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Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative brain disorder. One of the
important therapeutic approaches of AD is the inhibition of β-site APP cleaving enzyme-1 (BACE1).
This enzyme plays a central role in the synthesis of the pathogenic β-amyloid peptides (Aβ) in
Alzheimer’s disease. A group of potent BACE1 inhibitors with known X-ray structures (PDB ID
5i3X, 5i3Y, 5iE1, 5i3V, 5i3W, 4LC7, 3TPP) were studied by molecular dynamics simulation and
binding energy calculation employing MM_GB(PB)SA. The calculated binding energies gave Kd
values of 0.139 µM, 1.39 nM, 4.39 mM, 24.3 nM, 1.39 mM, 29.13 mM, and 193.07 nM, respectively.
These inhibitors showed potent inhibitory activities in enzymatic and cell assays. The Kd values
are compared with experimental values and the structures are discussed in view of the energy
contributions to binding. Drug likeness of these inhibitors is also discussed. Accommodation of
ligands in the catalytic site of BACE1 is discussed depending on the type of fragment involved in
each structure. Molecular dynamics (MD) simulations and energy studies were used to explore the
recognition of the selected BACE1 inhibitors by Asp32, Asp228, and the hydrophobic flap. The results
show that selective BACE1 inhibition may be due to the formation of strong electrostatic interactions
with Asp32 and Asp228 and a large number of hydrogen bonds, in addition to π–π and van der Waals
interactions with the amino acid residues located inside the catalytic cavity. Interactions with the
ligands show a similar binding mode with BACE1. These results help to rationalize the design of
selective BACE1 inhibitors.

Keywords: Alzheimer’s disease; BACE1; molecular dynamics; MM/GBSA; inhibitors; drug likeness;
ligand efficiency; Kd

1. Introduction

Alzheimer’s disease (AD) is a progressive, neurodegenerative disease of the brain. AD and
the associated dementia are connected to amyloid plaque accumulated in the brain. The β-Site
Amyloid Precursor Protein cleaving enzyme 1 (BACE1) is an aspartic protease enzyme fixed to the cell
membrane; it acts to produce β-amyloid (Aβ) in the signaling pathways in Alzheimer’s disease (AD).
Excessive accumulation Aβ is believed to induce pathological changes and causes dementia in brains
of AD patients.

The enzyme BACE1 initiates the cleavage of amyloid precursor protein (APP) at theβ-secretase site,
then Aβ is released as a result of further cleavage of the BACE1-cleaved C-terminal APP fragment [1].
Blocking BACE1 proteolytic activity will suppress Aβ generation and reduce the formation of amyloid.
Research has been directed towards potent BACE1 inhibitors for AD therapy. Recent breakthroughs
in developing BACE1 inhibitors which can penetrate brain cells make the targeting of amyloid
deposition-mediated pathology as a therapy more obtainable. Various strategies that have successfully
led to the discovery of BACE1 inhibitor drugs have reached the stage of clinical trials.
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BACE1 consists of three domains: an N-terminal, a single transmembrane domain, and a cytosolic
C-terminus. The catalytic ecto-domain has an aspartic protease fold, with the substrate-binding cleft
located between the N- and C-terminal lobes (Figure 1).
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Figure 1. Structures of β-site APP cleaving enzyme-1 (BACE1) in complex with inhibitor 1 (PDB ID
5i3X. The inhibitor 68J (Pink), catalytic dyad D228 and D32, flap (Blue); ß sheets (yellow); coils (green),
Inhibitor (pink).

The crucial catalytic aspartate (Asp) dyad, Asp32 and Asp228, is located at the interface of
the two lobes [2]. A hairpin loop “flap” in the N terminal lobe partially covers the cleft in a
perpendicular orientation and contains Valine 69 Tyrosine 71 and Threonine 72 (colored blue in
Figure 1). The conformational changes in the flap control the substrate access to the active site.
The first BACE1 substrate analogues inhibitors to mimic the APP-cleavage sequence which contains
a non-cleavable peptide bond. This showed high potency but resulted in poor oral bioavailability
and low brain penetration, which prevents therapeutic utility [3,4]. Amidine-containing compounds
that form optimal interactions with Asp32 and Asp228 enhance the search for BACE1 inhibitors [1].
These Asp-binding amidine and guanidine inhibitors have been studied and the cyclohexyl groups
were found to bind the S1 and the lipophilic S1′ pockets (Figure 1).
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Other compounds feature a quaternary carbon that acts as a vector in the S1−S3 and S2’ pockets
of the catalytic site (Figure 1) [5]. In other inhibitors, the basicity of the amidine/guanidine function
provides a formal positive charge that impacts the optimization of physicochemical parameters.
In contrast, there are a few known ligands that bind to the catalytic cleft without interacting with the
Asp32 and Asp228 residues. Merck reported an inhibitor (Pyrimidine) which binds to the S1 and S3
pockets [6] and Elan Pharmaceuticals reported an S2 pocket binding inhibitor [7].

Researchers have employed several methods to predict drug potency by calculating the binding
free energies of potential drugs as ligands to protein targets [8]. Thermodynamic integration (TI)
and free energy perturbation (FEP) have been successfully applied to calculate free energy values
close to experimentally reported values [9]. These methods proved to be computationally expensive
and not practical. In addition, docking programs have been employed to obtain scores for large
numbers of candidate drugs but proved to be not very accurate in predicting the free energies of
inhibitor binding to potential sites on the proteins [10]. The approximations used in these methods,
such as ignoring protein flexibility, inadequate treatment of solvation and simplifying the energy
functions used, make them less valuable for studying drug binding. The molecular mechanics- Poison
Boltzmann (MM/GBSA) method provides faster estimates of the free energy of binding, compared to
the other computational free energy methods, such as free energy perturbation (FEP) or thermodynamic
integration (TI) methods [11]. Comparison studies have also shown that MM/GBSA outperforms
Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) in calculating the inhibitor binding
energy to protein receptors [12].The MM/GBSA method [12,13] has been widely exploited in free energy
calculations and its rescoring generally yields better results than docking for the Directory of Useful
Decoys, Enhanced data set [13]. When applied to any protein-ligand system, MM/GBSA requires the
calculation of an explicit entropy term [8,13] and, for some systems, displays overly large contributions
to the absolute free energy of binding [14].

