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Abstract: MAX-CUT is one of the well-studied NP-hard combinatorial optimization problems. It can
be formulated as an Integer Quadratic Programming problem and admits a simple relaxation
obtained by replacing the integer “spin” variables xi by unitary vectors ~vi. The Goemans–Williamson
rounding algorithm assigns the solution vectors of the relaxed quadratic program to a corresponding
integer spin depending on the sign of the scalar product ~vi ·~r with a random vector~r. Here, we
investigate whether better graph cuts can be obtained by instead using a more sophisticated clustering
algorithm. We answer this question affirmatively. Different initializations of k-means and k-medoids
clustering produce better cuts for the graph instances of the most well known benchmark for
MAX-CUT. In particular, we found a strong correlation of cluster quality and cut weights during the
evolution of the clustering algorithms. Finally, since in general the maximal cut weight of a graph
is not known beforehand, we derived instance-specific lower bounds for the approximation ratio,
which give information of how close a solution is to the global optima for a particular instance.
For the graphs in our benchmark, the instance specific lower bounds significantly exceed the
Goemans–Williamson guarantee.

Keywords: algorithms; approximation; semidefinite programming; Max-Cut; clustering

1. Introduction

The MAX-CUT problem is a well-known NP-hard [1] and APX-hard [2] combinatorial optimization
problem. An instance consists of a graph G with vertex set V, edge set E and edge weights w : E→ R.
A cut is a bipartition A, V \ A of the vertex set V, where A ⊆ V. The MAX-CUT problem consists of
finding a cut that maximizes the total weight of the edges that span the cut. That is, the function

f (A) = ∑
{p,q}∈E:p∈A,q∈V\A

w({p, q}) (1)

is to be maximized over all A ⊆ V. While MAX-CUT is NP-hard in general, polynomial-time algorithms
exist for restricted graph classes, including planar graphs [3], graph without long odd cycles [4],
and cographs [5]. MAX-CUT can also be written as a spin glass model, see, e.g., [6], for an overview.
Using an arbitrary numbering of the n vertices of the graph G, we write xi = +1 if vertex i ∈ A,
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xi = −1 if vertex i ∈ V \ A, and x = (x1, x2, . . . , xn). Furthermore, we set wij := w({i, j}) if {i, j} is
an edge of G and wij = 0 otherwise. With this notation, we can rewrite f (A) in terms of the “spin
vector” as

f (x) =
1
4 ∑

i,j
wij(1− xixj) xi ∈ {−1,+1} (2)

Maximizing f (x) amounts to the integer quadratic programming (IQP) formulation of the MAX-CUT

problem. Without loss of generality, we assume wij = wji.
Solutions of large MAX-CUT problems are of considerable practical interest in network design,

statistical physics, and data clustering, and hence a broad array of computational techniques have been
customized to its solution. Broadly, they can be subdivided into combinatorial heuristics (see e.g., [7–9]
and the references therein) and methods involving relaxations of the integer constraints in Equation (2).

Replacing the integer vectors by x ∈ Rn \ {0} leads to an equivalent continuous optimization
problem for which an excellent heuristic is described in [10] and a close connection with the largest
eigenvalues of generalized Laplacians [11] and their corresponding eigenvectors [12]. On this
basis, algorithms with uniform approximation guarantees have been devised [13,14]. Goemans
and Williamson [15] replaced the integers xi by unitary vectors ~vi of dimension n = |V|.

max
~vi

1
4 ∑

i,j
wij
(
1−~vi ·~vj

)
subject to |~vi| = 1 ∀i = 1, . . . , n

(3)

where · denotes the scalar product on the unitary vectors. This problem contains all the instances of
the original problem (2), as seen by setting ~vi = (xi, 0, . . . , 0) for all i. The relaxed problem (3) is a
particular instance of Vector Programming, or using a change of variables, an instance of Semidefinite
Programming (SDP), and thus can be solved in polynomial time (up to an arbitrarily small additive
error), see, e.g., [16,17].

