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Abstract: The recurrent use of databases with categorical variables in different applications demands
new alternatives to identify relevant patterns. Classification is an interesting approach for the
recognition of this type of data. However, there are a few amount of methods for this purpose in the
literature. Also, those techniques are specifically focused only on kernels, having accuracy problems
and high computational cost. For this reason, we propose an identification approach for categorical
variables using conventional classifiers (LDC-QDC-KNN-5VM) and different mapping techniques to
increase the separability of classes. Specifically, we map the initial features (categorical attributes)
to another space, using the Chi-square (C-S) as a measure of dissimilarity. Then, we employ the
(t-SNE) for reducing dimensionality of data to two or three features, allowing a significant reduction
of computational times in learning methods. We evaluate the performance of proposed approach in
terms of accuracy for several experimental configurations and public categorical datasets downloaded
from the UCI repository, and we compare with relevant state of the art methods. Results show that C-S
mapping and t-SNE considerably diminish the computational times in recognitions tasks, while the
accuracy is preserved. Also, when we apply only the C-S mapping to the datasets, the separability of
classes is enhanced, thus, the performance of learning algorithms is clearly increased.

Keywords: Chi-square; classification; t-SNE; categorical data; dissimilarity

1. Introduction

The high demand in the handling of all types of data, forces to companies, entities, and institutions
to find underlying patterns. There are several ways to deal with this issue, in general, it is called data
analysis [1]. A correct data processing requires basic knowledge in the type of databases, which can
be nominal or quantitative. Nowadays, the algorithms and methodologies applied in data analysis
focus on quantitative data, whether for clustering, regression and classification. In the literature,
it can be seen a lot of proposed works related to this type of datasets such as spectral clustering [2],
support vector machines (SMV) [3], Gaussian Processes (GP) [4], ordinary classification methods [5],
among others. On the other hand, categorical data has not been widely studied. Therefore, there is
a lack of sophisticated learning algorithms for this purpose. Currently, categorical data is mostly
recognized with decision trees. However, this method has limitations due to low robustness and the
performance is not satisfactory for validation data (low generalization capability). Categorical data
have a particularity: high overlapping. For this reason, accuracy in automatic recognition is low.
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For labeling these data, an unsupervised method has been proposed: the Fuzzy C-means [6], but its
computational time is high. Regarding this, some algorithms were introduced, such as coefficients of
similarity [7], measures of dissimilarity [8], PAM [9], fuzzy statistics [10], dissimilarity measure for
ranking data [11] and hierarchy of cluster [12].

An important alternative for solving the previously mentioned difficulties of qualitative databases,
is the adaptation of the k-means to a dissimilarity space using the Chi-square (C-S) distance. It is a
recently introduced algorithm for clustering ans its purpose is to map the categorical features through
the C-S to another space with higher dimensionality, where the classes more separable. To the best
of our knowledge, there are a several methodologies for clustering categorical datasets. However,
we find a deficit in supervised schemes for classification. Although, some classifiers were applied to
categorical variables [13-15], the data were not processed or mapped and the results obtained by these
works were not satisfactory due to the complexity and overlapping of qualitative data (polls, tests,
voting, among others). A positive fact, is that research works on explainable computational intelligence
has gained much attention in many fields, including engineering, statistics, and natural and social
science. Further, in machine learning, novel dimension reduction and feature extraction methods
are particularly needed to facilitate data classification or clustering, depending on the availability of
data labels [16].

In this work, we propose a methodology for performing classification of categorical datasets,
based on the mapping of data to a real domain given by the Chi-square dissimilarity. The main goal is
to augment the dimensionality of the feature space to increase the separability of classes. Additionally,
this mapping allows to transform the integer input space (X € ZP) to a real space (X* € RX), making a
more easier treatment for conventional classifiers. In our case, we apply the Bayesian linear classifier
(LDC), Bayesian quadratic classifier (QDC), K-nearest neighbor (K-nn), and a support vector machine
(SVM). The C-S mapping alleviate the overlapping in this type of data. Then, we employ the t-SNE to
reduce dimensionality and computational times of learning algorithms decreases too [17].

