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Abstract: We investigate the mathematical model of the 2D acoustic waves propagation in a
heterogeneous domain. The hyperbolic first order system of partial differential equations is considered
and solved by the Godunov method of the first order of approximation. This is a direct problem
with appropriate initial and boundary conditions. We solve the coefficient inverse problem (IP)
of recovering density. IP is reduced to an optimization problem, which is solved by the gradient
descent method. The quality of the IP solution highly depends on the quantity of IP data and positions
of receivers. We introduce a new approach for computing a gradient in the descent method in order
to use as much IP data as possible on each iteration of descent.

Keywords: acoustics; tomography; first-order hyperbolic system; inverse problem; Godunov method;
gradient descent method

1. Introduction

In this paper we consider the direct and inverse problem for the hyperbolic system of the two
dimensional acoustic wave propagation. These problems are related to ultrasound tomography [1–3],
aimed at the detection of inclusions in the soft human tissue, which is connected with the development
of methods and instruments for early breast cancer detection. This field was studied intensively
lately [4–10]. On the mathematical level, such problems are usually formulated in terms of an
inverse problem, where some parameters of the medium are to be determined by using additional
information [11–15]. Thus, an important issue is the construction of effective algorithms for solving
the inverse problem, and, therefore, direct problem due to their tightly connected efficiency.

We use the hyperbolic first-order system to describe the propagation of the acoustic waves. On the
one hand, this allows to propose a more realistic model from the physical point of view. On the other
hand, we can apply an optimization approach for recovering coefficients of such system, like the
density of the medium, the speed of the wave propagation or the absorption coefficient.

We consider the system of hyperbolic equations of the first order as the mathematical model of
the acoustic tomograph, because these equations are obtained directly from the conservation laws
of continuum mechanics. It allows us to control the preservation of the basic invariants during the
solution of direct and inverse problems. This is important for solving unstable problems, as the
conservation laws of the main invariants are the only criterion of the well-posedness of the solution.
When we use the hyperbolic system to formulate the problem, we can ensure that the numerical
solution is close to the physical solution of the process.
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We apply the numerical algorithm for solving direct problems, based on the S. K. Godunov
scheme [16,17]. The numerical methods, based on the Godunov approach, allows to find the
balance between mathematical modelling of physical process and the effective numerical realization.
The finite-difference method allows for solving a direct problem for the acoustic equation proposed
in [18]. The main difficulties in the solution of direct problems, which is based on finite approximation,
are that if the parameters of the medium are piece-wise smooth functions we have to add glueing
conditions at the media interface to guarantee the physical solution. If the media interfaces are not
simple, it is very hard to add these conditions. When we solve the inverse problem we do not know
exactly the media interfaces and it is impossible realise these conditions.

Well-posedness of the direct problems for linear hyperbolic systems were investigated in [19,20].
In [21], regularity results for several hyperbolic equations were obtained.

The mixed problem for the linear symmetric hyperbolic systems with maximally non-negative
and characteristic boundary conditions was studied in [22]. The existence of a unique solution was
proved inside a suitable class of functions of weighted Sobolev type (with coefficients from L∞), which
takes account of the loss of regularity in the normal direction to the characteristic boundary.

The mixed initial-boundary value problem for a linear hyperbolic system with a characteristic
boundary of constant multiplicity was investigated in [23]. Authors assumed the problem to be
“weakly” well-posed, in the sense that a unique L2-solution exists, for sufficiently smooth data,
and obeys an a priori energy estimate with a finite loss of conormal regularity. Under the assumption of
the loss of one conormal derivative, the regularity of solutions was obtained, in the natural framework
of weighted anisotropic Sobolev spaces, provided the data are sufficiently smooth.

The first-order hyperbolic systems on an interval with dynamic boundary conditions are
considered in [24]. The well-posedness for linear systems was established using an abstract Friedrichs
theorem. Due to the limited regularity of the coefficients, authors introduced the appropriate space
of test functions for the weak formulation. It was shown that the weak solutions exhibit a hidden
regularity at the boundary as well as at interior points.

Numerical methods, suitable for solving the coefficient inverse problems for hyperbolic systems
and equations, are usually divided into direct ones and iterative ones. Direct methods are based on
the Gelfand–Levitan–Krein approach [25–30] and boundary control method [31,32]. It was shown
that the discrete coefficients inverse problems equations, which arise in the Gelfand–Levitan–Krein
approach and boundary control method, coincide [33,34]. Iteration methods are gradients [35–39]
and global-convergence [12,40–43]. Newton-type methods also can be applied to the coefficient
inverse problems, but in comparison with gradient methods, where we solve on each iteration direct
and adjoint problem, in Newton methods on each iteration it is necessary to solve direct and one
linear inverse problems. Even in the two-dimensional case, solving a linear inverse problem is
rather complicated.