The solutions of the relaxed problem (3) are translated to solutions of the original IQP. Goemans
and Williamson [15] proposed to use a unitary random vector~r and to set

x̂i = sgn(~vi ·~r) (4)

with sgn(t) = −1 for t < 0 and sgn(t) = +1 for t ≥ 0. This amounts to cutting the sphere at the
hyperplane with normal vector~r and to assign xi depending on whether ~vi lies in the “upper” or
“lower” hemisphere defined by this hyperplane.

The Goemans–Williamson relaxation yields an approximation bound of α :=
min0≤θ≤π

2
π

θ
1−cos θ > 0.878 for the expected value E[ f (x̂)]/ max f , where the expectation is

taken over the choices of~r [15]. At present, it is the best randomized approximation algorithm for the
integer quadratic programming formulation of the MAX-CUT problem. A clever derandomization [18]
shows that deterministic algorithms can obtain the same approximation bound. On the other hand,
it is NP-hard to approximate MAX-CUT better than the ratio 16/17 [19]. If the Unique Games
Conjecture [20] is true, furthermore, the approximation ratio cannot be improved beyond the
Goemans–Williamson bound for all graphs. However, better ratios are achievable, e.g., for (sub)cubic
graphs [21].

The translation of the solution of the related problem (3) in the Goemans–Williamson
approximation relies on the choice of a random vector~r. Naturally, we ask whether the performance
can be improved by expending more efforts to obtain a better choice for~r. The key observation is that
the purpose of~r is to separate the solution vectors ~vi of Equation (3) into two disjoint sets of points
on the sphere. The two sets A+ := {i : ~vi ·~r ≥ 0} and A− := {i : ~vi ·~r < 0} can thus be thought of
as a pair of clusters. Indeed, two vectors ~vi and ~vj tend to be anti-parallel if wij is large, while pairs
of points i and j with small or even negative weights wij are likely to wind up on the same side of
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the maximal cut. Of course, the random vector~r is just one way of expressing this idea: if ~vi and
~vj are similar, then we will “usually” have sgn~vi ·~r = sgn~vj ·~r. The “randomized rounding” of the
Goemans–Williamson method therefore can also be regarded as a clustering method. This immediately
begs the questions whether the solutions of the MAX-CUT problem can be improved by replacing
the random choice of~r by first clustering the solution set {~vi} of the relaxed problem (3). We shall
see empirically that the answer to this question is affirmative even though the theoretical performance
bound is not improved.

In practical applications, solutions of relaxed problems are often post-processed by local search
heuristics. Therefore, a local search starting from the final results of both the Goemans–Williamson
relaxation and two of our best clustering approaches were made in order to improve the cut values.

This contribution is organized as follows. In the following section, we briefly summarize data
sets and clustering algorithms with their relevant properties as well as the details of the local search
used to improve the cut values. In Section 3.1, we describe an initial analysis of the effect of clustering
on the cut weights, showing that the quality of near-optimal clusters correlates well with cut weights.
Since we were not able to show for most clustering methods that they retain the Goemans–Williamson
performance bound, we derive an instance specific bound in Section 3.2 that provides a convenient
intrinsic quality measure. In Section 3.3, we extend the empirical analysis to the benchmarking set
that also contains very large graphs. We show that the use of clustering methods indeed provides a
consistent performance gain. We also see that the instance-specific performance bounds are much closer
to 1 than the uniform Goemans–Williamson α. Finally, in Section 3.4, we consider the improvement to
the cut values that are achieved with local search starting from the the Goemans–Williamson and the
two best clustering relaxations.