The design of BACE1 inhibitors was concentrated on peptidic substrate transition-state mimic
inhibitors; these ligands showed low nanomolar inhibition potency for BACE1, but have poor
pharmacokinetic properties [1]. Recently, second-generation inhibitors were designed based on
structure-based drug design. Low molecular weight molecules with excellent cell permeability,
such as OM99-2, a substrate-based inhibitor with a highly potent BACE1 inhibition (IC50 = 1.6 nM),
have little peptidic character, and show an enhanced pharmacokinetic profile. Fragment-based
inhibitors discovered using a computational approach have led to designing potent small-size BACE1
inhibitors [15].

In this work, the binding energies of a group of inhibitors to BACE1 were calculated employing
molecular dynamics (MD) simulation and MM/GBSA. The contributing energies were analyzed and the
values were correlated to experimentally find Kd values for the inhibitors. The feasibility of MM/GBSA
to estimate Kd values for drugs and how to optimize drug structures in view of the results to provide
acceptable inhibition are discussed [16].

The principle for choosing the group of inhibitors under study is the common groups they share
that are known to bind the BACE1 enzyme in different affinities. By establishing a binding theme one
can build the best inhibitor with the desired properties to penetrate the brain cells and have the proper
Ki value.

2. Methods

2.1. Molecular Dynamics Simulations

Molecular dynamics simulations were performed on the initial structures based on the X-ray crystal
structure of the protein-inhibitor complexes with PDB identifications shown in Table 1. MD simulations
were carried out using the Amber18.0 package [17] on a GPU accelerated version [18], employing the
AMBER force field ff14SB for proteins and nucleic acids, which describes the potential energy of the
system [19]. All atom explicit water molecular dynamics simulations were performed on all systems.
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The PDB file was downloaded in pymol [20], and the complex was prepared using the pdb4amber
program, inspected, and salt and water were removed. The receptor, ligand, and complex pdb files
were saved separately using a text editor.

Table 1. The calculated energies of BACE1 Inhibitors.

PDB
id-Inhibitor Kd Exp [21] IC50

[21]
∆HGBSA
kcal/mol T∆S

∆Gbinding

Calculated
kcal/mol

∆G exp
Kd from

Calculated
∆Gbind **

5i3x-(1) 8 nM,
0.8 nM

191 nM,
9 nM −44.5 (4) −25.2 (5) −19.3 (5) −11.34 0.000139 nM

5i3y-(2) 0.4000 nM 16 nM,
0.8 nM −37.4 (3) −24.96 (6) −12.4 (7) −13.16 1.39 nM

5ie1-(3) 140 nM 140 nM −30.5 (3) −22.98
(6.2) −7.5 (6) −9.60 4.39 mM

5i3w-(5) 0.6 nM −32.2 (2.6) −24 (4) −8.15 (4) −12.9 1.39 mM

5i3v-(4) 16 nM 35 nM −32.92
(5.2) −22.26 (4) −10.66 (4) −10.92 24.3 nM

3tpp-(6) 233 nM 15 nM,
15 nM −35.6 (6) −26.21 (5) −9.4 (4) −9.28 193.07 nM

4lc7-(7) 11800 nM,
14 nM −24.64 (5) −22.5 (5) −2.15 (5) −6.8 29.13 mM

** ∆G = RTlnKd = 1.4logKd where Kd in molL−1.

Preparing ligand, receptor, and complex files for Amber [22]:
The Antechamber [23] package in Amber Tools [24] was used to create topology and coordinate

files for the simulations of ligands. Antechamber is designed to be used with the “general AMBER
force field (GAFF)” [23], for organic molecules. This force field has been specifically designed to cover
most pharmaceutical (organic) molecules and is compatible with the traditional AMBER force fields
in such a way that the two can be mixed during a simulation. Hydrogens were added to the ligand
(using reduce) then the ligand. frcmod and library files were prepared for amber, and the tleap editor
was used to load the complex or combine the ligand and receptor. The complexes were solvated in a
TIP3P [25] cubic water box with water molecules extending 15Å from the complex surface to the water
box boundary, and Na+ or Cl- ions were added to neutralize the system depending on the charge.
The structure of the complex was checked for errors and then converted to topology and coordinate
files. The particle mesh Ewald method [26] was used for treating long range electrostatics, and a 9Å
cutoff was set for long range interactions. The force field energy of each structure was minimized by
progressively relaxing the system before starting the MD simulations. Minimizations were performed
employing steepest descent followed by conjugate gradient minimizations (1000 cycles in tandem).

After relaxation of the system it was heated to 300 K by applying harmonic restraint
(10 Kcal/Å2 .mol) on solute. This was followed by an unrestrained 2 ns MD simulation at 300 K and
1 atm to equilibrate the system and adjust the density.