Some considerations for choosing the model, based on the first-order system and the method for
solving such system, can be found in [44,45].

In this work we use the gradient-based method to minimize the cost functional. However,
such approach requires quite a significant amount of computations. Thus, in order to retain the acceptable
performance of the method, one has to effectively use the available data.

Inverse problems for hyperbolic systems with data given on the part of the boundary were
investigated in [46].

The standard gradient type method assumes that on each iteration the gradient is constructed
via a solution of the direct and adjoint problem, which in its turn are obtained from fixed positions of
source and receivers. In this article we present a new formula for the gradient type method where
gradient constructs from direct and adjoint problem’s data obtained from different positions of sources
and receivers in order to get more knowledge about unknown parameters of the medium.

The paper is organized as follows. In the first section we consider the main equations of the model,
their connection to the conservation laws, and briefly describe the scheme of S.K. Godunov that we
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use for the numerical solution of the direct problem. The second section is dedicated to the inverse
problem of recovering the density by using the pressure registered in the receivers. We consider the
adjoint problem and the gradient of the cost functional that can be calculated using the solution of the
direct and adjoint problems. In Section 4, we consider different approaches for using the additional
sets of data, corresponding to the different locations of the source. The numerical comparative analysis
of these approaches is considered in Section 5 in the case of exact and noised data. In the discussion,
we consider the results obtained and the future work for developing the methods.

2. Direct Problem

2.1. Governing Equations

First we consider the direct problem of acoustic wave propagation through the 2D medium.
We consider the following first order system of hyperbolic equations:

∂u
∂t

+
1
ρ

∂p
∂x

= 0,
∂v
∂t

+
1
ρ

∂p
∂y

= 0, (x, y) ∈ Ω, 0 < t ≤ T, (1)

∂p
∂t

+ ρc2
(

∂u
∂x

+
∂v
∂y

)
= θΩ(x, y)I(t), (x, y) ∈ Ω, (2)

u, v, p|(x,y)∈∂Ω = 0, (3)

u, v, p|t=0 = 0. (4)

Here u = u(x, y, t), v = v(x, y, t) are components of the velocity vector, with respect to x and
y respectively, p = p(x, y, t) is the acoustic pressure. The parameters of the system describes the
properties of the medium: ρ(x, y) denotes the density of the medium, and c(x, y) is the speed of the
wave propagation. Ω = (x, y) ∈ [0, L]× [0, L], function θΩ describes the location of the source, I(t) has
the form of Ricker wavelet (Figure 1), where ν0 is a frequency:

I(t) =

(
1− 2

(
πν0

(
t− 1

ν0

))2
)

e−πν0

(
t− 1

ν0

)
. (5)

Figure 1. Ricker wavelet.
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Equations (1) and (2) are tightly connected with the following integral equalities:∮
ρudxdy + pdydt = 0, (6)∮
ρvdxdy + pdxdt = 0, (7)∮

pdxdy + ρc2 (udydt + vdxdt) = 0. (8)

Equations (6) and (7) represent the conservation laws of impulse in direction x and y, while
Equation (8) is the conservation law of mass. The connection between differential and integral
formulations based on the fact that, on the one hand, one can integrate Equations (1) and (2) in
an arbitrary domain to obtain Equations (6)–(8), and on the other hand, the continuum mechanics
equations are usually derived in terms of integral conservation laws, and only after that it turns to
differential equations.

2.2. Brief Introduction to Godunov Finite-Difference Scheme

We use the connection between Equations (1) and (2) and Equations (6)–(8) when solving direct
problem Equations (1)–(4), as we consider the numerical method, proposed by S.K. Godunov in [17].
Its steps are introducing a numerical grid, considering Equations (6)–(8) in each numerical cell and
moving from integral to finite-differences. The main element of this method is the solving of the
Riemann problem (see below), which consists of an initial value problem composed of a conservation
equation together with piece-wise constant data having a single discontinuity.