2. Materials and Methods

2.1. Benchmark Data

In order to assess the utility of clustering as rounding method, we used the benchmark set of
graphs generated using Rinaldi’s machine-independent graph generator. Both the generator and
the graphs can be downloaded from Ye’s web page http://web.stanford.edu/~yyye/yyye/Gset/.
These graphs vary from 800 to 20,000 nodes and have edge weights of ±1. The topology of the graph
can be toroidal, almost planar or random. The first 21 G-set graphs are a standard benchmark for
the MAX-CUT problem. The G-set benchmark consists of graphs G1 to G67, G70, G72, G77, and G81.
The optimal cuts are not known for most of these graphs. We therefore use the best known cut-values
compiled in [9] for comparison.

The relaxed problem (3) was solved using the CVX package in Matlab for graphs G1 to
G21. For graphs G22 to G54, G57 to G59, G62 to G67, and G72, we used Mathematica’s
function SemidefiniteOptimization. For graphs G55, G56, G60, G61, G70, G77, and G81 neither
SemidefiniteOptimization nor CVX were able to find a solution to the SDP problem. We therefore
had to exclude these instances from further consideration. From the SDP solution of each instance,
we computed 50 iterations for the randomized clustering algorithms, including Goeamans and
Williamson randomized clustering and reported the best solution for the seven best algorithms.

2.2. Clustering in the Goemans–Williamson Algorithm

We consider the following clustering methods:

• randomized rounding as defined in [15].
• k-means [22] adapted to the unitary sphere as in [23] for fixed k = 2.
• k-medoids [24] for fixed k = 2.
• Fuzzy c-means [25] adapted to the unitary sphere as in [23] for fixed c = 2.
• Minimum Spanning Tree (MST) clustering, i.e., splitting the MST at the longest edge [26].

http://web.stanford.edu/~yyye/yyye/Gset/
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In order to obtain the spherical variants of k-means and Fuzzy c-means, it is necessary to define
the cluster centroids as points on the sphere. This can be achieved by rescaling the centroid to be unit
length [23]. On the sphere, cosine similarity is a more natural choice than Euclidean dissimilarity. It is
not difficult to see that the two variants are actually equivalent:

Lemma 1. Spherical k-means clustering with cosine similarity is equivalent to k-means clustering with
Euclidean distances and normalizing of the centroid vectors in each step.

Proof. For unitary vectors, the square of their Euclidean distance can be expressed as

‖~x−~y‖2 = ~x ·~x +~y ·~y− 2~x ·~y = 2(1− cos θ)

in terms of the angle θ between ~x and ~y. The centroid~c of a given cluster C minimizes ∑i∈C ‖~xi −~c‖2

and thus maximizes the sum ∑i∈C cos θi. Analogously, each xi is assigned to cluster Cj with minimal
value of ‖~xi −~cj‖2 and thus maximal cos θi. Thus, the squared Euclidean distance and the cosine
distance optimize the same objective function.

The same argument can be made for Fuzzy c-means clustering, since its cost function is also a
linear combination of squared Euclidean distances and thus, equivalently, a linear combination of the
corresponding cosines. For MST clustering, no adjustment is necessary since the relationship between
Euclidean distances and cosines is monotonic and thus the transformation does not affect the MST.
By the same token, k-medoids clustering is unaffected by the restriction to the sphere since medoids by
definition are always the unitary vectors ~vi.

An important ingredient for the clustering procedures is the initialization. For k-means, k-medoids,
and fuzzy c-means, we consider both a deterministic and a non-deterministic version. In the
deterministic version, the pair ~v∗i and ~v∗j with maximal distance from each other is chosen. In the
non-deterministic variant, the two initial cluster centroids are selected from the solution vectors ~vi at
random. For k-means, we observed that choosing the initial cluster centroids as vectors ~vi does not
work well since the optimization quickly get stuck in a local minimum. We therefore devised two
alternative random initialization methods: (1) We generate a random unitary vector~r and use~c1 =~r
and~c2 = −~r as initial centroids. (2) We use two independently generated random unitary vectors~r1

and~r2 as initial centroids. The main advantage of method (1) is that this initialization is equivalent
to starting k-means from solutions obtained by Goemans–Williamson rounding. To see this, assume
(without loss of generality) that the random vector chosen as initial centroid points towards the north
pole and therefore the negative side of it will point towards the south pole. Then, any point in the lower
hemisphere of the hypersphere will be clustered with the south pole vector since this is the closest
centroid. The same will happen for points on the upper hemisphere and therefore this is equivalent to
splitting the hypershpere into two hemispheres, which is the Goemans–Williamson rounding.