The SHAKE algorithm [27] was used to constrain hydrogen atoms to enable a longer time step
(2 fs) in the simulation. A Langevin thermostat [28] with 2 ps−1 collision frequency and weak coupling
barostat with 2 ps of relaxation time were employed. Production MD simulations were carried out
for 150 ns and resulted in a converged trajectory evident in the RMSD behavior which showed good
stability within 1.5Å. Trajectories were collected at 2 ps intervals. These trajectories were used to
calculate the binding free energy using MMPBSA.py script [29]; 50 or 100 frames were used in the
calculations. Loss in flexibility upon binding expressed as entropy change (T∆S) was calculated by
normal modes using the same snapshots that were used for calculating ∆G binding. Then, the absolute
free energy of binding was calculated (Equation (5)). The binding energy of the complex was calculated
using the MM/GBSA method.
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2.2. The Generalized Born/Surface Area Model

The MM/PBSA [30] and MM/GBSA methods [31] have been used to estimate ligand-binding
affinities in many systems, giving correlation coefficients compared with experiments of R2 in the range
of 0.3 to 0.9, depending on the protein, with MM/GBSA giving better results in this case. The results
strongly depend on details in the method, especially the continuum-solvation method, the charges,
the dielectric constant, the sampling method, and the entropies. The methods often overestimate
differences between sets of ligands.

The (MM/PB(GB)SA [30] method uses representative snapshots from an ensemble of conformations
to calculate free energy change between the bound and unbound states of receptor and ligand,
Equations (1) and (2)). Before using MM-GBSA [32] the system equilibration was verified by
considering temperature, density, total energy, and root mean squared deviation of coordinates (RMSD).
An RMSD value relative to the crystal structure of 1.5Å was deemed acceptable. Extensive analysis
of each trajectory was performed to make sure the energies calculated are reliable depending on the
snapshots [33]. To estimate the total solvation free energy of a molecule, ∆Gsolv, one typically assumes
that it can be decomposed into the “electrostatic” and “non-electrostatic” parts:

∆Gsolv = ∆Gel + ∆Gnonel

where ∆Gnonel is the free energy of solvating a molecule from which all charges have been removed
(i.e., partial charges of every atom are set to zero), and ∆Gel is the free energy after removing all
charges in vacuum, and then adding them back in the presence of a continuum solvent environment.
Generally speaking, ∆Gnonel comes from the combined effect of two types of interaction: the favorable
van der Waals attraction between the solute and solvent molecules, and the unfavorable cost of breaking
the structure of the solvent (water) around the solute. In the current Amber code, this is taken to be
proportional to the total solvent accessible surface area (SA) of the molecule, with a proportionality
constant derived from experimental solvation energies of small non-polar molecules, and uses a fast
LCPO algorithm to compute an analytical approximation to the solvent accessible area of the molecule.
Within Amber GB models, each atom in a molecule is represented as a sphere of radius Ri with a charge
qi at its center; the interior of the atom is assumed to be filled uniformly with a material of dielectric
constant 1. The molecule is surrounded by a solvent of a high dielectric constant 80 for water at 300 K)
(Equation (3)). The GB model approximates ∆Gel and the nonpolar energy is usually estimated using
the solvent-accessible surface area (SASA) (Equation (7)) [8]:

∆G bind = G RL − G R − G L where R = receptor, L = Ligand (1)

∆G0
Bind, Solv = ∆G0

Bind, vacuum + ∆G0
solv, complex − (∆G0

solv, ligand + ∆G0
solv, receptor) (2)

∆G0
solv = ∆G0

electrostatic, ε=80 − ∆G0
electrostatic, ε=1 + ∆G0

hydrophobic (3)

∆G0
vacuum = ∆E0

olecular mechanics − ∆S0
normal mode analysis (4)

∆G = ∆H − T∆S = ∆EMM + ∆GSOL − T∆S (5)

∆EMM = ∆Einternal + ∆Eelectrostatic + ∆Evdw (6)

∆GSOL(PB/GB) = ∆GPB/GB + ∆GSA(PB/GB) (7)

where ∆EMM is total gas phase energy (sum of ∆E internal + ∆Eelectrostatic + ∆Evdw).
∆G SOL(PB/GB) is the sum of nonpolar and polar contributions to solvation calculated by PB or

GB. T∆S is conformational entropy upon binding computed by normal-mode analysis on a set of
conformational snapshots taken from MD simulations. ∆Einternal is internal energy arising from bond,
angle, and dihedral terms in the MM force field. ∆Eelectrostatic is electrostatic energy as calculated by the
molecular mechanics (MM) force field. ∆Evdw is the van der Waals contribution from MM. ∆GPB/GB is
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the nonpolar contribution to the solvation free energy calculated by an empirical model. The nonpolar
solvation free energy is typically given by an empirical formula that is proportional to the solvent
accessible surface area of the solute: ∆ GSA = γ ·SASA + b, where γ is the surface tension constant and
b is a correction constant (γ = 0.00542 kcal·mol−1

·Å−2 and b = 0.92 kcal/mol in the AMBER package).
∆GSA/GB is the electrostatic contribution to the solvation free energy calculated by the PB or GB method.

One-thousand 2 ps spaced snapshots of each complex were generated from the MD trajectories,
and all water molecules and counter-ions were removed before MM-PBSA/GBSA calculations.
Coordinates were extracted by using the extract-coords.mmpbsa script and the ∆G values were
calculated using the “MMPBSA.py” script [29].

3. Results and Discussion

3.1. Data Analysis

The RMSDs, dynamic cross-correlation analysis, and principal component analysis (PCA) were
processed using the CPPTRAJ module in Amber 18 package [34]. The principal component analysis
(PCA) was performed to help in sampling [35,36].

System stability under MD simulations (see Figure 2a–d).
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Figure 2. Root mean square deviation (RMSD) evolutions from molecular dynamics (MD) simulations 
of (a) BACE1 (green) and Inhibitor 68J (black) in 5i3X; (b) 5i3W BACE1 (green) and 68L inhibitor 
(black); (c) 5i3V, the BACE1-68M complex (d): pairwise plot of RMSD of BACE1-68J complex in 5i3X, 
RMSD pairwise computed for first 5000 snapshots and skipped every 10 frames. 