Let us consider numerical cell (i− 1/2, j− 1/2) with boundaries [i− 1, j− 1/2], [i, j− 1/2] in
dimension x, and [j− 1, i− 1/2], [j, i− 1/2] in dimension y, for i ∈ 0...Nx − 1, i ∈ 0...Ny − 1, where Nx

and Ny are the number of grid points in each dimension. Then, the first of Equation (6) can be
approximated via

(ρui−1/2,j−1/2 − ρui−1/2,j−1/2)hxhy + τhy(Pi,j−1/2 − Pi−1,j−1/2) = 0, (9)

where for values in the cell sub-indexes indicate current time step, and sup-indexes—the next time
step, hx, hy—grid steps in direction x and y, τ—grid steps in time direction, and Pi,j−1/2—solution of
additional problem at the boundary (i, j− 1/2), called the discontinuity decay problem or Riemann
problem. In the same way two more approximated equations for Equations (7) and (8) can be derived.
Solution of the discontinuity decay problem Pi,j−1/2 can be obtained by the following formula using
values of pressure and velocity from adjacent to the boundary numerical cells:

p = Pi,j−1/2 =
pi−1/2,j−1/2 + pi+1/2,j−1/2

2
− ρ0c0

ui+1/2,j−1/2 + ui−1/2,j−1/2

2
. (10)

Constants ρ0, c0, for example, can be chosen as an average of values of density and sound speed
from adjacent cells. One can find a full description of the Godunov method for the system of acoustic
equations in [17].

3. Inverse Problem of Recovering the Density

Now we consider the inverse problem for the acoustic Equations (1)–(4). The data of the inverse
problem is the pressure, registered in the receivers:

p(xi, yi, t) = fi(t), i = 1, . . . , N. (11)
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In this paper we consider the inverse problem for recovering the density ρ(x, y), using the data
from Equation (11). The speed of sound c(x, y) is a known function. We consider the cost functional:

J(ρ) =
∫ T

0

N

∑
i=1

[
p(xi, yi, t; ρ)− fi(t)

]2dt→ min
ρ

(12)

Let us apply the gradient method for minimizing the cost functional

ρn+1(x, y) = ρn(x, y)− αJ′(ρn)(x, y). (13)

Here α is a descent step, J′ is a gradient of the functional J. Convergence of the iteration process
for the coefficients inverse problems for hyperbolic equations were investigated in [37]. Using a priori
information about the inverse problem solution in the algorithm was proposed in [47]. Gradient of
cost functional can be calculated as follows [44]:

J′(ρ)(x, y) =
∫ T

0

[
−Ψ1tu−Ψ2tv +

1
ρ

Ψ3(ux + vy)
]
dt. (14)

Here, new functions Ψi, i = 1, 2, 3 solve the following adjoint problem [36,47]:

Ψ1t +
1
ρ

Ψ3x = 0; (15)

Ψ2t +
1
ρ

Ψ3y = 0; (16)

1
ρc2 Ψ3t + (Ψ1x + Ψ2y) = 2

N

∑
j=1

δ(x− xj, y− yj)
[
p(x, y, t)− f j(t)

]
; (17)

Ψi(x, y, T) = 0, i = 1, 2, 3; (18)

Ψi|(x,y)∈∂Ω = 0, i = 1, 2, 3. (19)

Here, δ(x, y) is a Dirac delta-function. More details regarding the derivation of the adjoint
problem and the gradient of the cost functional can be found in [35]. Therefore, each step of gradient
descent requires the solution of direct problems in Equations (1)–(4), calculation of the residual and
solution of the adjoint problem in Equations (15)–(19). Then we use the obtained solution of both
the direct and adjoint problem to calculate the gradient J′(ρ) using Equation (14). Since the problem
Equations (15)–(19) have the form of a first order system of hyperbolic equations, we apply the already
mentioned Godunov scheme for solving Equations (15)–(19) during numerical experiments.

4. Modification of Gradient Descent Method

Let us consider a standard formula for the gradient descent method in Equation (13)

ρn+1(x, y) = ρn+1(x, y)− αJ′(ρn+1)(x, y).

In this way, on each iteration step we need to solve a direct problem, adjoint problem, and compute
a gradient via the formula in Equation (14). Such way assumes that during optimization only the
information from one source is used, because a system of source and receivers (inverse problem (IP)
data) is fixed during one descent step. From a physical point of view, there is an influence of acoustic
waves on the considered object only from a specific side. However, the data, obtained by the scattered
waves from the single source is not enough to ensure the desired accuracy and efficiency of the method.
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Therefore, we have decided to rework the optimization approach in the following way to get more
information. The idea is to use several different sources. Thus, we consider the new residual functional

J(ρ) =
N

∑
i=1

J(ρ; si). (20)

where J(ρ; si) has the form of Equation (12) and corresponds to the source of acoustic waves, located
in the point si. We suppose that we have the data corresponding to each source. The strategy of
usage of such data could be different. Currently, the popular schemes are stochastic gradient descent
(in our case this means the selection of the current number of the source si in the random manner
and then the update of the desired parameters, using the gradient of J(ρ; si)) and the batch gradient
descent (update the current approximation of the parameters using the gradients, corresponding to
all sources, simultaneously) [48]. We use the latter approach, due to its computational efficiency and
more stable convergence. However, the more detailed comparative analysis of the stochastic approach,
batch descent and its mini-batch version, is the plan for future work and will be carried out later.