An important aspect is that t-SNE preserves the data structure in a smaller input space (two or
three dimensions). The t-SNE is one of the most used algorithms to perform dimensionality reduction
to any database. It is worth noting that t-SNE is a parametric method, and it requires the setting
of the number of neighbors, the perplexity hyper-parameter, and the distance metric. In our case,
we implement the Chi-square distance, because the C-S is a suitable metric for categorical data [18].

We evaluate the performance of the proposed approach in terms of accuracy and computational
times for several experimental configurations and public categorical datasets downloaded for the UCI
repository: https:/ /archive.ics.uci.edu/ml/index.php. Also, we compare our proposal with state of
the art methods applied on five categorical databases: The sparse weighted naive Bayes classifier [14],
coupled attribute similarity method [19], Boolean kernels [20], and a possibilistic naive Classifier with
a generalized minimun-based algorithm [21]. Results show that C-S mapping and t-SNE considerably
diminish the computational times in recognition tasks, while the accuracy is preserved in acceptable
levels. Also, when we apply only the C-S mapping to the datasets, the separability of classes is
enhanced, thus, the performance of learning algorithms is clearly increased. Outcomes indicates that
the best identification is achieved when the categorical data is mapped with the C-S without reducing
the input space using the t-SNE.

The rest of the paper is organized as follows: First, we describe the state of the art, next we detail
the materials and methods. Then, we illustrate the results and discuss them. Finally, we give the
conclusions of the proposed work.

2. State of the Art

The increasing use of datasets conformed by qualitative samples, demands new approaches to
perform clustering. A first attempt was presented in [22], where categorical data is clustered with
K-means. Specifically, the methodology transforms multiple categorical attributes in binary marks
(1 for presence and 0 for the absence of a category). Next, these binary attributes are considered as
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numeric descriptors in the ordinary K-means algorithm. Nonetheless, this proposal requires to handle
a great amount of binary points when the datasets have samples with many categories, which increases
its computational cost and memory storage. Other proposed methods such as the similarity coefficient
of Gower [7], dissimilarity measures [8], the PAM algorithm [9], hierarchy of cluster [12], statistic fuzzy
algorithms [23] and conceptual clustering methods [10] have been reported. All of them have limited
performance when are they are applied to massive data of type categorical.

Also, there are reports related to clustering analysis [9,24,25], where it is discussed issues regarding
apply clustering methods over categorical data. However, none of these works give a feasible solution
to the existing problems in non-numeric repositories. The main recommendation is to binarize the
data and to use binary similarity measures, but the memory storage becomes the main difficulty.
The authors of [26] implemented a study about distances for heterogeneous data (datasets with
mixed qualitative and quantitative variables) based on a supervised framework, being each sample
complemented with the respective class label. But, it is not generalizable to non-labeled databases.
Recently, the authors of [27] developed a clustering algorithm which maps a categorical dataset into a
Euclidean space. This method reveals the data configuration with a structure based clustering (SBC)
scheme, achieving acceptable results in a positive identification of groups and classes, even improving
the performance obtained by benchmark approaches for unsupervised learning: K-modes [28],
dissimilarity distance [29], Mkm-nof and Mkm-ndm [30]. There are two considerable handicaps
with the SBC framework: first, the high computational cost; secondly, the reduced accuracy for high
dimensional datasets.

Many researchers developed various machine learning algorithms, ie., GA and Fuzzy
inference [31] artificial neural networks (ANN) [32], self-adaptive method [33], support vector
machines (SVM) [34], Learning Vector Quantization (LVQ) [35], extreme learning machine [36],
adaptive stochastic resonance [37], model-based class discrimination (VPMCD) [38], random forest [39],
Artificial Bee Colony (ABC) [40], deep belief network [41], among others. All the aforementioned
techniques are pretty complicated to interpret categorical data [42]. This is because of the reduction of
the number of features (attributes) is a difficult task [43]. Theoretically, the presence of many features
offers the opportunity to implement classifiers having better discriminating power. Nevertheless,
this is not always true in practice, because not all features are relevant for representing the underlying
phenomena of interest. Thus, when reducing the number of attributes, or when creating new ones,
it is possible to achieve some benefits: Lower complexity of the classifier, reducing over-fitting,
increasing the interpretability of the results, robustness to noise, and improving the accuracy of a
basic classifier [44,45]. Most of dimensionality reduction models are developed for continuous data.
This led to the search of dissimilarity measures to map the categorical data to a continuous domain [46].
An example of this is the dissimilarity measure based on the Chi-Square distance, that allows to map
from a discrete space to a continuous one.