Before starting MD analysis, the root mean square deviation (RMSD) evolution of the protein 
backbone Cα for each complex was monitored throughout the 200 ns MD simulations to ensure 
stability of the systems. As shown in Figure 2, the RMSD evolution for Cα of BACE1 bound with 
inhibitors exhibited relatively small fluctuations at the start of simulation, then was stable and 
changes were within 1.0 Å. Accordingly, the RMSD evolution of the heavy atoms of the inhibitors 
maintained relative stability (RMSD fluctuation <1 Å) during the 200 ns simulation. Pairwise RMSD 
for specific snapshots was computed using pytraj in Amber. The RMSD to the experimental structure 
reference was computed, then, pairwise RMSD for the first 5000 snapshots, skipping every 10 frames, 
was computed (Figure 2d). 

3.2. Prediction of Binding Mode and Key Interactions of Inhibitors to BACE1  

MD simulations were performed to elucidate the key interactions of inhibitors responsible for 
inhibitory activity against β-amyloid (Aβ) accumulation. The MD simulations were performed to 
evaluate the favored binding modes and key interactions of BACE1 with various inhibitors (Figure 
3). 

Figure 2. Root mean square deviation (RMSD) evolutions from molecular dynamics (MD) simulations
of (a) BACE1 (green) and Inhibitor 68J (black) in 5i3X; (b) 5i3W BACE1 (green) and 68L inhibitor
(black); (c) 5i3V, the BACE1-68M complex (d): pairwise plot of RMSD of BACE1-68J complex in 5i3X,
RMSD pairwise computed for first 5000 snapshots and skipped every 10 frames.

Before starting MD analysis, the root mean square deviation (RMSD) evolution of the protein
backbone Cα for each complex was monitored throughout the 200 ns MD simulations to ensure
stability of the systems. As shown in Figure 2, the RMSD evolution for Cα of BACE1 bound with
inhibitors exhibited relatively small fluctuations at the start of simulation, then was stable and changes
were within 1.0 Å. Accordingly, the RMSD evolution of the heavy atoms of the inhibitors maintained
relative stability (RMSD fluctuation <1 Å) during the 200 ns simulation. Pairwise RMSD for specific
snapshots was computed using pytraj in Amber. The RMSD to the experimental structure reference was
computed, then, pairwise RMSD for the first 5000 snapshots, skipping every 10 frames, was computed
(Figure 2d).

3.2. Prediction of Binding Mode and Key Interactions of Inhibitors to BACE1

MD simulations were performed to elucidate the key interactions of inhibitors responsible for
inhibitory activity against β-amyloid (Aβ) accumulation. The MD simulations were performed to
evaluate the favored binding modes and key interactions of BACE1 with various inhibitors (Figure 3).
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Figure 3. Structures 1 to 7 are selected BACE1 inhibitors with their PDB ID. Structure (8) shows the
binding mode of inhibitors derived from MD simulation using 68J as an example.
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The binding energies of inhibitors with BACE1 are shown in Tables 1 and 2 and in Figures 4 and 5;
inhibitors under study bind Asp32 and Asp228 (Tables 3–5, and Figure 6), except for 4LC7 which binds
Asp93 and Asp289 (See later).

Table 2. The different components of binding free energy (kcal/mol) between the inhibitors-BACE1
complex evaluated using the MM/GBSA method.

Number
(Figure 2) PDB ID vdW E EL E GB Esurf Esolv ∆HGBSA

1 5i3x −67.1 (3.1) −26.99 (6.1) 58.3 (4.9) −8.72 (0.24) 49.6 (4.83) −44.52 (4)
2 5i3y −59.13 (3.4) −16.8 (3.4) 45.8 (4.2) −7.2 (0.5) 38.6 (3.8) −37.36 (3)
3 5ie1 −39.15 (2.96) −36.21 (2.9) 50.77 (1.5) 3.76 (0.02) 44.9 (0.7) −30.48 (2.8)
4 5i3v −43.69 (3.4) −21.62 (7.7) 38 (5.6) −5.6 (0.52) 32.4 (5.4) −32.92 (5.2)
5 5i3w −55.34 (2.86) −14.12 (3.1) 44.1 (2.6) −6.8 (0.19) 37.3 (2.5) −32.15 (2.6)
6 4lc7 −34.04 (2.9) −13.2 (13) 26.8 (11) −4.3 (0.3) 22.6 (10.9) −24.64 (5.02)
7 3ttp −10.73 (0.9) −66.97 (1.9) −55.9 (1) 5.6 (0.03) −40.26 (1.02) −35.6 (6)

Computation 2020, 8, x FOR PEER REVIEW 11 of 25 

 

 
Figure 4. The binding energies of inhibitors calculated by MM/GBSA. 

Table 2. The different components of binding free energy (kcal/mol) between the inhibitors-BACE1 
complex evaluated using the MM/GBSA method. 