In summary, we consider a total of nine clustering procedures:

1. Fuzzy c-means (Fuzzy)
2. Randomized k-means initialized among vectors ~vi (K-MeansRand)
3. Deterministic k-means (K-MeansDet)
4. Randomized k-medoids (K-MedRand)
5. Deterministic k-medoids (K-MedDet)
6. Minimum Spanning Tree (MST)
7. Randomized Rounding of Goemans–Williamson (RR)
8. Randomized k-means initialized with two random vectors (K-Means2N)
9. Randomized k-means initialized with a random vector and its negative (K-MeansNM)

In order to quantify the quality of the clusters, we use the distortion [27,28], a measure of cluster
coherence defined as

dis(C) =
k

∑
j=1

∑
~xi∈Cj

||~xi −~µCj || (5)
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Here, ~µCj := 1
|Cj | ∑~xi∈Cj

~xi is the centroid of the cluster Cj ∈ C. We note that k-means clustering

minimizes the distortion.

2.3. Local Search

A natural definition of locality for cuts considers two cuts A 6= A′ adjacent if A = A′ ∪ {u} for
some u ∈ V \ A′ or A′ = A ∪ {u} for some u ∈ V \ A [12]. In terms of the spin vectors x, this amounts
to “flipping” (changing the sign of) exactly one spin xi. An adaptive walk iteratively accepts a spin flip
if the cut value f (A) improves. By construction, therefore, an adaptive walk terminates in a locally
optimal solution, i.e., in a cut A∗ for which there is no adjacent cut with a strictly larger cut weight.
In general, neither the Goemans–Williamson nor any of the clustering results are locally optimal.
We therefore use adaptive walks as a simple way to further improve solutions. We performed local
improvement for each of the 50 repetitions of Goemans–Williamson randomized rounding, and the
two best-performing clustering algorithms: K-MeansNM and K-Means2N.

3. Results

3.1. Cluster Quality Correlations with Solution Quality

In a preliminary evaluation on the first 21 G-set graphs (see Materials and Methods), we observed
that clustering instead of random rounding yields systematically larger cuts. In order to better
understand the reason for the beneficial effect of clustering, we investigated the relationship between a
quality measure for the clustering and the resulting weight of the maximal cut. Since k-means clustering
minimizes distortion, it serves as a natural measure of cluster quality, irrespective of the clustering
method that is actually used. We chose K-MeansNM for this initial analysis because it uses RR solutions
to initialize clusters and thus allows for a direct evaluation of the effect of clustering heuristics.

The RR solutions fall into a very narrow range of distortion values that is clearly separated from
the near optimal range achievable by the clustering methods. The cut weights of the RR solutions do
not appear to be correlated with the distortion of the corresponding clusters. However, after only a few
clustering steps, k-means enters a regime in which distortion and cut weight are strongly correlated,
see Figure 1.
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(a) Scatter plot of 50 runs of K-MeansNM for graph G43.
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(b) Scatter plot of 50 runs of K-MeansNM for graph G31.