Let us denote the J′(ρ; s1) gradient that has been computed by solving direct and adjoint problems
from the source in position s1 and N−1 receivers, which represent a circle (see Figure 2).

Figure 2. System of source (green) in position s1 and 3 receivers (violet).

During one descent step let us change the position of source N—1 times as presented on Figure 3,
for simplicity N = 4. In this example, position s1 of the source has a 0 degree angle, s2 is a 90 degree
angle, s3 is an 180 degree angle, and position s4 a −270 degree angle (in centralized cartesian
coordinates system). The blue colour represents the considered object, with unknown density in
terms of the inverse problem. Two yellow points represent the inclusions inside the object. Our aim
of solving the inverse problem is to reconstruct these inclusions with acceptable accuracy by using
the optimization approach in Equation (12). We should mention that this model is used here only for
illustration and simplicity—the models that were used during numerical experiments are presented in
the next section.
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(a) (b)

(c) (d)

Figure 3. Systems of source (green) in positions and 3 receivers (violet). (a) Source in position s1.
(b) Source in position s2. (c) Source in position s3. (d) Source in position s4.

In this way, on one iteration step we will get the data of N different direct and adjoint problems
and compute N gradients J′(ρ; si), i = 1...N. Of course, we can solve the N problems independently
of each other and the parallelization of the algorithm can be the subject for future work. Then we
construct a gradient descent method as follows:

ρn+1 = ρn − α
N

∑
i=1

J′(ρn; si). (21)

This new approach provides us information from different angles of view as “from source
to object”. Unfortunately, this method is highly time-consuming, because one iteration of descent
assumes solving of N direct and adjoint problems. However, numerical experiments show us that
acceptable solutions can be obtained even for a few number of sources and receivers.

5. Numerical Results

In this section we present numerical results of the inverse problem of density reconstruction.
We consider the following artificial model, which consists of the test object, modelled as a circle,
several inclusions inside the object, and the outer zone between the object and the transducers, filled
with water. The parameters of the object are equal to normal human tissue (ρ = 0.9 kg/m3, c = 1.2 km/s),
while the inclusions have higher density and speed of sound values (density is equal to ρ = 1.2 kg/m3

in smaller inclusions and ρ = 1.3 kg/m3 in larger ones, speed of sound is equal to c = 1.5 km/s and
c = 1.6 km/s correspondingly). The exact structure of the model is presented in Figure 4. The size of
inclusions was chosen according to the actual sizes of tumours at the first and second stages of breast
cancer genesis. The physical size of computational domain is [0, 0.3]× [0, 0.3] meters. The numerical grid
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consists of 100× 100 points, and the CFL number was taken equal to 0.5 during the computations.
We considered the synthetic data of inverse problems during the tests.

Figure 4. Exact solution of density and velocity.

During numerical experiments we considered three variations of the gradient descent:

1. Gradient constructed of 1 source, fixed in position s1 (Figure 2). The formula of gradient descent is

ρn+1 = ρn − αJ′(ρn; s1).

2. Gradient constructed of 1 source, but its location was changed on each iteration through positions
s1, ..., s16, that are located uniformly on the circle of the radius R = 0.115 m. The formula is in the
next view

ρn+1 = ρn − αJ′(ρn; s[n/16])

3. Gradient constructed of 16 sources from positions s1, ..., s16 with each iteration in a cyclic manner.
The final formula is

ρn+1 = ρn − α
N

∑
i=1

J′(ρn; si).

During the first experiment we compared these approaches after N = 1000 iterations of descent.
The results are presented in Figure 5.

Approach 1 Approach 2 Approach 3

Figure 5. Numerical experiments—1000 iterations.

All three inclusions could be seen. However, the accuracy of the density values differs for
the approaches considered. The poor accuracy of the approach 1 is understandable—in this case
much less data were obtained (one source in Approach 1 against 16 sources in Approaches 2 and 3).
However, we have to compare Approaches 2 and 3 in order to understand how to better use the data
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obtained. One can find more detailed results in Table 1 below, where the relative error and computation
time are presented.