Related to supervised learning, several researchers proposed interesting frameworks. For example,
in [14] was introduced an approach based on sparse weighted naive Bayes classifier [14], this work
was the first attempt to extend sparse regression for processing categorical variables with competitive
outcomes. Also, the authors of [19] developed a couple attribute similarity scheme to capture a global
picture of the features. Furthermore, in [20] was presented a method composed of boolean kernels,
here the basic concept is to create human-readable features to ease the extraction of interpretation
rules directly from the embedding space. Finally, the research of [21] showed a classifier based on a
naive possibilistic estimation with a generalized minimun-based algorithm. These relevant works,
demonstrated that supervised algorithms can be adapted to categorical or qualitative data.
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3. Materials and Methods

3.1. Chi-Square Distance

The chi-square distance is similar to the Euclidean. However, it is a weighted distance and
a suitable metric for the analysis of databases with qualitative, categorical or nominal variables.
The Chi-square distance compares the counts of responses from categorical variables with two or more
independent features:

N
di]' = Z J27<xin - xjn)
n=1""

where

~ Xin

Xin = D
Y Xin
n=1

o1

Xn = D - Xin
n=1

Here, D is the number of features or dimensions. The Chi-square distance uses a contingency
table, with the frequency of each attribute. The weighted distance C-S with categorical features
allows a better treatment of these data. This is explained because it improves the separability of
the classes, and allows an easier grouping or discrimination. However, an important drawback is
the augment of dimensionality due to the data mapping to a space of dissimilarity. Therefore, it is
necessary to use the algorithm t-SNE for reducing the dimensionality to 2 or 3 attributes. To preserve
the structure of the databases, it was implemented the C-S metric within the distance function of t-SNE
for simultaneously enhancing separability of categorical data and reducing computational times in
learning algorithms [46].

3.2. T-Distributed Stochastic Neighbor Embedding

t-distributed stochastic neighbor embedding (t-SNE) minimizes the divergence between
two distributions: a distribution that measures similarities by pairs of input objects
X = (x1,%,...,xy) € RP1 and a distribution that measures similarities by pairs of the corresponding
points of low dimension in the embedding Y = (y1,y2,...,yn) € RP?, being D; > D,. Suppose
a dataset of N input objects X = (x1,X,...,Xy) and a function d(x;, x;) that calculates a distance
between a pair of objects, for example, the Euclidean distance d(x;, x;) = |[x; — xj|[2. Then, t-SNE
defines joint probabilities p; ; that measure the similarity between x; and x; [17]:

exp(—d(x;,x;)*/207)
Yoi exp(—d(xi,x¢)?) /207)’
piji =0

Y Pi=1
77

Pjli =

Also:
Pjli + Pilj
Pij = Pji = N
In the above formulation, the bandwidth of the Gaussian cores, 0, is set in such a way that
the perplexity of the conditional distribution p; is equal to a predefined perplexity . As a result,
the optimal value of ¢; varies depending on the object: in regions of the data space with a higher data
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density, o; tends to be smaller, and vice versa. The optimal value of ¢; for each input object can be
found using a simple binary search [47] or a robust root search method.

The objective of t-SNE is to find a D,-dimensional map Y = (y1,y2,...,yn) € RP2 for an optimal
reflecting of the similarities p; ;. Therefore, it measures the similarities g; ; between two points y; y y;
in a similar way:

b vyl
T e+ (v~ i DA)

gii =0

The heavy tails of the normalized Student-t allow the modeling of dissimilar input objects x; y x;
by low-dimensional counterparts y; and y;. The locations of the insertion points y; are determined by
minimizing the divergence of Kullback-Leibler between the joint distributions P and Q:

Pij

C(e) = KL(P||Q) = szjlog
i#] Tij

Due to the asymmetry of the Kullback-Leibler divergence, the objective function focuses on
modeling high values of p;; (similar objects) by high values of g;; (nearby points in the embedding
space). The objective function is usually minimized when descending along the gradient [48]:

aiyl = 4]21 pij — %] %]Z YJ)

3.3. Standard Classification Techniques

We test four standard classifiers at the supervised learning stage: Linear Bayesian (LDC),
Quadratic Bayesian (QDC), Support Vector machine (SVM) and K-nn. The purpose is to demonstrate
that the core of this work is the processing of categorical data through the Chi-square mapping for
increasing class separability and t-SNE for dimensionality reduction.