Figure 1. Exploration of the path of 50 iterations of K-MeansNM on the distortion weight of the
corresponding cut. The diagram shows all values generated while running the k-means. Points at the
bottom right of the plot are the starting points and thus the results of Goemans–Williamson rounding;
meanwhile, points at the top left are the end points. At each step of K-MeansNM, the points move
to the left until the algorithm finds a local minima of distortion. The red line is a linear fit of all the
points after the second step of k-means. These show a clear correlation between cluster distortion and
cut weight.
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Figure 1 provides a clear motivation to consider clustering as means of improving the
Goemans–Williamson solution. We observe that there are two groups of graphs. In the first groups,
exemplified by G43, Figure 1a, we consistently observe lower RR values at the starting point of
k-MeansNM (right) that at the endpoint (top left) and the cut values mostly increase monotonically
with decreasing distortion. In the second group of graphs, exemplified by G31, Figure 1b, this is
still the case on average; however, the optimal cut weights are observed at sub-optimal distortions.
This observation motivates us to record the cut weights for intermediary steps of the cluster procedures,
not only at their endpoints. In the case of K-MeansNM, this guarantees that we retain the performance
guarantee of the Goemans–Williamson bound.

3.2. An Instance-Specific Approximation Guarantee

Considering a fixed instance of MAX-CUT, let {~vi} be the solution of the relaxed problem (3) and
let {A, V \ A} be a discrete solution. Denote by ∂A := {(i, j) ∈ E(G)|i ∈ A, j ∈ V \ A} the set of cut
edges. The value S of the relaxed solution can be written as

S =
1
2 ∑

(i,j)∈∂A
wij
(
1−~vi ·~vj

)
+

1
2 ∑

(i,j)/∈∂A
wij
(
1−~vi ·~vj

)
= ∑

(i,j)∈∂A
wij︸ ︷︷ ︸

f (A)

− 1
2 ∑

(i,j)∈∂A
wij
(
1 +~vi ·~vj

)
︸ ︷︷ ︸

gcut

+
1
2 ∑

(i,j)/∈∂A
wij
(
1−~vi ·~vj

)
︸ ︷︷ ︸

gin

.

Thus, we have f (A) = S + gcut − gin. Writing f ∗ for the weight of the optimal cut, we know that the
solution of the relaxed problem is an upper bound, i.e., S ≥ f ∗. We therefore have

f (A) ≥ f ∗ − (gin − gcut) (6)

Note that gin− gcut ≥ 0 since by definition f ∗ ≥ f (A). First, consider the case of positive edge-weights.
Then, f (A) > 0 and we can estimate the approximation ratio for the solution A as

α(A) :=
f (A)

f ∗
≥ 1− gin − gcut

f ∗
≥ 1− gin − gcut

f (A)
(7)

If there are negative edge weights, we follow [15], define W− := ∑(i,j) min(wij, 0) ≤ 0, and make use
of the fact that f ∗ −W− ≥ 0. From Equation (6), we immediately obtain f (A)−W− ≥ f ∗ −W− −
(gin − gcut) and thus a generalized version of the approximation ration can be computed as

α(A) :=
f (A)−W−

f ∗ −W−
≥ 1− gin − gcut

f ∗ −W−
≥ 1− gin − gcut

f (A)−W−
(8)

The bounds in Equations (7) and (8) can be seen as instant-specific versions of the general
approximation ratio derived in [15]. Empirically, we found in benchmarking experiments (see below)
that the instance specific bound α(A) substantially exceeds the uniform Goemans–Williamson bound
of α ≈ 0.878. For the Goemans–Williamson algorithms, of course, we necessarily have E[α(A)] ≥ α.

3.3. Benchmarking Experiments

In order to compare the cut values of RR with each of the clustering algorithms, we use the
following relative measure of performance:

f̂cluster =
fcluster − fRR

fRR
=

fcluster
fRR

− 1 (9)
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Figure 2 shows that clustering on most instances yield significant improvement for most clustering
approaches. K-MeansNM by construction always finds a solution that is at least as good as RR; however,
both K-MeansNM and K-Means2N never give a lower solution than RR. K-meansRand improves for
all graphs except G12, Fuzzy for all except G12 and G72, K-MedRand for all except G32, G39, and G72,
and, finally, for K-MeansDet in nine graphs, a better solution was not found.
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(d) Plot of f̂cluster for K-MedRand clustering.
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(e) Plot of f̂cluster for K-Means2N clustering.
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(f) Plot of f̂cluster for K-MeansNM clustering.