Table 1. Relative errors and elapsed CPU time.

Approach 1 Approach 2 Approach 3

Relative error 0.121 0.050 0.039

Elapsed time 40 s 40 s 480 s

Despite the fact that the accuracy of Approach 3 is better, we pay for it with a large amount of
computation time, since each iteration requires the solution of multiple direct problems (DP) and AP.
In order to test the efficiency of the methods we have to equalize them in terms of CPU time. In our
next test we considered 2000 iterations for Approach 3 and 16,000 iterations of Approaches 1 and 2.
The results are presented by Figure 6 and Table 2.

Approach 1 Approach 2 Approach 3

Figure 6. Numerical experiments—different amount of iterations.

Table 2. Relative errors and elapsed CPU time.

Approach 1 Approach 2 Approach 3

Relative error 0.071 0.026 0.032

Elapsed time 15 min 15 min 17 min

This case shows that the cyclic sweep through the sources is the better strategy. The third approach,
based on a usage of multiple sources per one iteration provides faster decrease of residuals and errors
of the method, but each iteration takes too much time, as shown in Figure 7.
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Figure 7. Numerical experiments—residual (left) and relative error (right).
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We also tested the stability of the method. We added the noise to the data of the inverse problem
in each receiver as follows:

f̃ (t) = f (t) + ε( fmax − fmin)γ(t).

Here, f (t) is the exact data, ε is the level of errors, fmax, fmin—maximal and minimal values of
the data, γ(t)—random variable, uniformly distributed on the interval (−1, 1). We also changed the
number of sources/receivers to eight. As in the previous test, we considered 16,000 iterations for
Approach 2 and 2000 iterations for Approach 3. The results are presented in Figures 8 and 9.

Exact data Noise 5% Noise 10%

Figure 8. Stability test—Approach 2.

Exact data Noise 5% Noise 10%

Figure 9. Stability test—Approach 3.

One can see that the usage of information from all sources on each iteration provides more stable
results. In order to illustrate this behaviour, we consider Figure 10, where we consider the dependence
of relative error on the iteration number for exact and noised data. One can see that in the case of
Approach 2 and noised data, the error decreases only for the certain number of iterations and then
starts to increase. The same holds for Approach 3 and the 10% noise level. Such situation is not rare for
inverse and ill-posed problems and leads us to the fact that the iteration number should be considered
as the regularization parameter [49–51]. We plan to address the question of the optimal number of
iterations depending on the noise level in further work.

We also considered an additional test to check the resolution ability of the method. We considered
the model, which contains one inclusion, similar to previous one, and another one, smaller and less
densed, which is located inside the large inclusion. The exact structure of the model is presented
in Figure 11.

In Figure 12 one can see the numerical results for a different number of sources/receivers. Here,
we used Approach 2 (cyclic change of the source location), and the total iteration number was equal
to 16,000. We will skip the results related to the usage of Approach 3. However, the behaviour of the
methods is the same, as in the previous test—cyclic usage of the sources is more efficient in the case of
the exact data, but the usage of multiple sources per iteration provides better results in the case of the
noised data.
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Figure 10. Stability test—relative error behaviour.

density distribution speed of sound distribution

Figure 11. Test 2—Exact model.

4 sources/receivers 8 sources/receivers 12 sources/receivers

Figure 12. Test 2—Dependence on the number of receivers.

6. Discussion

We have considered the mathematical model of acoustic tomography, based on the system of
hyperbolic equations of the first order. We have solved the coefficient inverse problem of density
reconstruction for synthetic data. We proposed a new approach for constructing a gradient in the
gradient descent method. On each iteration of the gradient descent method, we simultaneously use
the information from receivers that are situated on the circle around the object. The accuracy of the
method is acceptable. Unfortunately, each iteration of this approach is time consuming, since one has
to solve a series of direct and adjoint problems on each iteration of the method, and it turns out that the
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strategy of cyclic sweep through the sources is more effective in terms of accuracy per computational
time. However, the proposed approach is more stable and provides better results in the case of noise
in the data, which is important from the practical point of view. There are some ideas for method
improvements, such as stochastic choice of a small number of sources on each iteration only a couple
problems from the whole number and the parallelization of the method on architectures with multiple
CPU’s. Also, there is the question of choice of the right amount of iterations depending on the noise,
in order to utilize the regularizing properties of gradient descent. We are planning to consider these
aspects of the problem in future work.
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