3.3.1. Support Vector Machines (SVMs)

Support vector machines (SVMs) are prevalent in applications such as natural language processing,
speech, image recognition and artificial vision. The full theory of SVMs can be found in [49].
This approach can be divided as follows:

e  Separation of classes: It is about finding the optimal separating hyperplane between the two
classes by maximizing the margin between the closest points of the classes.

o  Opverlapping classes: The incorrect data points of the discriminating margin are weighted to
reduce their influence (soft margin).

e Non-linearity: When a linear separator cannot be found, the points are mapped to another
dimensional space where the data can be separated linearly (this projection is realized via
kernel techniques).

e  Solution of the problem: The whole task can be formulated as a quadratic optimization problem
that can be solved by known methods.

SVMs belong to a class of machine learning algorithms called kernel methods. Common kernels
used in SVMs include: RBG or Gaussian, linear, polynomial, sigmoidal, among others [50]. We choose
the RBG function due to its flexibility for different type of data. We set the Gamma and C
hyper-parameters of the RBF kernel through cross-validation.
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3.3.2. Bayesian Classifier

According to the Bayes rules, the probability of an example E = (x1,%2,%3,...,xp) be the class C
is (where D is the number of attributes or features):

p(EIC)p(C)
CIE) = ————,
el = BE
E is classified as class C = + if and only if:
_prC=+IE)

where f;,(E) is called Bayesian classifier. Suppose that all attributes are independent of the class
variable; that is to say,

D
P(E|C) = p(x1,x2,%3,...,xp|C) = [ [ p(xi]C),
i=1

the resulting classifier is then:

~ p(C=4) 5 p(x|C=+)
WE) = e= ic=o

The function f,(E) is called the Naive Bayes Classifier. The difference of the linear discriminant
classifier (LDC) and quadratic (QDC) is the assumption of the covariance function. Specifically, if the
covariance is assumed as equal for all classes, we refer to LDC, allowing a considerable mathematical
simplicity for calculating the prediction distribution, but there is a possible loss of generalization
capability. If the covariance is assumed different for all classes, we refer to QDC, and we can separate
non-linear data with more accuracy, but the calculation of prediction distribution is more complex [51].

3.3.3. K-Nearest Neighbor (K-nn)

The learning process of the K-nn method is based on the storage of data. The method is described
as follows:

o  The training data X = xq,xp,...,xy with labels y = y1, ¥, ..., yn (being N the number of data
samples) are stored in memory.

e Foranew samplex; € RP, where D is the number of attributes, it is found the k-nearest neighbors
using a distance d in the whole training set (k canbe 1,3,5,7,...).

e Itis performed a voting procedure for selecting the class of the new sample x;.

e  Common distances d are:

— Mahalanobis:

Dulxy) = /(x~y) T (x~y),
where %! is the covariance matrix between x and y.
- Euclidean:

x=yl2=1+/(x=y) " (x—y)

—  Manhattan:
Manh(x,y) = [(x —y) ' (x—y)|

In this work, we employ the Mahalanobis distance. Also, we tested k = 3, 5, and 7 neighbors,
but we report the best results obtained for k = 3.
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4. Datasets and Experimental Setup

We test seven public datasets downloaded from UCI machine learning repository https://
archive.ics.uci.edu/ml/index.php. Table 1 describes the databases and their main characteristics.
First, we evaluate the t-SNE distances (Cosine, Jaccard, Mahalanobis, Chebychev, Minkowski,
City block, Seuclidean, Euclidean, Chi-tsne) for demonstrating that C-S metric combined with the t-SNE
algorithm (Chi-tsne), enhances separability of categorical databases. Then, we classify the datasets
using four approaches (LDC, QDC, SVM, K-nn) to find which learning method is the most accurate
in this context. For the sake of comparison, we test four different setups over the data: The single
classifiers, the classifiers + t-SNE, the classifiers + C-S, and the classifiers + C-S + t-SNE). See Table 2 for
the description of the experimental setups. We calculate the accuracy (AC) and computational times
for all classifiers in each setup, under the same conditions. We perform a hold-out validation scheme,
with ten repetitions for each experiment, taking 70% of the data for training and 30% for validation.
The simulations were performed with Matlab software on a server Intel (R) Xeon (R), CPU E5-2650
v2-2.60 GHz, two processors with eight cores, and 280 GB-RAM.