Number 
(Figure 2) PDB ID vdW E EL E GB Esurf Esolv ΔHGBSA 

1 5i3x −67.1 (3.1) −26.99 (6.1) 58.3 (4.9) −8.72 (0.24) 49.6 (4.83) −44.52 (4) 
2 5i3y −59.13 (3.4) −16.8 (3.4) 45.8 (4.2) −7.2 (0.5) 38.6 (3.8) −37.36 (3) 
3 5ie1 −39.15 (2.96) −36.21 (2.9) 50.77 (1.5) 3.76 (0.02) 44.9 (0.7) −30.48 (2.8) 
4 5i3v −43.69 (3.4) −21.62 (7.7) 38 (5.6) −5.6 (0.52) 32.4 (5.4) −32.92 (5.2) 
5 5i3w −55.34 (2.86) −14.12 (3.1) 44.1 (2.6) −6.8 (0.19) 37.3 (2.5) −32.15 (2.6) 
6 4lc7 −34.04 (2.9) −13.2 (13) 26.8 (11) −4.3 (0.3) 22.6 (10.9) −24.64 (5.02) 
7 3ttp −10.73 (0.9) −66.97 (1.9) −55.9 (1) 5.6 (0.03) −40.26 (1.02) −35.6 (6) 

  

-60

-50

-40

-30

-20

-10

0

10

5i3x 5i3y 5ie1 5i3w 5i3v 3tpp 4lc7

kc
al

/m
ol

inhibitor

ΔHGBSA

ΔG

Figure 4. The binding energies of inhibitors calculated by MM/GBSA.

Computation 2020, 8, x FOR PEER REVIEW 12 of 25 

 

 
Figure 5. The breakout of binding energy ΔH to its contributing energies for inhibitors under study. 

The flap, a β-hairpin loop containing residues Tyr71to Val69, positioned directly over the 
catalytic dyad, can open and close to allow substrate and inhibitor access to the active site; see Figures 
1 and 6A.  

 
(A) 

-80

-60

-40

-20

0

20

40

60

80
5i3x 5i3y 5ie1 5i3w 5i3v 3tpp 4lc7

kc
al
/m

ol

inhibitor

ΔHGBSA
ΔG
Vdw
EEL
EGB
ESURF
solv

Figure 5. The breakout of binding energy ∆H to its contributing energies for inhibitors under study.



Computation 2020, 8, 106 11 of 24

Table 3. Bond distances measured in the average structure using pymol.

Inhibitor ASP32
Oxygen Å

ASP228
Oxygen Å Gly 13 Å Ser35 Å

Hydrophobic:
Tyr71 Å

Hydrph:Val69
Å

5i3X
N of

pyridine
ring

2.6, 3.6 4.9, 5.1 3.0–3.9 4.0–4.9

NH2 2.9, 3.6 2.9, 3.0

5i3Y
N of

pyridine
ring

3.5 5.0, 5.2 3.8 4.1–5 4.2–4.3 3.9–4.4

NH2 2.6 3.0, 3.1

3TPP 2.7, 3.5 2.7, 3.9 3.4 Gly230:
3.1 Gln 73: 3.2

4LC7 Asp93: 2.7,
2.7

Asp289:
2.8, 2.8 Leu91: 4.3 Tyr132: 3.6

Table 4. Correlation coefficients (R2) of ∆H with contributing energies (from Table 2) for groups
of inhibitors.

Inhibitors Number (from
Figure 2) vdW EEL

Electrostatic
EGB

Polar
Esurf

Surface Area
Esolv

Desolvation

1, 2, 3, 4 0.95 0.1 0.41 0.63 0.29
1, 2, 3, 4, 5 0.76 0.01 0.43 0.44 0.33

1, 2, 3, 4, 5, 6 0.85 0.075 0.68 0.29 0.62
1, 2, 3, 4, 5, 6, 7 0.23 0.05 0.01 0.1 0.011
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hydrophobic, with no charged residues within a distance of 8 Å of the Asp dyad; the aspartate 

Figure 6. (A): Structures of BACE1 complexed with 1 (shown in cyan), showing the distances of the
residues from inhibitor 1 in 5i3X, the aspartate pocket (Asp32 and Asp228), and the flap shown in
orange which contains Val69 and Tyr 71. Distances are listed in Table 3 (for views of inhibitors binding
to BACE1 see Figures S1–S8). Colors: helices light blue cylinders; flap orange brown; coils light pink.
(B): The binding pocket of BACE1; inhibitor 1 in 5i3X is shown (pink) and all potential binding residues
labeled, the flap shown in blue. Structure of BACE1 complexed with inhibitor 1 (shown in pink),
interactions between ligand and protein at the catalytic aspartic acids Asp32 and Asp228 and at Trp72
of the S2’ region (Table 3). Colors: ß sheets Yellow; coils green; flap blue; helices red; Nitrogen atoms
blue; inhibitor cyan.
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Table 5. Details of binding of inhibitors to BACE1 extracted from average structures.

Protein-Inhibitor
Complex PDB Code [37]

∆H
Kcal/mol Inhibitor Binding Sites to the Protein

5i3x
I = 68J −44.5

N-(1-{3-[2-(2-amino-3-{3-[(3,3-dimethylbutyl)amino]-
3-oxopropyl}
quinolin-6-yl)phenyl]prop-2-yn-1-yl}cyclopropyl)-
4-fluorobenzamide

N-O:Asp228, Asp32, Gly13
Hydrph:Tyr71, Val69, Ile118,
Leu30, Phe108

5i3y
I = 68K −37.4

N-(6-{2-[2-(2-amino-3-{3-[(3,3-dimethylbutyl)amino]
-3-oxopropyl}quinolin-6-yl)phenyl]ethyl}pyridin-3-yl)-
4-fluorobenzamide

N-O:Asp 228, Asp32, Gly34, Gly230Hydrph:Gly13,
Ser35, Tyr71,
Val69, Ile118, Phe108

5i3v
I = 68M −32.9 (2R)-3-[2-amino-6-(3-methylpyridin-2-yl)quinolin-3-yl]

-N-(3,3-dimethylbutyl)-2-methylpropanamide
N(L)-O(rec):Asp228, Asp32, Gly34,
Hydrph:Tyr71, Phe108