Figure 2. Comparison between the cut value found by clustering algorithms and RR, using f̂cluster as
the comparison. The horizontal axis represents the graph number, i.e., graph Gi is shown in position i.
The red line indicates the average over the benchmark set. Positive values indicate that the clustering
solutions are superior to the RR solutions.
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The gains in solution quality differ substantially between the test instances, and a few graphs,
in particular G12 and G72, do not profit from the clustering approaches other than the randomized
versions of K-means. Interestingly, these two graphs are toroidal.

The same trend is also observed for the instance-specific performance bounds, see Figure 3.
The performance bounds for the individual solutions are well above 0.9, i.e., exceed the Goemans
and Williamson also in those few cases where clustering is worse than RR. For bipartite graphs with
non-negative edge weights, the entire edge set forms a maximal cut [11]. This is the case for the two
unweighted graphs G48 and G49 and explains why, for these two cases, no difference between RR and
clustering solutions is observed in Figure 2.

0 10 20 30 40 50 60

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

α
(A

)

Graph Number

 

 

Mean α(A) of Fuzzy

Mean α(A) of RR

α(A)=1

Fuzzy

RR

(a) Comparison of α(A) for Fuzzy clustering and RR.

0 10 20 30 40 50 60

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

α
(A

)

Graph Number

 

 

Mean α(A) of K−MeansDet

Mean α(A) of RR

α(A)=1

K−MeansDet

RR

(b) Comparison of α(A) for K-MeansDet and RR.

0 10 20 30 40 50 60

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

α
(A

)

Graph Number

 

 

Mean α(A) of K−MeansRand

Mean α(A) of RR

α(A)=1

K−MeansRand

RR

(c) Comparison of α(A) for K-MeansRand and RR.

0 10 20 30 40 50 60

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

α
(A

)

Graph Number

 

 

Mean α(A) of K−MedRand

Mean α(A) of RR

α(A)=1

K−MedRand

RR

(d) Comparison of α(A) for K-MedRand and RR.

0 10 20 30 40 50 60

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

α
(A

)

Graph Number

 

 

Mean α(A) of K−Means2N

Mean α(A) of RR

α(A)=1

K−Means2N

RR

(e) Comparison of α(A) for K-Means2N and RR.

0 10 20 30 40 50 60

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

α
(A

)

Graph Number

 

 

Mean α(A) of K−MeansNM

Mean α(A) of RR

α(A)=1

K−MeansNM

RR

(f) Comparison of α(A) for K-MeansNM and RR.

Figure 3. Comparison of instance-specific performance bounds α(A) between clustering algorithms
and RR. The cyan line is the average of α(A) for the clustering methods and the magenta line is the
average of RR for comparison.
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On average, all clustering algorithms yield improvements over RR. Interestingly, the average
solution quality depends noticeably on the clustering algorithm. The clustering algorithm with largest
average improvement was K-MeansNM, as expected. On the benchmark set, an average increase on
the cut weight by f̂K-MeansNM = 1.541% compared with RR is obtained. Other variants of 2-means
performed similarly well. We found f̂K-Means2N = 1.533% and f̂K-MeansRand = 1.471%. For Fuzzy
clustering, we only observed an improvement of f̂Fuzzy = 1.247%. With f̂K-MedRand = 0.841% and
f̂K-MeansDet = 0.789%, performance of medoids and deterministic methods was less encouraging.
For individual instances, the improvement was substantial. For example, we obtain an improvement
of 5.81% for the graph G10 and 5.12% for G28 with K-MeansNM.

Despite subtle differences between the clustering methods, the clusters are quite similar in their
characteristics. One measure of interest is the mean clustering angle

θA := arccos

(∣∣∣∣∣ 1
|A| ∑

vi∈A
vi

∣∣∣∣∣
)

(10)

It measures the average angle between two unit vectors in the same cluster. We found that the
cardinalities |A| and |X \ A| are nearly even and θA lies between 60 and 75 degrees for the graphs in
the benchmark set. We observed not convincing trends connecting these parameters and the weight of
maximum cut.