Table 1. Categorical datasets downloaded from public UCI repository.

Database Samples Features Classes Class Distribution
Audiology (Standardized) (A) 226 69 2 {124,76}

Balloons (B) 16 4 2 {12,8}

Breast Cancer (diagnosis) (BC) 699 9 2 {458,241}

Chess (King-Rook vs. King-Pawn) (C) 3196 36 2 {1669,1527}
Lymphography Domain (LD) 148 18 2 {81,61}

Molecular Biology (Promoter Gene Sequences) (MB) 106 57 2 {53,53}
Congressional Voting Records (V) 435 16 2 {267,168}

Table 2. Description of experimental setups

Experiment Description

(A) Database (A) + classifiers

(B) Database (B) + classifiers

(BC) Database (BC) + classifiers

© Database (C) + classifiers

(LD) Database (LD) + classifiers

(MB) Database (MB) + classifiers

V) Database (V) + classifiers

(A) + (C-S) Database (A) + Chi-Square Mapping + classifiers
(B) + (C-S) Database (B) Chi-Square Mapping + classifiers
(BC) + (C-S) Database (BC) + Chi-Square Mapping + classifiers
(G +(C-S5) Database (C) + Chi-Square Mapping + classifiers
(LD) + (C-S) Database (LD) + Chi-Square Mapping + classifiers
(MB) + (C-S) Database (MB) + Chi-Square Mapping + classifiers
(V) +(C-S) Database (V) + Chi-Square Mapping + classifiers

(A) + (C-S) + (t-SNE) Database (A) + Chi-Square Mapping + t-SNE + classifiers
(B) + (C-S) + (t-SNE) Database (B) + Chi-Square Mapping + t-SNE + classifiers
(BC) + (C-S) + (t-SNE)  Database (BC) + Chi-Square Mapping + t-SNE + classifiers
(C) + (C-S) + (t-SNE) Database (C) + Chi-Square Mapping + t-SNE + classifiers
(LD) + (C-S) + (t-SNE)  Database (LD) + Chi-Square Mapping + t-SNE + classifiers
(MB) + (C-S) + (t-SNE)  Database (MB) + Chi-Square Mapping + t-SNE + classifiers
(V) + (C-S) + (t-SNE) Database (V) + Chi-Square Mapping + t-SNE + classifiers

(A) + (t-SNE) Database (A) + t-SNE + classifiers
(B) + (t-SNE) Database (B) + t-SNE + classifiers
(BC) + (t-SNE) Database (BC) + t-SNE + classifiers
(C) + (t-SNE) Database (C) + t-SNE + classifiers
(LD) + (t-SNE) Database (LD) + t-SNE + classifiers
(MB) + (t-SNE) Database (MB) + t-SNE + classifiers

(V) + (t-SNE) Database (V) + t-SNE + classifiers
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5. Results and Discussion

We observed from experimental results that the Chi-square (CS) distance is suitable for categorical
data due to its mathematical nature. Initially, this divergence increases the dimension of data, maps the
data to a real domain, and improves the separation of classes. Latter, we perform a dimension
reduction with t-SNE for avoiding computational complexity. We do not consider another methods
such as Kullback-Liebler divergence and Wasserstein distance, because they are especially developed
for probabilistic distributions and estimation of parameters (KL is not symmetric, which can be
an important limitation). However, this is not our case, because we do not assume a probability
distribution over the categorical data. We pretend to map the categorical attributes to a real domain
(instead of a integer domain) and increasing their separability.

According to the previously pointed out, the Figure 1 illustrates the main goal of the C-S.
In this case, we show three of the seven databases (Congressional Voting Records, Balloons and
Breast Cancer). We can see that original input space (left column) is highly overlapped and the features
only take integers values. On the contrary, when the datasets are mapped with the C-S, the separability
of data is increased.

