1], the space of continuous functions defined on [0, 1] be equipped with the max
norm. Let D = U(0, 1). Define function F on D by

F(ϕ)(x) = ϕ(x)− 5
∫ 1

0
xθϕ(θ)3dθ. (17)

We have that

F′(ϕ(ξ))(x) = ξ(x)− 15
∫ 1

0
xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, so ω0(t) = 7.5t and ω(t) = 15t. Then, for cn = 0 = f , we have r0 = 0.1333,
en = 0.0444 and for cn = 10−4 = f , we have r0 = 0.1333, en = 0.0444.

Example 3. Let X = Y = C[0, 1], D = Ū(x∗, 1) and consider the nonlinear integral equation of the mixed
Hammerstein-type defined by

x(s) =
∫ 1

0
G(s, t)(x(t)3/2 +

x(t)2

2
)dt,

where the kernel G is the Green’s function defined on the interval [0, 1]× [0, 1] by

G(s, t) =

{
(1− s)t, t ≤ s
s(1− t), s ≤ t.
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The solution x∗(s) = 0 is the same as the solution of Equation (1), where F : C[0, 1] −→ C[0, 1]) is
defined by

F(x)(s) = x(s)−
∫ 1

0
G(s, t)(x(t)3/2 +

x(t)2

2
)dt.

Notice that

‖
∫ 1

0
G(s, t)dt‖ ≤ 1

8
.

Then, we have that

F′(x)y(s) = y(s)−
∫ 1

0
G(s, t)(

3
2

x(t)1/2 + x(t))dt,

so since F′(x∗(s)) = I,

‖F′(x∗)−1(F′(x)− F′(y))‖ ≤ 1
8
(

3
2
‖x− y‖1/2 + ‖x− y‖).

Then, we get w0(s) = ω(s) = 1
8 (

3
2
√

s + s).
Then, for cn = 0 = f , we have r0 = 1.4752, en = 1.1773 and for cn = 10−4 = f , we have r0 = 1.4752,

en = 1.1772.
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