3.4. Local Search Improvement

A straightforward way to improve a given solution of MAX-CUT is to add a local search step.
We use adaptive walks for this purpose and restrict ourselves to RR and the two best-performing
clustering approaches, i.e., K-MeansNM and K-Means2N. The results presented in Figure 4 are the best
solutions found in all of the 50 iterations for each algorithm. The same relative measure of performance,
f̂cluster, is used as in Section 3.3. The corresponding instance-specific performance bound α can be
found in the Additional Material.
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(a) Plot of f̂cluster for K-Means2N clustering after
local search.
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(b) Plot of f̂cluster for K-MeansNM clustering after
local search.

Figure 4. Comparison between the cut value found by clustering algorithms and RR after local search
(LS), using f̂cluster as the comparison. The horizontal axis represents the graph number, i.e., graph Gi is
shown at position i. The red line indicates the average over the benchmark set. Positive values indicate
that the locally improved clustering solutions are superior to the locally improved RR solutions.

Figure 5 shows the ratio frounding/ fbest, where frounding is the best solution after local search found
either by clustering or RR for that instance and fbest is the best solution known in the literature,
taken from [9]. The corresponding values are also available in tabular form as Additional Material.
Graphs G11 to G13, G32 to G34, G57, G62, G65 to G67, and G72 have toroidal topology; both the
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clustering algorithm and Randomized Rounding show a comparably low approximation ratio for these
instances. For graphs with other topologies, we obtain approximation ratios exceeding 0.96, sometimes
closely approaching 1. The combination of the Goemans–Williamson relaxation with clustering thus at
least comes close to the best solutions known in the literature.
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Figure 5. Comparison of the best cut value obtained with clustering (in magenta) and RR (in cyan) and
subsequence local improvement with the best cut value ( fbest) available in the literature.

4. Conclusions

As we can see from the results, using other clustering methods than the randomized version
of [15], on average, leads to better cut values. Using k-means with an initialization equivalent to
starting from Goemans–Williamson rounding solutions (K-MeansNM), and keeping track of the points
visited by k-means at all time, we can guarantee that the approximation guarantee is maintained,
with the possibility of finding larger cut values. For the other clustering algorithms, this is not true;
however, for one version of k-means (K-Means2N), the same or better solutions than RR were found,
even without the guarantee. On average, the remaining clustering algorithms yield larger cut values
than RR, and the number of instances where those algorithms find lower cuts are less than 15% for the
worst case (K-MeansDet), and less than 5% for the others. Our approach is not guaranteed to improve
all instances. In particular, it does not result in a theoretical improvement of the Goemans–Williamson
approximation guarantee.

We have derived, however, an instance-specific lower bound for the approximation ratio that
depends both on the instance and the solution, i.e., the cut itself. It provides a plausible measure of
performance also for instances with unknown maximal cut value.

The success of k-means related clustering approaches suggests to extend this idea to other
clustering methods. For spectral clustering, for instance, a natural starting points would be an
auxiliary graph with weights ωij = max(~vi ·~vj) and edge set {(i, j)|ωij > 0}.
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The following abbreviations are used in this manuscript:

IQP Integer Quadratic Programming
VP Vector Programming
SDP Semidefinite Programming
Fuzzy Fuzzy c-means clustering
K-MeansRand Randomized version of k-Means
K-MeansDet Deterministic version of k-Means
K-MedRand Randomized version of k-Medoids
K-MedDet Deterministic version of k-Medoids
MST Minimum Spanning Tree
RR Randomized Rounding (Goemans–Williamson rounding)
K-Means2N Randomized version of k-Means initialized with 2 random vectors
K-MeansNM Deterministic version of k-Means initialized with a random vector and its negative
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