Table 3 shows the accuracy and standard deviation for LDC, QDC, SVM, and K-nn, when we use
the t-SNE algorithm over the databases. The objective was to evaluate the distances (Cosine, Jaccard,
Mahalanobis, Chebychev, Minkowski, City block, Seuclidean, Euclidean) commonly applied in t-SNE
method and to demonstrate that C-S is the most suitable for categorical attributes. We can see that C-S
metric outperforms the comparison distances with statistically significant differences in most of cases.
Also, the t-SNE reduces the dimensionality of mapped data without a losing of relevant information or
structure of data.

Figure 2 shows the accuracy achieved for each learning method in different experimental setups
described in Table 2. We can identify four different setups for each dataset. The first one, consists of
evaluating the standard classifiers in categorical databases without any processing or mapping the
data. We can observe that classification outcomes are not the best for each dataset. This probes that
categorical data must be processed or mapped before the recognition tasks.

In the second setup, we test the classifiers over the datasets mapped with the C-S dissimilarity.
This allows to obtain a better separability, but a higher dimensionality which means major
computational times. However, the C-S mapping generates the best classification results for all
datasets, as we see in Figure 2. We consider this mapping transforms the categorical data to quantitative,
and learning methods performs much better in this scenario. We explain this as follows: The primary
function of the C-S mapping is to increase the dimensionality of data to alleviate he overlap of
categorical features. Recall that categorical attributes are integers: X € ZP. When X is mapped with
the C-S dissimilarity, the feature domain is transformed too, i.e X € 7P — x* € Rk with K > D.
For this reason, the C-S mapping realizes a transformation from categorical to quantitative data.

In the third setup, we perform a combination of processing techniques. We initially map the
data with the C-S dissimilarity. Then, we apply the Chi-tSNE algorithm for reducing the number of
attributes to three. This reduction of dimensionality diminishes computational times while preserves
the data structure. Accuracy results are comparable with the the first setup, but computational times
are highly better than the other setups. This setup is the suitable for on-line recognitions systems.

Finally, the fourth setup applies the Chi-tSNE directly over the categorical datasets without a C-S
mapping. Although, computational times demanded for training the learning algorithms are lower,
the accuracy is affected.
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Figure 1. Initial categorical input space taking three attributes (left) and mapped features with
Chi-tSNE (right) for: (a) Congressional Voting Records, (b) Balloons, and (c) Breast Cancer. Red and
blue dots correspond to class 1 and 2, respectively. Each dimension of subfigures is a random feature.
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Table 3. Classification results (accuracy) for several distances of the t-SNE algorithm over seven UCI

public datasets. LDC and QDC correspond to linear and quadratic Bayesian classifier, K-nn stands for
K-nearest neighbor and SVM is the support vector machine. The datasets: A, B, BC, C, LD, MB, V are

defined in Table 1.