5i3w
I = 68L −32.15

N-[(5S)-2’-amino-3-(5,6-dihydro-2H-pyran-3-yl)-5’H
-spiro [1-benzopyrano [2 ,3-c]pyridine-5,4’-[1,
3]oxazol]-7-yl]-5-chloropyridine-2-carboxamideC25 H20
Cl N5 O4

Asp 32, Asp 228, Gly 230, Tyr 71
Leu 30, Gly 13

5ie1
6BS −30.5 3-[2-amino-6-(2-methylphenyl)quinolin-3-yl]-N-(3,3-

dimethylbutyl)propanamide
N-O:Asp228, Asp32, Gly34
Hydrph:Tyr71, Val69, Ile118, Leu30, Phe108

3tpp
5HA −35.6

N-[(1S,2R)-1-BENZYL-3-(CYCLOPROPYLAMINO)-2-
HYDROXYPROPYL]-5-
[METHYL(METHYLSULFONYL)AMINO]
-N’-[(1R)-1-PHENYLETHYL]ISOPHTHALAMIDEC31
H38 N4 O5 S

Asp 32, Asp 228 Gln 73 Phe 108,
Gly 34 Asn 233 Gly 230, Leu 30
Trp 115, Thr231Gly230, Gln12 Thr232 Gly 13

4lc7
1WP −24.64 (3aR,7aR)-3a-[3-(5-chloropyridin-3-yl)

phenyl]-3a,4,5,6,7,7a-hexahydro-1,3-benzoxazol-2-amine Asp93, Asp289, Tyr 132 Leu 91
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The flap, a β-hairpin loop containing residues Tyr71to Val69, positioned directly over the catalytic
dyad, can open and close to allow substrate and inhibitor access to the active site; see Figures 1 and 6A.

All inhibitors occupy similar binding pockets and more importantly form hydrogen bond interactions
with the catalytic dyad of Asp32 and Asp228. The active site of BACE1 is mostly hydrophobic, with no
charged residues within a distance of 8 Å of the Asp dyad; the aspartate residues form bonds with the
amine and the nitrogen of the pyridine ring; see Figure 1 structure 8 and Figures 7 and 8.
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Figure 7. Structure of the fragments in Inhibitors 1, 2, 3 and 4. (A) the alkyl chain fragment with amide;
(B) phenyl rings attached to amidine group; (C) Flour and amide attached to the phenyl ring in para
position; (D) the fragment with Лcloud and cyclic ring; (E) pyridine fragment.
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Figure 8. Binding of Asp32 and Asp228 to the 2-aminopyridine moiety.

The hydrophobic interactions Tyr71, Val69, Gly13, Gly230. Phe108, Leu30, and Ile118 are common
in all 68J, 68K, 68L, and 68M inhibitors, and all display hydrophobic contacts with residues. The nitrogen
containing heterocycles are often referred to as the aspartyl binding motif; see Figure 8.

Inhibitors 1, 2, 3, and 4 share fragments A and B in Figures 7 and 8, where the terminal CR3 forms
hydrophobic interactions in the S2

′ pocket which contains D228. The correlation coefficient of binding
energy (∆H) for these 4 inhibitors with vdW energy is 0.95 and Esurface is 0.63. The 2-aminopyridine
fragment forms hydrogen bonds with Asp32 (2.6Å) and a weaker interaction with Asp 228 (4.9 Å).

The correlation with electrostatic energy is very small (Table 4) indicating a mostly hydrophobic
interaction on this side. The phenyl rings in structure B (Figure 7) bind Tyr 71 (3.0 Å) and Val69
(4.0 Å). Inhibitors 1 and 2 have an extra fragment C which binds the S3 pocket and differ by one
fragment (where fragment D is in inhibitor 1 and replaced by fragment E in inhibitor 2) which binds
the S1 pocket and Gly34, where in inhibitor 1 it is D and in inhibitor 2 it is E. Fragment D in Figure 7
with its Лcloud provides stronger interaction than that of E. All differences arise from different vdW
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interactions, and the π–π stacking interaction between the phenyl-imino group and Phe108 added
stability with the enzyme 5i3W-68L (inhibitor 5) binds Asp 32, Asp 228, Gly230, Tyr71, Leu30, and Gly13,
see Figure 9E. This inhibitor shares fragment C in Figure 7 with inhibitors 1–4, which binds S1 and
yields an experimental ∆G value of −12.5 kcal/mol and comparable vdw energy to other inhibitors

1–4, whereas the calculated value is −8.15(4) kcal/mol. The fragment
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Figure 9. Binding of inhibitors to BACE1 obtained from average structures after MD simulation 
software. Structures are defined by their PDB ID of complexes of BACE1 and the inhibitor: (A) 5i3X-
68J (1); (B) 5i3Y-68K (2); (C) 5i3V-69M (4); (D) 5ie1-6BS (3); (E) 5i3W-68L (5); (F) 3TPP-5HA (7); (G) 
4LC7 = 1WP (6). Inhibitor numbers in brackets from Figure 2, see also Figures S1–S8.

Figure 9. Binding of inhibitors to BACE1 obtained from average structures after MD simulation software.
Structures are defined by their PDB ID of complexes of BACE1 and the inhibitor: (A) 5i3X-68J (1);
(B) 5i3Y-68K (2); (C) 5i3V-69M (4); (D) 5ie1-6BS (3); (E) 5i3W-68L (5); (F) 3TPP-5HA (7); (G) 4LC7 = 1WP
(6). Inhibitor numbers in brackets from Figure 2, see also Figures S1–S8.
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The aryl group on the opposite end makes hydrophobic interactions with Phe108, Gly13, Gln12,
and Leu30. The oxygen of the peptide bond also interacts with Gln73. The sulfate fragment in
3TPP-5HA binds S2, as seen in the structure below.
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3.3. Drug Likeness

Lipinski’s rule of five was used to evaluate drug likeness or determine if a compound with a
certain pharmacological activity has properties that would make it a feasible orally active drug in
humans (Table 6).