Dataset (A) cosine jaccard mahalanobis chebychev —minkowski cityblock seuclidean euclidean (A) Chi
LDC 625+0.0 70.3+0.1 711+01 60.0+04 692+00 628+00 61.2+00 664+00 734+£0.1
QDC 728 +0.1 83.1+0.0 70.7 £0.0 58540.1 73.6+03 739+£00 556+00 693+00 84.6=+0.0
K-nn 828+ 0.0 84.8+0.1 772 +00 79340.1 8444+01 851+£00 639+01 808+00 889+£00
SVM 623+0.0 70.8=+0.1 711+£00 623400 62.6+00 603+00 623+00 643+00 76.7+0.1
Average 70.1 77.2 72.5 65.0 72.5 70.5 60.7 70.2 80.9
Dataset (B) cosine jaccard mahalanobis chebychev minkowski  cityblock seuclidean euclidean (A) Chi
LDC 7434+02 829+0.1 757 +£02 786402 7294+0.1 929+01 543+01 929401 971+0.1
QDC 714402 743+0.1 714+01 757402 843+0.1 843+01 757+02 814+02 914+00
K-nn 757 +0.1 857+0.1 88.6 £0.1 78.6 £0.2 85.7+0.1 943+0.1 67.1+01 957+0.0 100+0.0
SVM 729 +£0.1 843+£0.1 85.7£0.2 78.6 £0.2 700£0.1 943+0.1 586+01 90.0£01 971+£0.1
Average 73.6 81.8 80.4 779 78.2 91.5 63.9 90.0 96.4
Dataset (BC) cosine jaccard mahalanobis chebychev minkowski cityblock seuclidean euclidean (A) Chi
LDC 88.3+0.0 94.3£0.0 783+£00 963 +0.0 95.6+0.0 966+00 965+£00 964+0.0 969=+0.0
QDC 90.6 £ 0.0 93.4£0.0 892+0.0 96.8+0.0 96.6+0.0 973+00 965+£00 964+0.0 973400
K-nn 90.1+0.0 953+0.1 91.8+0.0 96.6+0.0 967 £0.0 975+00 967+0.0 9714+00 974+0.0
SVM 88.1+0.0 944+0.0 791+00 964400 955+0.0 966+00 965+00 965+0.0 97240.0
Average 89.3 944 84.6 96.5 96.1 95.7 96.5 96.6 97.2
Dataset (C) cosine jaccard mahalanobis chebychev minkowski  cityblock seuclidean euclidean (A) Chi
LDC 60.8+0.0 59.7+0.0 578 +£0.0 50.3+0.0 609+00 553+00 624+00 608+00 682+00
QDC 654 +0.0 60.1+0.0 589+0.0 539+0.0 6214+00 631+£00 641+00 652+00 655£00
K-nn 885+0.0 70.8+0.0 843+0.0 53.0+0.0 89.44+00 895+00 859+00 89.1+00 89.7+0.0
SVM 62.6 +0.0 60.7+0.0 58.6+0.0 522+0.0 6154+00 608+00 625+0.0 61.1+00 687+0.0
Average 69.3 62.8 64.9 52.4 68.5 67.2 68.7 69.1 73.8
Dataset (LD) cosine jaccard mahalanobis chebychev ~minkowski  cityblock seuclidean euclidean (A) Chi
LDC 76.6 £0.0 71.6+0.1 689+0.1 643+0.1 659+0.1 761+00 766+00 720+0.1 81.6=+0.1
QDC 773+01 761+0.0 64.1 £0.1 67.5+0.1 67.0+£0.1 775+0.0 786+00 736+01 81.1+0.1
K-nn 791+£01 764+£0.1 79.1+£0.1 725 +0.1 748 +£0.1 80.7+£0.0 834+00 786+01 84.0+0.1
SVM 75.0+£0.0 711+£0.1 68.1£0.1 66.1 £0.1 68.6 0.1 759+0.5 789+00 707+00 81.8+0.1
Average 77.0 73.8 70.0 67.6 69.1 77.6 79.4 73.7 82.9
Dataset (MB) cosine jaccard mahalanobis chebychev minkowski  cityblock seuclidean euclidean (A) Chi
LDC 478 £0.1 56.24+0.1 60.0 £0.1 43.1+0.1 60.3+0.1 725+0.1 625+01 550+£01 762+0.1
QDC 5724+01 712401 541 +0.1 575+ 0.1 68.7+0.1 747+0.1 653+01 584+01 787+0.1
K-nn 625+01 709+0.1 65.6 £0.1 50.9 £ 0.1 662+ 0.0 75.6+0.1 681+01 706+£01 803+£0.1
SVM 5224+0.1 559+0.1 61.6+0.1 444+0.1 56.6+01 703+01 637+01 541+01 76.6+0.1
Average 54.9 63.6 60.3 49.0 63.0 73.3 64.9 59.7 78.0
Dataset (V) cosine jaccard mahalanobis chebychev minkowski  cityblock seuclidean euclidean (A) Chi
LDC 90.5+0.0 889+0.0 90.0+0.0 73.7+0.0 902+0.0 9144+00 808+0.0 901+0.0 915400
QDC 90.5+0.0 909 +0.0 90.0+0.0 745+0.0 921+0.0 91.74+00 814+00 906+0.0 914400
K-nn 926 +0.0 91.7+0.0 914+0.0 76.6+0.0 923+0.0 9334+00 827+00 923+0.0 93.8+0.0
SVM 91.44+0.0 909 +0.0 89.8+0.0 752+0.0 919+0.0 9234+00 81.7+0.0 908+0.0 92.6+0.0
Average 91.2 90.6 90.4 75.0 91.6 92.2 81.6 90.9 93.1