Table 6. Correlation coeffecients of polar surface area with each energy contribution for various inhibitors.

Inhibitor PSA/∆H PSA/Evdw PSA/EGB PSA/EEL PSA/Esurface PSA/Esolv

1, 2, 3, 4, 5, 6, 7 0.23 0.23 0.32 0.24 0.014 0.31
1, 2, 3, 4, 5, 6 0.3 0.14 0.17 0.14 0.4 0.13

1, 2, 3, 4, 5 0.07 0.5 0.006 0.76 0.54 0.03
1, 2, 3, 4 0.5 0.8 0.02 0.64 0.69 0.003

The rule was based on the observation that most orally administered drugs are relatively small
and moderately lipophilic. The rule predicts the absorption, distribution, metabolism, and excretion
of the compound. Lipinski’s rule states that, in general, an orally active drug has no more than one
violation of the following criteria:

- No more than five hydrogen bond donors (total H-N, H-O bonds);
- No more than 10 hydrogen bond acceptors (all N+O atoms);
- Molecular mass less than 500;
- LogP value less than 5 (octanol-water partition coefficient);
- Drug likeness improved LogP (−0.4 to 5.6), molecular weight 180 to 480, total atoms 20 to 70,

including N and O,

Veber’s Rule:
Good oral bioavailability, questioned the 500 molecular weight cutoff. Introduced polar surface

area (PSA), no greater than 140 Å2, and 10 rotatable bonds or less (Table 7).

Table 7. Drug likeness parameters for inhibitors under study (all rules are included).

PDB
ID-inhibitor

M.Wt
<500

LogP
<5

PSA
Å2

[38]

No. H-bond
Acceptor

Atoms
<5

No. H-bond
Donor
Atoms
<5

N&O
<10

Number
of

Rotatable
Bonds

No.
Rings
>3

5i3x-68J 590.730 7.16 **
8.18 ++ 97.11 3 3 6 13 5

5i3y-68K 617.55
7.18 **

8.59 ++
110 3 4 7 14 5
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Table 7. Cont.

PDB
ID-inhibitor

M.Wt
<500

LogP
<5

PSA
Å2

[38]

No. H-bond
Acceptor

Atoms
<5

No. H-bond
Donor
Atoms
<5

N&O
<10

Number
of

Rotatable
Bonds

No.
Rings
>3

5i3v-68M 404.548 4.96 **
5.89 ++ 80.9 2 3 5 8 3

5i3w-68L 488.902 2.77 **
4.43 ++ 122.56 1 3 9 4 6

5ie1-6BS 389.533 5.42 **
6.25 ++ 68.01 2 2 4 8 3

4lc7-1WP 328.122 3.88 **
4.23 ++ 62.11 1 0 4 2 4

3tpp-5HA 597.730 3.6 **
3.86 ++ 140.8 4 5 9 16 4

** Computed with XLOGP3 ++ Computed with Open Babel.

PSA is a commonly used metric for the optimization of a drug’s ability to permeate cells [39].
Molecules with a polar surface area of greater than 140 Å2 tend to be poor at permeating cell membranes.
For molecules to penetrate the blood–brain barrier; a PSA less than 90 Å2 is usually needed [39].
Inspecting the properties of the seven inhibitors used (Table 6) shows that each can be a suitable drug.

Inhibitors 1, 2, 3, and 4, which share a hydrophobic mioty (Figure 7) and the 2-aminopyridine
fragment (Figure 7) in their structure, showed the best correlation between PSA (Table 8) and binding
energy (∆H), Evdw, Esurface, and Eelectrostatic; Table 4. Furthermore, the vdw energy showed the best
correlation with PSA for these inhibitors. Inhibitors 1 to 6 showed the best correlation with surface area
energy (Figure 7). When structure 5 was added to the group, the correlation of PSA with Eelectrostatic

improved due to the presence of hydrogen bond donors and acceptors in inhibitor 5, but the correlation
with Esurface was not changed. Analysis of energies involved in the binding of inhibitors to BACE1
will aid the design of new inhibitors with more efficacy. Ligand efficiency (LE) [40] is calculated by
scaling affinity by molecular size (Table 9). LE was introduced as a metric for the molecular structure
to normalize the affinity with respect to molecular size by scaling the standard free energy of binding
(∆G◦) with the number of heavy atoms (NnH), using the formula:

LE (T, P, C) = −∆G/NnH

Table 8. The areas of hydrophobic pockets in BACE1 for each inhibitor binding (Figure S5). The calculated
energies resulting from hydrophobicity using the formula −25 cal/Å2of surface area and comparing the
estimated hydrophobic energy with that resulting from reported polar surface area (PSA) [21].

Proteins in
Figures S5

Pockets Found by
SPDV Software

Hydrophobic
Pocket Area Å2,

Volume Å3

Hydrophobic
E = −25 × S.A (Å2)

kcal/mol
PSA (Å2)

Estimated
Hydrophobic Energy

−25 × PSA
kcal/mol

5i3x Bound CR3 106, 61
105, 75 −2.63 97.11 −2.42
90, 72
71, 45

5i3y 93, 64
Bound t CR3 87, 57 −2.18 110 −2.75

74, 48
5ie1

CR3, Hexane ring 96, 71 −2.42 68.1 −1.7
82,55
67, 33
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Table 8. Cont.