In general, we can see in Figure 2 that the best setup in terms of accuracy was the second

one, when the categorical features (integer values) are mapped with the C-S dissimilarity to a real
space (quantitative) with higher dimensionality, achieving a better separability. It should be noted
that the best classifier was the K-nn in most of experiments. It is important to mention that the
most efficient method in computational cost was in the third setup as shown in Table 4. This is
remarkable, because the percentages of accuracy are competitive, with the addition of achieving the
lowest computational times.
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Figure 2. Accuracy results for standard classifiers tested in seven UCI public datasets. The databases

correspond to A: audiology, B: balloons , BC: breast cancer, C: Chess, LD: Lymphography Domain,
MB: Molecular Biology, V: Congressional Voting Records. The subfigures (a), (b), (c), (d) illustrate the
outcomes for LDC, QDC, K-nn, and SVM, respectively. The colors detailed in the legend of subfigure

(e) refer to each experimental setup.

Table 4. Computational times for standard classifiers tested in seven UCI public datasets. The datasets:
A, B,BC,C, LD, MB, V are described in Table 1.

Experimental Setup Computational Time (Seconds)

Experimental Setup t-SNE = Computational Time (Seconds)

(A)+C-S
(B) +C-S
(BC) + C-S
©)+Cs
(LD) + C-S
(MB) + C-S
(V)+CS

33.8
1.4
397.0
30.9
259
155.4
2530.5

(A) + C-S + -SNE
(B) + C-S + t-SNE
(BC) + C-S + t-SNE
(C) + C-S + t-SNE
(LD) + C-S + t-SNE
(MB) + C-S + t-SNE
(V) + C-S + t-SNE

24.6
0.2
86.0
21.5
18.3
52.6
523.5
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Finally, to demonstrate the efficiency of our method, we made a comparison with several
classification methods reported in the literature for recognition of categorical databases: the sparse
weighted naive Bayes classifier [14], coupled attribute similarity method [19], Boolean kernels [20],
and a possibilistic naive Classifier with a generalized minimun-based algorithm [21]. We find five
databases of the seven that we use in this paper. We obtain better classification accuracy with our
proposed methodology than comparison methods, as can be seen in Table 5.

Table 5. Accuracy results in identification of categorical data for the comparison methods versus the
C-S approach. SWNBC corresponds to the sparse weighted naive Bayes classifier [14], C4.5 is the
coupled attribute similarity method [19], BK is the classifier based on Boolean kernel [20], and NPC is
the naive possibilistic classifier [21].

Database SWNBC C4.5 BK NPC C-S

Chess 8759 £1.23 9748 £1.85 97224194 88.67 +1.72 100.0 £ 0.00
Congressional Voting 90.08 £3.71 9328 £3.18 92364323 9423 +3.62 94.53 4+ 1.60
Breast Cancer 7250+ 771 7133+633 6645+692 73.81+711 97.35+1.30
Lymphography Domain 83.60 £9.82 7312 4+8.63 73.82+847 8776 +9.60 88.30+ 4.80
Balloons 100.0 &2 0.00 100.0 &= 0.00 100.0 +0.00 100.0 £ 0.00 100.0 £ 0.00

6. Conclusions and Future Work

In this work, we implemented a recognition approach for categorical data. To do this,
we developed two interesting and suitable options. First, we mapped the categorical attributes
to a higher dimensionality space with a Chi-square (C-S) dissimilarity. This procedure allows to
transform the feature domain of categorical datasets from integers to real values, alleviating the
overlapping problem. We can observe from Figure 1 that a mapping of categorical data increases
recognition accuracy. Second, we introduced an alternative distance based on Chi-square in the
t-stochastic neighbor embedding method (tSNE), see Table 3 for results. The combination of the C-S
dissimilarity and the Chi-tSNE applied on categorical data, simultaneously increases data separability
and reduces the computational times for classification, when we tested standard classifiers: LDC, QDC,
k-nn and SVM over public categorical datasets downloaded from the UCI repository, as we showed in
Table 4. Also, we described how our proposal using C-S as a measure of dissimilarity outperformed
other methods for classification of categorical data reported in the literature [14,19-21], see Table 5.

As future work, we propose a new metric based on a kernel formulation specially designed for
qualitative databases, for example Boolean kernels. Also we would like to evaluate advanced classifiers
such as Gaussian processes or deep learning. Finally, we encourage the reader to perform an analysis
of the Chi-square and its invariance properties based on Wasserstein Information Matrix [52].
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