Proteins in
Figures S5

Pockets Found by
SPDV Software

Hydrophobic
Pocket Area Å2,

Volume Å3

Hydrophobic
E = −25 × S.A (Å2)

kcal/mol
PSA (Å2)

Estimated
Hydrophobic Energy

−25 × PSA
kcal/mol

5i3v 126, 107
Bound CR3 61, 37 −1.54 80.9 −2.03

58, 33
55, 31

3TPP no hyd 115, 71 140.8
No hyd 74, 47 0.0
No hyd 59, 35

4lc7 165, 101
Hexane ring 100, 61 −2.52 62.11

89, 60
5i3w 80,39

Close to ring 61,35 −1.54 122.56 −3.06
61, 36
56,33

Table 9. Ligand efficiency (LE) and a comparison of ∆G experimental with the calculated ∆G values
from MM/GBSA.

PDB ID-Inhibitor
Number (from Figure 2) NnH

LE = −∆G/NnH
kcal/mol/Heavy

Atom
∆Gbind Calculated ∆G Exp

5i3X-(1) 44 0.41 −19.3 −11.34

5i3Y-(2) 47 0.27 −12.4 (7) −13.16

5iE1-(3) 29 0.26 −7.5 (6) −9.60

5i3V-(4) 30 0.36 −10.66 (4) −10.92

5i3W-(5) 35 0.24 −8.15 (4) −12.9

3TPP-(6) 41 0.23 −9.4 (4) −9.28

4LC7-(7) 23 0.09 −2.15 (5) −6.8

LE values vary with conditions, and a value of 0.3 or higher is considered favorable. LE decreases
with an increase in the number of heavy atoms. There was no obvious trend followed in the inhibitors in
this work due to variation in structure. This variation in the results of high energy cost for desolvation
of ligands depends on the changes that took place. Ligand efficiency values of inhibitors were in the
range of 0.09 to 0.41 (Table 9).

The drug-like properties when applying Lipinski’s rule of five, Veber’s Rule, and the MDDR Rule
(No. rings ≥ 3, No. rigid bonds ≥ 18, No. rotatable bonds ≥ 6) changed depending on functional
groups and molecular weights. There was a good correlation between the Gibbs free energy (∆G)
calculated and the experimentally obtained values [21,41].

4. Conclusions

The parameters for successful drugs depend on the specificity and binding to the receptor;
a 500 molecuar weight and a Kd value in the range of 1 to 10 nM is preferred for good absorption.
The potency depends on the specificity of binding (Asp) and increased hydrophobic binding residues
are preferred. However, this depends on the specificity, and a balance between specific binding and
hydrphobicity should be maintained. The higher LE, the more promising the drug binding to a
specific target.
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The binding energy of drug to its target depends on a group of energies [42]; the first is the
desolvation energy needed to break the hydrogen bonds between the inhibitor and solvent, then the
energy released upon binding of the inhibitor to the receptor, and burying the inhibitor hydrophobic
surface. Polar interactions and hydrophobic surface burial depend on the surface area (every 1Å2 of
surface area releases approximately 25 cal); see Tables 7 and 8. The disadvantage in the drugs under
study is the limited surface area, of around 90 Å2, for the drugs to enter brain cells. Differences between
calculated and actual ∆G values are due to imperfect H-bonds caused by steric and distance factors,
which result in a higher E-cost for desolvation.

Research on the mechanism of AD has considered BACE1 as a key enzyme that participates in the
formation of Aβ, and which broadly exists in the brains of AD patients. Compounds with peptide
mimetic structures are effective in BACE1 inhibition according to experimental aspartic proteinase
results in vitro. Nevertheless, these kinds of BACE1 inhibitors did not perform well in pre-clinical trials
due to their excessive number of hydrogen bond donors and acceptors, which increase the polarity
and further lead to a lack of permeability across the BBB (Blood Brain Barrier). Based on molecular
dynamics and energy studies, the amino acid residues Asp228 and Asp32 in the BACE1 enzyme play
an important role in the interactions between compounds and the enzyme. Furthermore, S1, S3, S2′ and
other pockets also exhibited a central role in binding with the BACE1 inhibitors. In the light of these
studies, compounds with amino heterocycles were designed and synthesized. The presence of amino
and aromatic rings maintained the inhibitory ability while decreasing the polarity of the structure.

MM/PBSA energies are calculated for snapshots obtained by MD simulations. Variations are
normally solved by calculating only interaction energies, studying many snapshots, and using several
independent simulations. It has been suggested that the calculations can be performed using only
minimized structures, but such results may depend on the starting structures. Finally, MM/GBSA,
compared with other ligand binding methods, showed reasonable accuracy.

MM/GBSA is a popular method for calculating absolute binding affinities with a modest
computational effort. Energy results from six well-defined terms. However, questions remain
about the dielectric constant, parameters for the non-polar energy, the radii used for the PB or
GB calculations, whether to include the entropy term, and whether to perform MD simulations or
minimizations. In practice, MM/GBSA typically provides results of intermediate quality, which are
often better than docking and scoring but worse than FEP; for example, R2 = 0.3 for the whole PDB
bind database, but R2 = 0.0–0.8 for individual proteins.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-3197/8/4/106/s1,
Figure S1: 5i3V; Figure S2: Different views of binding of inhibitor 4 in 5i3v; Figure S3: Binding mode of Inhibitor
6 in 4LC7 Different views; Figure S4: Protein view of inhibitor 7 in 3TP; Figure S5: Surface areas of inhibitors
and the BACE1 surface; Figure S6: Views of Inhibitor 3 binding protein view (5ie1); Figure S7: Views of inhibitor
2 to BACE1 (5i3Y); Figure S8: 5i3W binding of inhibitor 5 to BACE1; Figure S9: The dendogram (cluster trees) of
the BACE1-Inhibitor in 5i3X; Figure S10: The dendogram (cluster trees) of the BACE1-Inhibitor in 5i3X complex
employing RMSD.
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